ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/rayinit.cal
Revision: 2.13
Committed: Sat Feb 22 02:07:29 2003 UTC (21 years, 2 months ago) by greg
Branch: MAIN
Changes since 2.12: +2 -2 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# User Rev Content
1 greg 2.13 { RCSid: $Id$ }
2 greg 1.1 {
3     Initialization file for Radiance.
4    
5     The following are predefined:
6    
7     Dx, Dy, Dz - ray direction
8     Nx, Ny, Nz - surface normal
9     Px, Py, Pz - intersection point
10     T - distance from start
11 greg 2.3 Ts - single ray (shadow) distance
12 greg 1.1 Rdot - ray dot product
13     S - world scale
14     Tx, Ty, Tz - world origin
15     Ix, Iy, Iz - world i unit vector
16     Jx, Jy, Jz - world j unit vector
17     Kx, Ky, Kz - world k unit vector
18     arg(n) - real arguments, arg(0) is count
19    
20     For brdf functions, the following are also available:
21    
22     NxP, NyP, NzP - perturbed surface normal
23     RdotP - perturbed ray dot product
24     CrP, CgP, CbP - perturbed material color
25    
26 greg 2.9 For prism1 and prism2 types, the following are available:
27    
28     DxA, DyA, DzA - direction to target light source
29    
30 greg 1.1 Library functions:
31    
32     if(a, b, c) - if a positive, return b, else c
33    
34     select(N, a1, a2, ..) - return aN
35    
36     sqrt(x) - square root function
37    
38     sin(x), cos(x), tan(x),
39     asin(x), acos(x),
40     atan(x), atan2(y,x) - standard trig functions
41    
42     floor(x), ceil(x) - g.l.b. & l.u.b.
43    
44     exp(x), log(x), log10(x) - exponent and log functions
45    
46     erf(z), erfc(z) - error functions
47    
48     rand(x) - pseudo-random function (0 to 1)
49    
50     hermite(p0,p1,r0,r1,t) - 1-dimensional hermite polynomial
51    
52 greg 2.11 noise3(x,y,z), noise3x(x,y,z),
53     noise3y(x,y,z), noise3z(x,y,z) - noise function with gradient (-1 to 1)
54 greg 1.1
55     fnoise3(x,y,z) - fractal noise function (-1 to 1)
56     }
57    
58     { Backward compatibility }
59     AC = arg(0);
60     A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
61     A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);
62    
63 greg 2.11 noise3a(x,y,z) : noise3x(x,y,z);
64     noise3b(x,y,z) : noise3y(x,y,z);
65     noise3c(x,y,z) : noise3z(x,y,z);
66    
67 greg 1.1 { Forward compatibility (?) }
68     D(i) = select(i, Dx, Dy, Dz);
69     N(i) = select(i, Nx, Ny, Nz);
70     P(i) = select(i, Px, Py, Pz);
71 greg 2.11 noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z));
72 greg 1.1
73     { More robust versions of library functions }
74     bound(a,x,b) : if(a-x, a, if(x-b, b, x));
75     Acos(x) : acos(bound(-1,x,1));
76     Asin(x) : asin(bound(-1,x,1));
77 greg 2.8 Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0);
78 greg 2.2 Exp(x) : if(-x-100, 0, exp(x));
79 greg 1.1 Sqrt(x) : if(x, sqrt(x), 0);
80    
81     { Useful constants }
82     PI : 3.14159265358979323846;
83     DEGREE : PI/180;
84     FTINY : 1e-7;
85    
86     { Useful functions }
87     and(a,b) : if( a, b, a );
88     or(a,b) : if( a, a, b );
89     not(a) : if( a, -1, 1 );
90 greg 2.13 xor(a,b) : if( a, not(b), b );
91 greg 1.1 abs(x) : if( x, x, -x );
92     sgn(x) : if( x, 1, if(-x, -1, 0) );
93     sq(x) : x*x;
94     max(a,b) : if( a-b, a, b );
95     min(a,b) : if( a-b, b, a );
96     inside(a,x,b) : and(x-a,b-x);
97     frac(x) : x - floor(x);
98     mod(n,d) : n - floor(n/d)*d;
99     tri(n,d) : abs( d - mod(n-d,2*d) );
100     linterp(t,p0,p1) : (1-t)*p0 + t*p1;
101    
102 gwlarson 2.12 noop(v) : v;
103     clip(v) : bound(0,v,1);
104     noneg(v) : if(v,v,0);
105     red(r,g,b) : if(r,r,0);
106     green(r,g,b) : if(g,g,0);
107     blue(r,g,b) : if(b,b,0);
108     grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b);
109     clip_r(r,g,b) : bound(0,r,1);
110     clip_g(r,g,b) : bound(0,g,1);
111     clip_b(r,g,b) : bound(0,b,1);
112     clipgrey(r,g,b) : min(grey(r,g,b),1);
113 greg 1.1
114     dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
115     cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2),
116     v1(3)*v2(1) - v1(1)*v2(3),
117     v1(1)*v2(2) - v1(2)*v2(1));
118    
119 gwlarson 2.12 fade(near_val,far_val,dist) : far_val +
120 greg 1.1 if (16-dist, (near_val-far_val)/(1+dist*dist), 0);
121    
122 gwlarson 2.12 bezier(p1, p2, p3, p4, t) : p1 * (1+t*(-3+t*(3-t))) +
123 greg 1.1 p2 * 3*t*(1+t*(-2+t)) +
124     p3 * 3*t*t*(1-t) +
125     p4 * t*t*t ;
126    
127 gwlarson 2.12 bspline(pp, p0, p1, pn, t) : pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
128 greg 1.1 p0 * (2/3+t*t*(-1+.5*t)) +
129     p1 * (1/6+t*(.5+t*(.5-.5*t))) +
130     pn * (1/6*t*t*t) ;
131    
132 gwlarson 2.12 turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
133 greg 1.1 turbulence(x,y,z,2*s) );
134 gwlarson 2.12 turbulencex(x,y,z,s) : if( s-1.01, 0,
135 greg 2.11 sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) +
136 gwlarson 2.12 turbulencex(x,y,z,2*s) );
137     turbulencey(x,y,z,s) : if( s-1.01, 0,
138 greg 2.11 sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) +
139 gwlarson 2.12 turbulencey(x,y,z,2*s) );
140     turbulencez(x,y,z,s) : if( s-1.01, 0,
141 greg 2.11 sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) +
142 gwlarson 2.12 turbulencez(x,y,z,2*s) );
143 greg 1.2
144 greg 1.3 { Normal distribution from uniform range (0,1) }
145    
146 gwlarson 2.12 un2`P(t) : t - (2.515517+t*(.802853+t*.010328))/
147 greg 1.3 (1+t*(1.432788+t*(.189269+t*.001308))) ;
148 gwlarson 2.12 un1`P(p) : un2`P(sqrt(-2*log(p))) ;
149 greg 1.3
150 gwlarson 2.12 unif2norm(p) : if( .5-p, -un1`P(p), un1`P(1-p) ) ;
151 greg 1.3
152     nrand(x) = unif2norm(rand(x));
153    
154 greg 1.2 { Local (u,v) coordinates for planar surfaces }
155 gwlarson 2.12 crosslen`P = Nx*Nx + Ny*Ny;
156 greg 2.7 { U is distance from projected Z-axis }
157 gwlarson 2.12 U = if( crosslen`P - FTINY,
158     (Py*Nx - Px*Ny)/crosslen`P,
159 greg 1.2 Px);
160     { V is defined so that N = U x V }
161 gwlarson 2.12 V = if( crosslen`P - FTINY,
162     Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P,
163 greg 1.2 Py);