| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: pmutil.c,v 2.1 2016/09/26 20:19:30 greg Exp $";
|
| 3 |
#endif
|
| 4 |
|
| 5 |
/*
|
| 6 |
======================================================================
|
| 7 |
Photon map utilities
|
| 8 |
|
| 9 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
|
| 10 |
(c) Fraunhofer Institute for Solar Energy Systems,
|
| 11 |
(c) Lucerne University of Applied Sciences and Arts,
|
| 12 |
supported by the Swiss National Science Foundation (SNSF, #147053)
|
| 13 |
======================================================================
|
| 14 |
|
| 15 |
$Id: pmutil.c,v 2.1 2016/09/26 20:19:30 greg Exp $
|
| 16 |
*/
|
| 17 |
|
| 18 |
#include "pmap.h"
|
| 19 |
#include "pmapio.h"
|
| 20 |
#include "pmapbias.h"
|
| 21 |
#include "otypes.h"
|
| 22 |
#include <sys/stat.h>
|
| 23 |
|
| 24 |
|
| 25 |
extern char *octname;
|
| 26 |
|
| 27 |
|
| 28 |
/* Photon map lookup functions per type */
|
| 29 |
void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = {
|
| 30 |
photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity,
|
| 31 |
photonDensity, photonDensity
|
| 32 |
};
|
| 33 |
|
| 34 |
|
| 35 |
|
| 36 |
|
| 37 |
void colorNorm (COLOR c)
|
| 38 |
/* Normalise colour channels to average of 1 */
|
| 39 |
{
|
| 40 |
const float avg = colorAvg(c);
|
| 41 |
|
| 42 |
if (!avg)
|
| 43 |
return;
|
| 44 |
|
| 45 |
c [0] /= avg;
|
| 46 |
c [1] /= avg;
|
| 47 |
c [2] /= avg;
|
| 48 |
}
|
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
|
| 53 |
void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm)
|
| 54 |
{
|
| 55 |
unsigned t;
|
| 56 |
struct stat octstat, pmstat;
|
| 57 |
PhotonMap *pm;
|
| 58 |
PhotonMapType type;
|
| 59 |
|
| 60 |
for (t = 0; t < NUM_PMAP_TYPES; t++)
|
| 61 |
if (setPmapParam(&pm, parm + t)) {
|
| 62 |
/* Check if photon map newer than octree */
|
| 63 |
if (pm -> fileName && octname &&
|
| 64 |
!stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) &&
|
| 65 |
octstat.st_mtime > pmstat.st_mtime) {
|
| 66 |
sprintf(errmsg, "photon map in file %s may be stale",
|
| 67 |
pm -> fileName);
|
| 68 |
error(USER, errmsg);
|
| 69 |
}
|
| 70 |
|
| 71 |
/* Load photon map from file and get its type */
|
| 72 |
if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE)
|
| 73 |
error(USER, "failed loading photon map");
|
| 74 |
|
| 75 |
/* Assign to appropriate photon map type (deleting previously
|
| 76 |
* loaded photon map of same type if necessary) */
|
| 77 |
if (pmaps [type]) {
|
| 78 |
deletePhotons(pmaps [type]);
|
| 79 |
free(pmaps [type]);
|
| 80 |
}
|
| 81 |
pmaps [type] = pm;
|
| 82 |
|
| 83 |
/* Check for invalid density estimate bandwidth */
|
| 84 |
if (pm -> maxGather > pm -> numPhotons) {
|
| 85 |
error(WARNING, "adjusting density estimate bandwidth");
|
| 86 |
pm -> minGather = pm -> maxGather = pm -> numPhotons;
|
| 87 |
}
|
| 88 |
}
|
| 89 |
}
|
| 90 |
|
| 91 |
|
| 92 |
|
| 93 |
void cleanUpPmaps (PhotonMap **pmaps)
|
| 94 |
{
|
| 95 |
unsigned t;
|
| 96 |
|
| 97 |
for (t = 0; t < NUM_PMAP_TYPES; t++) {
|
| 98 |
if (pmaps [t]) {
|
| 99 |
deletePhotons(pmaps [t]);
|
| 100 |
free(pmaps [t]);
|
| 101 |
}
|
| 102 |
}
|
| 103 |
}
|
| 104 |
|
| 105 |
|
| 106 |
|
| 107 |
|
| 108 |
void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad)
|
| 109 |
/* Photon density estimate. Returns irradiance at ray -> rop. */
|
| 110 |
{
|
| 111 |
unsigned i;
|
| 112 |
float r;
|
| 113 |
COLOR flux;
|
| 114 |
Photon *photon;
|
| 115 |
const PhotonSearchQueueNode *sqn;
|
| 116 |
|
| 117 |
setcolor(irrad, 0, 0, 0);
|
| 118 |
|
| 119 |
if (!pmap -> maxGather)
|
| 120 |
return;
|
| 121 |
|
| 122 |
/* Ignore sources */
|
| 123 |
if (ray -> ro && islight(objptr(ray -> ro -> omod) -> otype))
|
| 124 |
return;
|
| 125 |
|
| 126 |
findPhotons(pmap, ray);
|
| 127 |
|
| 128 |
/* Need at least 2 photons */
|
| 129 |
if (pmap -> squeue.tail < 2) {
|
| 130 |
#ifdef PMAP_NONEFOUND
|
| 131 |
sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)",
|
| 132 |
ray -> ro ? ray -> ro -> oname : "<null>",
|
| 133 |
ray -> rop [0], ray -> rop [1], ray -> rop [2]);
|
| 134 |
error(WARNING, errmsg);
|
| 135 |
#endif
|
| 136 |
|
| 137 |
return;
|
| 138 |
}
|
| 139 |
|
| 140 |
if (pmap -> minGather == pmap -> maxGather) {
|
| 141 |
/* No bias compensation. Just do a plain vanilla estimate */
|
| 142 |
sqn = pmap -> squeue.node + 1;
|
| 143 |
|
| 144 |
/* Average radius between furthest two photons to improve accuracy */
|
| 145 |
r = max(sqn -> dist2, (sqn + 1) -> dist2);
|
| 146 |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r));
|
| 147 |
|
| 148 |
/* Skip the extra photon */
|
| 149 |
for (i = 1 ; i < pmap -> squeue.tail; i++, sqn++) {
|
| 150 |
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx);
|
| 151 |
getPhotonFlux(photon, flux);
|
| 152 |
#ifdef PMAP_EPANECHNIKOV
|
| 153 |
/* Apply Epanechnikov kernel to photon flux based on photon dist */
|
| 154 |
scalecolor(flux, 2 * (1 - sqn -> dist2 / r));
|
| 155 |
#endif
|
| 156 |
addcolor(irrad, flux);
|
| 157 |
}
|
| 158 |
|
| 159 |
/* Divide by search area PI * r^2, 1 / PI required as ambient
|
| 160 |
normalisation factor */
|
| 161 |
scalecolor(irrad, 1 / (PI * PI * r));
|
| 162 |
|
| 163 |
return;
|
| 164 |
}
|
| 165 |
else
|
| 166 |
/* Apply bias compensation to density estimate */
|
| 167 |
biasComp(pmap, irrad);
|
| 168 |
}
|
| 169 |
|
| 170 |
|
| 171 |
|
| 172 |
|
| 173 |
void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad)
|
| 174 |
/* Returns precomputed photon density estimate at ray -> rop. */
|
| 175 |
{
|
| 176 |
Photon p;
|
| 177 |
|
| 178 |
setcolor(irrad, 0, 0, 0);
|
| 179 |
|
| 180 |
/* Ignore sources */
|
| 181 |
if (r -> ro && islight(objptr(r -> ro -> omod) -> otype))
|
| 182 |
return;
|
| 183 |
|
| 184 |
find1Photon(preCompPmap, r, &p);
|
| 185 |
getPhotonFlux(&p, irrad);
|
| 186 |
}
|
| 187 |
|
| 188 |
|
| 189 |
|
| 190 |
|
| 191 |
void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad)
|
| 192 |
/* Photon volume density estimate. Returns irradiance at ray -> rop. */
|
| 193 |
{
|
| 194 |
unsigned i;
|
| 195 |
float r, gecc2, ph;
|
| 196 |
COLOR flux;
|
| 197 |
Photon *photon;
|
| 198 |
const PhotonSearchQueueNode *sqn;
|
| 199 |
|
| 200 |
setcolor(irrad, 0, 0, 0);
|
| 201 |
|
| 202 |
if (!pmap -> maxGather)
|
| 203 |
return;
|
| 204 |
|
| 205 |
findPhotons(pmap, ray);
|
| 206 |
|
| 207 |
/* Need at least 2 photons */
|
| 208 |
if (pmap -> squeue.tail < 2)
|
| 209 |
return;
|
| 210 |
|
| 211 |
#if 0
|
| 212 |
/* Volume biascomp disabled (probably redundant) */
|
| 213 |
if (pmap -> minGather == pmap -> maxGather)
|
| 214 |
#endif
|
| 215 |
{
|
| 216 |
/* No bias compensation. Just do a plain vanilla estimate */
|
| 217 |
gecc2 = ray -> gecc * ray -> gecc;
|
| 218 |
sqn = pmap -> squeue.node + 1;
|
| 219 |
|
| 220 |
/* Average radius between furthest two photons to improve accuracy */
|
| 221 |
r = max(sqn -> dist2, (sqn + 1) -> dist2);
|
| 222 |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r));
|
| 223 |
|
| 224 |
/* Skip the extra photon */
|
| 225 |
for (i = 1; i < pmap -> squeue.tail; i++, sqn++) {
|
| 226 |
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx);
|
| 227 |
|
| 228 |
/* Compute phase function for inscattering from photon */
|
| 229 |
if (gecc2 <= FTINY)
|
| 230 |
ph = 1;
|
| 231 |
else {
|
| 232 |
ph = DOT(ray -> rdir, photon -> norm) / 127;
|
| 233 |
ph = 1 + gecc2 - 2 * ray -> gecc * ph;
|
| 234 |
ph = (1 - gecc2) / (ph * sqrt(ph));
|
| 235 |
}
|
| 236 |
|
| 237 |
getPhotonFlux(photon, flux);
|
| 238 |
scalecolor(flux, ph);
|
| 239 |
addcolor(irrad, flux);
|
| 240 |
}
|
| 241 |
|
| 242 |
/* Divide by search volume 4 / 3 * PI * r^3 and phase function
|
| 243 |
normalization factor 1 / (4 * PI) */
|
| 244 |
scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r)));
|
| 245 |
return;
|
| 246 |
}
|
| 247 |
#if 0
|
| 248 |
else
|
| 249 |
/* Apply bias compensation to density estimate */
|
| 250 |
volumeBiasComp(pmap, ray, irrad);
|
| 251 |
#endif
|
| 252 |
}
|