| 109 |
|
/* Photon density estimate. Returns irradiance at ray -> rop. */ |
| 110 |
|
{ |
| 111 |
|
unsigned i; |
| 112 |
< |
float r; |
| 112 |
> |
float r2; |
| 113 |
|
COLOR flux; |
| 114 |
|
Photon *photon; |
| 115 |
|
const PhotonSearchQueueNode *sqn; |
| 141 |
|
/* No bias compensation. Just do a plain vanilla estimate */ |
| 142 |
|
sqn = pmap -> squeue.node + 1; |
| 143 |
|
|
| 144 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
| 145 |
< |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 146 |
< |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
| 144 |
> |
/* Average radius^2 between furthest two photons to improve accuracy */ |
| 145 |
> |
r2 = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 146 |
> |
r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); |
| 147 |
|
|
| 148 |
|
/* Skip the extra photon */ |
| 149 |
|
for (i = 1 ; i < pmap -> squeue.tail; i++, sqn++) { |
| 151 |
|
getPhotonFlux(photon, flux); |
| 152 |
|
#ifdef PMAP_EPANECHNIKOV |
| 153 |
|
/* Apply Epanechnikov kernel to photon flux based on photon dist */ |
| 154 |
< |
scalecolor(flux, 2 * (1 - sqn -> dist2 / r)); |
| 154 |
> |
scalecolor(flux, 2 * (1 - sqn -> dist2 / r2)); |
| 155 |
|
#endif |
| 156 |
|
addcolor(irrad, flux); |
| 157 |
|
} |
| 158 |
|
|
| 159 |
|
/* Divide by search area PI * r^2, 1 / PI required as ambient |
| 160 |
|
normalisation factor */ |
| 161 |
< |
scalecolor(irrad, 1 / (PI * PI * r)); |
| 161 |
> |
scalecolor(irrad, 1 / (PI * PI * r2)); |
| 162 |
|
|
| 163 |
|
return; |
| 164 |
|
} |
| 192 |
|
/* Photon volume density estimate. Returns irradiance at ray -> rop. */ |
| 193 |
|
{ |
| 194 |
|
unsigned i; |
| 195 |
< |
float r, gecc2, ph; |
| 195 |
> |
float r2, gecc2, ph; |
| 196 |
|
COLOR flux; |
| 197 |
|
Photon *photon; |
| 198 |
|
const PhotonSearchQueueNode *sqn; |
| 217 |
|
gecc2 = ray -> gecc * ray -> gecc; |
| 218 |
|
sqn = pmap -> squeue.node + 1; |
| 219 |
|
|
| 220 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
| 221 |
< |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 222 |
< |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
| 220 |
> |
/* Average radius^2 between furthest two photons to improve accuracy */ |
| 221 |
> |
r2 = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 222 |
> |
r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); |
| 223 |
|
|
| 224 |
|
/* Skip the extra photon */ |
| 225 |
|
for (i = 1; i < pmap -> squeue.tail; i++, sqn++) { |
| 241 |
|
|
| 242 |
|
/* Divide by search volume 4 / 3 * PI * r^3 and phase function |
| 243 |
|
normalization factor 1 / (4 * PI) */ |
| 244 |
< |
scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r))); |
| 244 |
> |
scalecolor(irrad, 3 / (16 * PI * PI * r2 * sqrt(r2))); |
| 245 |
|
return; |
| 246 |
|
} |
| 247 |
|
#if 0 |