75 |
|
/* Assign to appropriate photon map type (deleting previously |
76 |
|
* loaded photon map of same type if necessary) */ |
77 |
|
if (pmaps [type]) { |
78 |
+ |
sprintf(errmsg, "multiple %s photon maps, dropping previous", |
79 |
+ |
pmapName [type]); |
80 |
+ |
error(WARNING, errmsg); |
81 |
|
deletePhotons(pmaps [type]); |
82 |
|
free(pmaps [type]); |
83 |
|
} |
84 |
|
pmaps [type] = pm; |
85 |
|
|
86 |
< |
/* Check for invalid density estimate bandwidth */ |
86 |
> |
/* Check for valid density estimate bandwidths */ |
87 |
> |
if ((pm -> minGather > 1 || pm -> maxGather > 1) && |
88 |
> |
(type == PMAP_TYPE_PRECOMP)) { |
89 |
> |
/* Force bwidth to 1 for precomputed pmap */ |
90 |
> |
error(WARNING, "ignoring bandwidth for precomp photon map"); |
91 |
> |
pm -> minGather = pm -> maxGather = 1; |
92 |
> |
} |
93 |
> |
|
94 |
> |
if ((pm -> maxGather > pm -> minGather) && |
95 |
> |
(type == PMAP_TYPE_VOLUME)) { |
96 |
> |
/* Biascomp for volume pmaps (see volumePhotonDensity() below) |
97 |
> |
is considered redundant, and there's probably no point in |
98 |
> |
recovering by using the lower bandwidth, since it's probably |
99 |
> |
not what the user wants, so bail out. */ |
100 |
> |
sprintf(errmsg, |
101 |
> |
"bias compensation is not available with %s photon maps", |
102 |
> |
pmapName [type]); |
103 |
> |
error(USER, errmsg); |
104 |
> |
} |
105 |
> |
|
106 |
|
if (pm -> maxGather > pm -> numPhotons) { |
107 |
|
error(WARNING, "adjusting density estimate bandwidth"); |
108 |
|
pm -> minGather = pm -> maxGather = pm -> numPhotons; |
109 |
< |
} |
109 |
> |
} |
110 |
|
} |
111 |
|
} |
112 |
|
|
131 |
|
/* Photon density estimate. Returns irradiance at ray -> rop. */ |
132 |
|
{ |
133 |
|
unsigned i; |
134 |
< |
float r; |
134 |
> |
float r2; |
135 |
|
COLOR flux; |
136 |
|
Photon *photon; |
137 |
|
const PhotonSearchQueueNode *sqn; |
163 |
|
/* No bias compensation. Just do a plain vanilla estimate */ |
164 |
|
sqn = pmap -> squeue.node + 1; |
165 |
|
|
166 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
167 |
< |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
168 |
< |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
166 |
> |
/* Average radius^2 between furthest two photons to improve accuracy */ |
167 |
> |
r2 = max(sqn -> dist2, (sqn + 1) -> dist2); |
168 |
> |
r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); |
169 |
|
|
170 |
|
/* Skip the extra photon */ |
171 |
|
for (i = 1 ; i < pmap -> squeue.tail; i++, sqn++) { |
173 |
|
getPhotonFlux(photon, flux); |
174 |
|
#ifdef PMAP_EPANECHNIKOV |
175 |
|
/* Apply Epanechnikov kernel to photon flux based on photon dist */ |
176 |
< |
scalecolor(flux, 2 * (1 - sqn -> dist2 / r)); |
176 |
> |
scalecolor(flux, 2 * (1 - sqn -> dist2 / r2)); |
177 |
|
#endif |
178 |
|
addcolor(irrad, flux); |
179 |
|
} |
180 |
|
|
181 |
|
/* Divide by search area PI * r^2, 1 / PI required as ambient |
182 |
|
normalisation factor */ |
183 |
< |
scalecolor(irrad, 1 / (PI * PI * r)); |
183 |
> |
scalecolor(irrad, 1 / (PI * PI * r2)); |
184 |
|
|
185 |
|
return; |
186 |
|
} |
203 |
|
if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) |
204 |
|
return; |
205 |
|
|
206 |
< |
find1Photon(preCompPmap, r, &p); |
207 |
< |
getPhotonFlux(&p, irrad); |
206 |
> |
if (find1Photon(preCompPmap, r, &p)) |
207 |
> |
/* p contains a found photon, so get its irradiance, otherwise it |
208 |
> |
* remains zero under the assumption all photons are too distant |
209 |
> |
* to contribute significantly */ |
210 |
> |
getPhotonFlux(&p, irrad); |
211 |
|
} |
212 |
|
|
213 |
|
|
217 |
|
/* Photon volume density estimate. Returns irradiance at ray -> rop. */ |
218 |
|
{ |
219 |
|
unsigned i; |
220 |
< |
float r, gecc2, ph; |
220 |
> |
float r2, gecc2, ph; |
221 |
|
COLOR flux; |
222 |
|
Photon *photon; |
223 |
|
const PhotonSearchQueueNode *sqn; |
242 |
|
gecc2 = ray -> gecc * ray -> gecc; |
243 |
|
sqn = pmap -> squeue.node + 1; |
244 |
|
|
245 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
246 |
< |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
247 |
< |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
245 |
> |
/* Average radius^2 between furthest two photons to improve accuracy */ |
246 |
> |
r2 = max(sqn -> dist2, (sqn + 1) -> dist2); |
247 |
> |
r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); |
248 |
|
|
249 |
|
/* Skip the extra photon */ |
250 |
|
for (i = 1; i < pmap -> squeue.tail; i++, sqn++) { |
266 |
|
|
267 |
|
/* Divide by search volume 4 / 3 * PI * r^3 and phase function |
268 |
|
normalization factor 1 / (4 * PI) */ |
269 |
< |
scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r))); |
269 |
> |
scalecolor(irrad, 3 / (16 * PI * PI * r2 * sqrt(r2))); |
270 |
|
return; |
271 |
|
} |
272 |
|
#if 0 |