1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: pmapsrc.c,v 2.16 2018/04/07 20:25:10 rschregle Exp $"; |
3 |
#endif |
4 |
/* |
5 |
================================================================== |
6 |
Photon map support routines for emission from light sources |
7 |
|
8 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
9 |
(c) Fraunhofer Institute for Solar Energy Systems, |
10 |
(c) Lucerne University of Applied Sciences and Arts, |
11 |
supported by the Swiss National Science Foundation (SNSF, #147053) |
12 |
================================================================== |
13 |
|
14 |
*/ |
15 |
|
16 |
|
17 |
|
18 |
#include "pmapsrc.h" |
19 |
#include "pmap.h" |
20 |
#include "pmaprand.h" |
21 |
#include "otypes.h" |
22 |
#include "otspecial.h" |
23 |
|
24 |
/* List of photon port modifier names */ |
25 |
char *photonPortList [MAXSET + 1] = {NULL}; |
26 |
/* Photon port objects (with modifiers in photonPortMods) */ |
27 |
SRCREC *photonPorts = NULL; |
28 |
unsigned numPhotonPorts = 0; |
29 |
|
30 |
void (*photonPartition [NUMOTYPE]) (EmissionMap*); |
31 |
void (*photonOrigin [NUMOTYPE]) (EmissionMap*); |
32 |
|
33 |
|
34 |
|
35 |
static int flatPhotonPartition2 (EmissionMap* emap, unsigned long mp, |
36 |
FVECT cent, FVECT u, FVECT v, |
37 |
double du2, double dv2) |
38 |
/* Recursive part of flatPhotonPartition(..) */ |
39 |
{ |
40 |
FVECT newct, newax; |
41 |
unsigned long npl, npu; |
42 |
|
43 |
if (mp > emap -> maxPartitions) { |
44 |
/* Enlarge partition array */ |
45 |
emap -> maxPartitions <<= 1; |
46 |
emap -> partitions = (unsigned char*)realloc(emap -> partitions, |
47 |
emap -> maxPartitions >> 1); |
48 |
|
49 |
if (!emap -> partitions) |
50 |
error(USER, "can't allocate source partitions"); |
51 |
|
52 |
memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, |
53 |
emap -> maxPartitions >> 2); |
54 |
} |
55 |
|
56 |
if (du2 * dv2 <= 1) { /* hit limit? */ |
57 |
setpart(emap -> partitions, emap -> partitionCnt, S0); |
58 |
emap -> partitionCnt++; |
59 |
return 1; |
60 |
} |
61 |
|
62 |
if (du2 > dv2) { /* subdivide in U */ |
63 |
setpart(emap -> partitions, emap -> partitionCnt, SU); |
64 |
emap -> partitionCnt++; |
65 |
newax [0] = 0.5 * u [0]; |
66 |
newax [1] = 0.5 * u [1]; |
67 |
newax [2] = 0.5 * u [2]; |
68 |
u = newax; |
69 |
du2 *= 0.25; |
70 |
} |
71 |
|
72 |
else { /* subdivide in V */ |
73 |
setpart(emap -> partitions, emap -> partitionCnt, SV); |
74 |
emap -> partitionCnt++; |
75 |
newax [0] = 0.5 * v [0]; |
76 |
newax [1] = 0.5 * v [1]; |
77 |
newax [2] = 0.5 * v [2]; |
78 |
v = newax; |
79 |
dv2 *= 0.25; |
80 |
} |
81 |
|
82 |
/* lower half */ |
83 |
newct [0] = cent [0] - newax [0]; |
84 |
newct [1] = cent [1] - newax [1]; |
85 |
newct [2] = cent [2] - newax [2]; |
86 |
npl = flatPhotonPartition2(emap, mp << 1, newct, u, v, du2, dv2); |
87 |
|
88 |
/* upper half */ |
89 |
newct [0] = cent [0] + newax [0]; |
90 |
newct [1] = cent [1] + newax [1]; |
91 |
newct [2] = cent [2] + newax [2]; |
92 |
npu = flatPhotonPartition2(emap, mp << 1, newct, u, v, du2, dv2); |
93 |
|
94 |
/* return total */ |
95 |
return npl + npu; |
96 |
} |
97 |
|
98 |
|
99 |
|
100 |
static void flatPhotonPartition (EmissionMap* emap) |
101 |
/* Partition flat source for photon emission */ |
102 |
{ |
103 |
RREAL *vp; |
104 |
double du2, dv2; |
105 |
|
106 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
107 |
emap -> partArea = srcsizerat * thescene.cusize; |
108 |
emap -> partArea *= emap -> partArea; |
109 |
vp = emap -> src -> ss [SU]; |
110 |
du2 = DOT(vp, vp) / emap -> partArea; |
111 |
vp = emap -> src -> ss [SV]; |
112 |
dv2 = DOT(vp, vp) / emap -> partArea; |
113 |
emap -> partitionCnt = 0; |
114 |
emap -> numPartitions = flatPhotonPartition2(emap, 1, emap -> src -> sloc, |
115 |
emap -> src -> ss [SU], |
116 |
emap -> src -> ss [SV], |
117 |
du2, dv2); |
118 |
emap -> partitionCnt = 0; |
119 |
emap -> partArea = emap -> src -> ss2 / emap -> numPartitions; |
120 |
} |
121 |
|
122 |
|
123 |
|
124 |
static void sourcePhotonPartition (EmissionMap* emap) |
125 |
/* Partition scene cube faces or photon port for photon emission from |
126 |
distant source */ |
127 |
{ |
128 |
if (emap -> port) { |
129 |
/* Partition photon port */ |
130 |
SRCREC *src = emap -> src; |
131 |
emap -> src = emap -> port; |
132 |
photonPartition [emap -> src -> so -> otype] (emap); |
133 |
emap -> src = src; |
134 |
} |
135 |
|
136 |
else { |
137 |
/* No photon ports defined, so partition scene cube faces */ |
138 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
139 |
setpart(emap -> partitions, 0, S0); |
140 |
emap -> partitionCnt = 0; |
141 |
emap -> numPartitions = 1 / srcsizerat; |
142 |
emap -> numPartitions *= emap -> numPartitions; |
143 |
emap -> partArea = sqr(thescene.cusize) / emap -> numPartitions; |
144 |
emap -> numPartitions *= 6; |
145 |
} |
146 |
} |
147 |
|
148 |
|
149 |
|
150 |
static void spherePhotonPartition (EmissionMap* emap) |
151 |
/* Partition spherical source into equal solid angles using uniform |
152 |
mapping for photon emission */ |
153 |
{ |
154 |
unsigned numTheta, numPhi; |
155 |
|
156 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
157 |
setpart(emap -> partitions, 0, S0); |
158 |
emap -> partArea = 4 * PI * sqr(emap -> src -> srad); |
159 |
emap -> numPartitions = emap -> partArea / |
160 |
sqr(srcsizerat * thescene.cusize); |
161 |
|
162 |
numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); |
163 |
numPhi = 0.5 * PI * numTheta + 0.5; |
164 |
|
165 |
emap -> numPartitions = (unsigned long)numTheta * numPhi; |
166 |
emap -> partitionCnt = 0; |
167 |
emap -> partArea /= emap -> numPartitions; |
168 |
} |
169 |
|
170 |
|
171 |
|
172 |
static int cylPhotonPartition2 (EmissionMap* emap, unsigned long mp, |
173 |
FVECT cent, FVECT axis, double d2) |
174 |
/* Recursive part of cyPhotonPartition(..) */ |
175 |
{ |
176 |
FVECT newct, newax; |
177 |
unsigned long npl, npu; |
178 |
|
179 |
if (mp > emap -> maxPartitions) { |
180 |
/* Enlarge partition array */ |
181 |
emap -> maxPartitions <<= 1; |
182 |
emap -> partitions = (unsigned char*)realloc(emap -> partitions, |
183 |
emap -> maxPartitions >> 1); |
184 |
if (!emap -> partitions) |
185 |
error(USER, "can't allocate source partitions"); |
186 |
|
187 |
memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, |
188 |
emap -> maxPartitions >> 2); |
189 |
} |
190 |
|
191 |
if (d2 <= 1) { |
192 |
/* hit limit? */ |
193 |
setpart(emap -> partitions, emap -> partitionCnt, S0); |
194 |
emap -> partitionCnt++; |
195 |
return 1; |
196 |
} |
197 |
|
198 |
/* subdivide */ |
199 |
setpart(emap -> partitions, emap -> partitionCnt, SU); |
200 |
emap -> partitionCnt++; |
201 |
newax [0] = 0.5 * axis [0]; |
202 |
newax [1] = 0.5 * axis [1]; |
203 |
newax [2] = 0.5 * axis [2]; |
204 |
d2 *= 0.25; |
205 |
|
206 |
/* lower half */ |
207 |
newct [0] = cent [0] - newax [0]; |
208 |
newct [1] = cent [1] - newax [1]; |
209 |
newct [2] = cent [2] - newax [2]; |
210 |
npl = cylPhotonPartition2(emap, mp << 1, newct, newax, d2); |
211 |
|
212 |
/* upper half */ |
213 |
newct [0] = cent [0] + newax [0]; |
214 |
newct [1] = cent [1] + newax [1]; |
215 |
newct [2] = cent [2] + newax [2]; |
216 |
npu = cylPhotonPartition2(emap, mp << 1, newct, newax, d2); |
217 |
|
218 |
/* return total */ |
219 |
return npl + npu; |
220 |
} |
221 |
|
222 |
|
223 |
|
224 |
static void cylPhotonPartition (EmissionMap* emap) |
225 |
/* Partition cylindrical source for photon emission */ |
226 |
{ |
227 |
double d2; |
228 |
|
229 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
230 |
d2 = srcsizerat * thescene.cusize; |
231 |
d2 = PI * emap -> src -> ss2 / (2 * emap -> src -> srad * sqr(d2)); |
232 |
d2 *= d2 * DOT(emap -> src -> ss [SU], emap -> src -> ss [SU]); |
233 |
|
234 |
emap -> partitionCnt = 0; |
235 |
emap -> numPartitions = cylPhotonPartition2(emap, 1, emap -> src -> sloc, |
236 |
emap -> src -> ss [SU], d2); |
237 |
emap -> partitionCnt = 0; |
238 |
emap -> partArea = PI * emap -> src -> ss2 / emap -> numPartitions; |
239 |
} |
240 |
|
241 |
|
242 |
|
243 |
static void flatPhotonOrigin (EmissionMap* emap) |
244 |
/* Init emission map with photon origin and associated surface axes on |
245 |
flat light source surface. Also sets source aperture and sampling |
246 |
hemisphere axes at origin */ |
247 |
{ |
248 |
int i, cent[3], size[3], parr[2]; |
249 |
FVECT vpos; |
250 |
|
251 |
cent [0] = cent [1] = cent [2] = 0; |
252 |
size [0] = size [1] = size [2] = emap -> maxPartitions; |
253 |
parr [0] = 0; |
254 |
parr [1] = emap -> partitionCnt; |
255 |
|
256 |
if (!skipparts(cent, size, parr, emap -> partitions)) |
257 |
error(CONSISTENCY, "bad source partition in flatPhotonOrigin"); |
258 |
|
259 |
vpos [0] = (1 - 2 * pmapRandom(partState)) * size [0] / |
260 |
emap -> maxPartitions; |
261 |
vpos [1] = (1 - 2 * pmapRandom(partState)) * size [1] / |
262 |
emap -> maxPartitions; |
263 |
vpos [2] = 0; |
264 |
|
265 |
for (i = 0; i < 3; i++) |
266 |
vpos [i] += (double)cent [i] / emap -> maxPartitions; |
267 |
|
268 |
/* Get origin */ |
269 |
for (i = 0; i < 3; i++) |
270 |
emap -> photonOrg [i] = emap -> src -> sloc [i] + |
271 |
vpos [SU] * emap -> src -> ss [SU][i] + |
272 |
vpos [SV] * emap -> src -> ss [SV][i] + |
273 |
vpos [SW] * emap -> src -> ss [SW][i]; |
274 |
|
275 |
/* Get surface axes */ |
276 |
VCOPY(emap -> us, emap -> src -> ss [SU]); |
277 |
normalize(emap -> us); |
278 |
VCOPY(emap -> ws, emap -> src -> ss [SW]); |
279 |
|
280 |
if (emap -> port) |
281 |
/* Acts as a photon port; reverse normal as it points INSIDE per |
282 |
* mkillum convention */ |
283 |
for (i = 0; i < 3; i++) |
284 |
emap -> ws [i] = -emap -> ws [i]; |
285 |
|
286 |
fcross(emap -> vs, emap -> ws, emap -> us); |
287 |
|
288 |
/* Get hemisphere axes & aperture */ |
289 |
if (emap -> src -> sflags & SSPOT) { |
290 |
VCOPY(emap -> wh, emap -> src -> sl.s -> aim); |
291 |
i = 0; |
292 |
|
293 |
do { |
294 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; |
295 |
emap -> vh [i++] = 1; |
296 |
fcross(emap -> uh, emap -> vh, emap -> wh); |
297 |
} while (normalize(emap -> uh) < FTINY); |
298 |
|
299 |
fcross(emap -> vh, emap -> wh, emap -> uh); |
300 |
emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI); |
301 |
} |
302 |
|
303 |
else { |
304 |
VCOPY(emap -> uh, emap -> us); |
305 |
VCOPY(emap -> vh, emap -> vs); |
306 |
VCOPY(emap -> wh, emap -> ws); |
307 |
emap -> cosThetaMax = 0; |
308 |
} |
309 |
} |
310 |
|
311 |
|
312 |
|
313 |
static void spherePhotonOrigin (EmissionMap* emap) |
314 |
/* Init emission map with photon origin and associated surface axes on |
315 |
spherical light source. Also sets source aperture and sampling |
316 |
hemisphere axes at origin */ |
317 |
{ |
318 |
int i = 0; |
319 |
unsigned numTheta, numPhi, t, p; |
320 |
RREAL cosTheta, sinTheta, phi; |
321 |
|
322 |
/* Get current partition */ |
323 |
numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); |
324 |
numPhi = 0.5 * PI * numTheta + 0.5; |
325 |
|
326 |
t = emap -> partitionCnt / numPhi; |
327 |
p = emap -> partitionCnt - t * numPhi; |
328 |
|
329 |
emap -> ws [2] = cosTheta = 1 - 2 * (t + pmapRandom(partState)) / numTheta; |
330 |
sinTheta = sqrt(1 - sqr(cosTheta)); |
331 |
phi = 2 * PI * (p + pmapRandom(partState)) / numPhi; |
332 |
emap -> ws [0] = cos(phi) * sinTheta; |
333 |
emap -> ws [1] = sin(phi) * sinTheta; |
334 |
|
335 |
if (emap -> port) |
336 |
/* Acts as a photon port; reverse normal as it points INSIDE per |
337 |
* mkillum convention */ |
338 |
for (i = 0; i < 3; i++) |
339 |
emap -> ws [i] = -emap -> ws [i]; |
340 |
|
341 |
/* Get surface axes us & vs perpendicular to ws */ |
342 |
do { |
343 |
emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0; |
344 |
emap -> vs [i++] = 1; |
345 |
fcross(emap -> us, emap -> vs, emap -> ws); |
346 |
} while (normalize(emap -> us) < FTINY); |
347 |
|
348 |
fcross(emap -> vs, emap -> ws, emap -> us); |
349 |
|
350 |
/* Get origin */ |
351 |
for (i = 0; i < 3; i++) |
352 |
emap -> photonOrg [i] = emap -> src -> sloc [i] + |
353 |
emap -> src -> srad * emap -> ws [i]; |
354 |
|
355 |
/* Get hemisphere axes & aperture */ |
356 |
if (emap -> src -> sflags & SSPOT) { |
357 |
VCOPY(emap -> wh, emap -> src -> sl.s -> aim); |
358 |
i = 0; |
359 |
|
360 |
do { |
361 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; |
362 |
emap -> vh [i++] = 1; |
363 |
fcross(emap -> uh, emap -> vh, emap -> wh); |
364 |
} while (normalize(emap -> uh) < FTINY); |
365 |
|
366 |
fcross(emap -> vh, emap -> wh, emap -> uh); |
367 |
emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI); |
368 |
} |
369 |
|
370 |
else { |
371 |
VCOPY(emap -> uh, emap -> us); |
372 |
VCOPY(emap -> vh, emap -> vs); |
373 |
VCOPY(emap -> wh, emap -> ws); |
374 |
emap -> cosThetaMax = 0; |
375 |
} |
376 |
} |
377 |
|
378 |
|
379 |
|
380 |
static void sourcePhotonOrigin (EmissionMap* emap) |
381 |
/* Init emission map with photon origin and associated surface axes |
382 |
on scene cube face for distant light source. Also sets source |
383 |
aperture (solid angle) and sampling hemisphere axes at origin */ |
384 |
{ |
385 |
unsigned long i, partsPerDim, partsPerFace; |
386 |
unsigned face; |
387 |
RREAL du, dv; |
388 |
|
389 |
if (emap -> port) { |
390 |
/* Get origin on photon port */ |
391 |
SRCREC *src = emap -> src; |
392 |
emap -> src = emap -> port; |
393 |
photonOrigin [emap -> src -> so -> otype] (emap); |
394 |
emap -> src = src; |
395 |
} |
396 |
|
397 |
else { |
398 |
/* No ports defined, so get origin on scene cube face and SUFFA! */ |
399 |
/* Get current face from partition number */ |
400 |
partsPerDim = 1 / srcsizerat; |
401 |
partsPerFace = sqr(partsPerDim); |
402 |
face = emap -> partitionCnt / partsPerFace; |
403 |
|
404 |
if (!(emap -> partitionCnt % partsPerFace)) { |
405 |
/* Skipped to a new face; get its normal */ |
406 |
emap -> ws [0] = emap -> ws [1] = emap -> ws [2] = 0; |
407 |
emap -> ws [face >> 1] = face & 1 ? 1 : -1; |
408 |
|
409 |
/* Get surface axes us & vs perpendicular to ws */ |
410 |
face >>= 1; |
411 |
emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0; |
412 |
emap -> vs [(face + (emap -> ws [face] > 0 ? 2 : 1)) % 3] = 1; |
413 |
fcross(emap -> us, emap -> vs, emap -> ws); |
414 |
} |
415 |
|
416 |
/* Get jittered offsets within face from partition number |
417 |
(in range [-0.5, 0.5]) */ |
418 |
i = emap -> partitionCnt % partsPerFace; |
419 |
du = (i / partsPerDim + pmapRandom(partState)) / partsPerDim - 0.5; |
420 |
dv = (i % partsPerDim + pmapRandom(partState)) / partsPerDim - 0.5; |
421 |
|
422 |
/* Jittered destination point within partition */ |
423 |
for (i = 0; i < 3; i++) |
424 |
emap -> photonOrg [i] = thescene.cuorg [i] + |
425 |
thescene.cusize * (0.5 + du * emap -> us [i] + |
426 |
dv * emap -> vs [i] + |
427 |
0.5 * emap -> ws [i]); |
428 |
} |
429 |
|
430 |
/* Get hemisphere axes & aperture */ |
431 |
VCOPY(emap -> wh, emap -> src -> sloc); |
432 |
i = 0; |
433 |
|
434 |
do { |
435 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; |
436 |
emap -> vh [i++] = 1; |
437 |
fcross(emap -> uh, emap -> vh, emap -> wh); |
438 |
} while (normalize(emap -> uh) < FTINY); |
439 |
|
440 |
fcross(emap -> vh, emap -> wh, emap -> uh); |
441 |
|
442 |
/* Get aperture */ |
443 |
emap -> cosThetaMax = 1 - emap -> src -> ss2 / (2 * PI); |
444 |
emap -> cosThetaMax = min(1, max(-1, emap -> cosThetaMax)); |
445 |
} |
446 |
|
447 |
|
448 |
|
449 |
static void cylPhotonOrigin (EmissionMap* emap) |
450 |
/* Init emission map with photon origin and associated surface axes |
451 |
on cylindrical light source surface. Also sets source aperture |
452 |
and sampling hemisphere axes at origin */ |
453 |
{ |
454 |
int i, cent[3], size[3], parr[2]; |
455 |
FVECT v; |
456 |
|
457 |
cent [0] = cent [1] = cent [2] = 0; |
458 |
size [0] = size [1] = size [2] = emap -> maxPartitions; |
459 |
parr [0] = 0; |
460 |
parr [1] = emap -> partitionCnt; |
461 |
|
462 |
if (!skipparts(cent, size, parr, emap -> partitions)) |
463 |
error(CONSISTENCY, "bad source partition in cylPhotonOrigin"); |
464 |
|
465 |
v [SU] = 0; |
466 |
v [SV] = (1 - 2 * pmapRandom(partState)) * (double)size [1] / |
467 |
emap -> maxPartitions; |
468 |
v [SW] = (1 - 2 * pmapRandom(partState)) * (double)size [2] / |
469 |
emap -> maxPartitions; |
470 |
normalize(v); |
471 |
v [SU] = (1 - 2 * pmapRandom(partState)) * (double)size [1] / |
472 |
emap -> maxPartitions; |
473 |
|
474 |
for (i = 0; i < 3; i++) |
475 |
v [i] += (double)cent [i] / emap -> maxPartitions; |
476 |
|
477 |
/* Get surface axes */ |
478 |
for (i = 0; i < 3; i++) |
479 |
emap -> photonOrg [i] = emap -> ws [i] = |
480 |
(v [SV] * emap -> src -> ss [SV][i] + |
481 |
v [SW] * emap -> src -> ss [SW][i]) / 0.8559; |
482 |
|
483 |
if (emap -> port) |
484 |
/* Acts as a photon port; reverse normal as it points INSIDE per |
485 |
* mkillum convention */ |
486 |
for (i = 0; i < 3; i++) |
487 |
emap -> ws [i] = -emap -> ws [i]; |
488 |
|
489 |
normalize(emap -> ws); |
490 |
VCOPY(emap -> us, emap -> src -> ss [SU]); |
491 |
normalize(emap -> us); |
492 |
fcross(emap -> vs, emap -> ws, emap -> us); |
493 |
|
494 |
/* Get origin */ |
495 |
for (i = 0; i < 3; i++) |
496 |
emap -> photonOrg [i] += v [SU] * emap -> src -> ss [SU][i] + |
497 |
emap -> src -> sloc [i]; |
498 |
|
499 |
/* Get hemisphere axes & aperture */ |
500 |
if (emap -> src -> sflags & SSPOT) { |
501 |
VCOPY(emap -> wh, emap -> src -> sl.s -> aim); |
502 |
i = 0; |
503 |
|
504 |
do { |
505 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; |
506 |
emap -> vh [i++] = 1; |
507 |
fcross(emap -> uh, emap -> vh, emap -> wh); |
508 |
} while (normalize(emap -> uh) < FTINY); |
509 |
|
510 |
fcross(emap -> vh, emap -> wh, emap -> uh); |
511 |
emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI); |
512 |
} |
513 |
|
514 |
else { |
515 |
VCOPY(emap -> uh, emap -> us); |
516 |
VCOPY(emap -> vh, emap -> vs); |
517 |
VCOPY(emap -> wh, emap -> ws); |
518 |
emap -> cosThetaMax = 0; |
519 |
} |
520 |
} |
521 |
|
522 |
|
523 |
|
524 |
void getPhotonPorts (char **portList) |
525 |
/* Find geometry declared as photon ports from modifiers in portList */ |
526 |
{ |
527 |
OBJECT i; |
528 |
OBJREC *obj, *mat; |
529 |
char **lp; |
530 |
|
531 |
/* Init photon port objects */ |
532 |
photonPorts = NULL; |
533 |
|
534 |
if (!portList [0]) |
535 |
return; |
536 |
|
537 |
for (i = 0; i < nobjects; i++) { |
538 |
obj = objptr(i); |
539 |
mat = findmaterial(obj); |
540 |
|
541 |
/* Check if object is a surface and NOT a light source (duh) and |
542 |
* resolve its material via any aliases, then check for inclusion in |
543 |
* modifier list */ |
544 |
if (issurface(obj -> otype) && mat && !islight(mat -> otype)) { |
545 |
for (lp = portList; *lp && strcmp(mat -> oname, *lp); lp++); |
546 |
|
547 |
if (*lp) { |
548 |
/* Add photon port */ |
549 |
photonPorts = (SRCREC*)realloc(photonPorts, |
550 |
(numPhotonPorts + 1) * |
551 |
sizeof(SRCREC)); |
552 |
if (!photonPorts) |
553 |
error(USER, "can't allocate photon ports"); |
554 |
|
555 |
photonPorts [numPhotonPorts].so = obj; |
556 |
photonPorts [numPhotonPorts].sflags = 0; |
557 |
|
558 |
if (!sfun [obj -> otype].of || !sfun[obj -> otype].of -> setsrc) |
559 |
objerror(obj, USER, "illegal photon port"); |
560 |
|
561 |
setsource(photonPorts + numPhotonPorts, obj); |
562 |
numPhotonPorts++; |
563 |
} |
564 |
} |
565 |
} |
566 |
|
567 |
if (!numPhotonPorts) |
568 |
error(USER, "no valid photon ports found"); |
569 |
} |
570 |
|
571 |
|
572 |
|
573 |
static void defaultEmissionFunc (EmissionMap* emap) |
574 |
/* Default behaviour when no emission funcs defined for this source type */ |
575 |
{ |
576 |
objerror(emap -> src -> so, INTERNAL, |
577 |
"undefined photon emission function"); |
578 |
} |
579 |
|
580 |
|
581 |
|
582 |
void initPhotonEmissionFuncs () |
583 |
/* Init photonPartition[] and photonOrigin[] dispatch tables */ |
584 |
{ |
585 |
int i; |
586 |
|
587 |
for (i = 0; i < NUMOTYPE; i++) |
588 |
photonPartition [i] = photonOrigin [i] = defaultEmissionFunc; |
589 |
|
590 |
photonPartition [OBJ_FACE] = photonPartition [OBJ_RING] = flatPhotonPartition; |
591 |
photonPartition [OBJ_SOURCE] = sourcePhotonPartition; |
592 |
photonPartition [OBJ_SPHERE] = spherePhotonPartition; |
593 |
photonPartition [OBJ_CYLINDER] = cylPhotonPartition; |
594 |
photonOrigin [OBJ_FACE] = photonOrigin [OBJ_RING] = flatPhotonOrigin; |
595 |
photonOrigin [OBJ_SOURCE] = sourcePhotonOrigin; |
596 |
photonOrigin [OBJ_SPHERE] = spherePhotonOrigin; |
597 |
photonOrigin [OBJ_CYLINDER] = cylPhotonOrigin; |
598 |
} |
599 |
|
600 |
|
601 |
|
602 |
void initPhotonEmission (EmissionMap *emap, float numPdfSamples) |
603 |
/* Initialize photon emission from partitioned light source emap -> src; |
604 |
* this involves integrating the flux emitted from the current photon |
605 |
* origin emap -> photonOrg and setting up a PDF to sample the emission |
606 |
* distribution with numPdfSamples samples */ |
607 |
{ |
608 |
unsigned i, t, p; |
609 |
double phi, cosTheta, sinTheta, du, dv, dOmega, thetaScale; |
610 |
EmissionSample* sample; |
611 |
const OBJREC* mod = findmaterial(emap -> src -> so); |
612 |
static RAY r; |
613 |
#if 0 |
614 |
static double lastCosNorm = FHUGE; |
615 |
static SRCREC *lastSrc = NULL, *lastPort = NULL; |
616 |
#endif |
617 |
|
618 |
setcolor(emap -> partFlux, 0, 0, 0); |
619 |
|
620 |
photonOrigin [emap -> src -> so -> otype] (emap); |
621 |
cosTheta = DOT(emap -> ws, emap -> wh); |
622 |
|
623 |
#if 0 |
624 |
if (emap -> src == lastSrc && emap -> port == lastPort && |
625 |
(emap -> src -> sflags & SDISTANT || mod -> omod == OVOID) && |
626 |
cosTheta == lastCosNorm) |
627 |
/* Same source, port, and aperture-normal angle, and source is |
628 |
either distant (and thus translationally invariant) or has |
629 |
no modifier --> flux unchanged */ |
630 |
/* BUG: this optimisation ignores partial occlusion of ports and |
631 |
can lead to erroneous "zero emission" bailouts. |
632 |
It can also lead to bias with modifiers exhibiting high variance! |
633 |
Disabled for now -- RS 12/13 */ |
634 |
return; |
635 |
|
636 |
lastSrc = emap -> src; |
637 |
lastPort = emap -> port; |
638 |
lastCosNorm = cosTheta; |
639 |
#endif |
640 |
|
641 |
/* Need to recompute flux & PDF */ |
642 |
emap -> cdf = 0; |
643 |
emap -> numSamples = 0; |
644 |
|
645 |
if (cosTheta <= 0 && |
646 |
sqrt(1 - sqr(cosTheta)) <= emap -> cosThetaMax + FTINY) |
647 |
/* Aperture below surface; no emission from current origin */ |
648 |
return; |
649 |
|
650 |
if (mod -> omod == OVOID && !emap -> port && |
651 |
(cosTheta >= 1 - FTINY || (emap -> src -> sflags & SDISTANT && |
652 |
acos(cosTheta) + acos(emap -> cosThetaMax) <= 0.5 * PI))) { |
653 |
/* Source is unmodified and has no port (which requires testing for |
654 |
occlusion), and is either local with normal aligned aperture or |
655 |
distant with aperture above surface; analytical flux & PDF */ |
656 |
setcolor(emap -> partFlux, mod -> oargs.farg [0], |
657 |
mod -> oargs.farg [1], mod -> oargs.farg [2]); |
658 |
|
659 |
/* Multiply radiance by Omega * dA to get flux */ |
660 |
scalecolor(emap -> partFlux, |
661 |
PI * cosTheta * (1 - sqr(max(emap -> cosThetaMax, 0))) * |
662 |
emap -> partArea); |
663 |
} |
664 |
|
665 |
else { |
666 |
/* Source is either modified, has a port, is local with off-normal |
667 |
aperture, or distant with aperture partly below surface; get flux |
668 |
via numerical integration */ |
669 |
thetaScale = (1 - emap -> cosThetaMax); |
670 |
|
671 |
/* Figga out numba of aperture samples for integration; |
672 |
numTheta / numPhi ratio is 1 / PI */ |
673 |
du = sqrt(pdfSamples * 2 * thetaScale); |
674 |
emap -> numTheta = max(du + 0.5, 1); |
675 |
emap -> numPhi = max(PI * du + 0.5, 1); |
676 |
|
677 |
dOmega = 2 * PI * thetaScale / (emap -> numTheta * emap -> numPhi); |
678 |
thetaScale /= emap -> numTheta; |
679 |
|
680 |
/* Allocate PDF, baby */ |
681 |
sample = emap -> samples = (EmissionSample*) |
682 |
realloc(emap -> samples, |
683 |
sizeof(EmissionSample) * |
684 |
emap -> numTheta * emap -> numPhi); |
685 |
if (!emap -> samples) |
686 |
error(USER, "can't allocate emission PDF"); |
687 |
|
688 |
VCOPY(r.rorg, emap -> photonOrg); |
689 |
VCOPY(r.rop, emap -> photonOrg); |
690 |
r.rmax = 0; |
691 |
|
692 |
for (t = 0; t < emap -> numTheta; t++) { |
693 |
for (p = 0; p < emap -> numPhi; p++) { |
694 |
/* This uniform mapping handles 0 <= thetaMax <= PI */ |
695 |
cosTheta = 1 - (t + pmapRandom(emitState)) * thetaScale; |
696 |
sinTheta = sqrt(1 - sqr(cosTheta)); |
697 |
phi = 2 * PI * (p + pmapRandom(emitState)) / emap -> numPhi; |
698 |
du = cos(phi) * sinTheta; |
699 |
dv = sin(phi) * sinTheta; |
700 |
rayorigin(&r, PRIMARY, NULL, NULL); |
701 |
|
702 |
for (i = 0; i < 3; i++) |
703 |
r.rdir [i] = du * emap -> uh [i] + dv * emap -> vh [i] + |
704 |
cosTheta * emap -> wh [i]; |
705 |
|
706 |
/* Sample behind surface? */ |
707 |
VCOPY(r.ron, emap -> ws); |
708 |
if ((r.rod = DOT(r.rdir, r.ron)) <= 0) |
709 |
continue; |
710 |
|
711 |
/* Get radiance emitted in this direction; to get flux we |
712 |
multiply by cos(theta_surface), dOmega, and dA. Ray |
713 |
is directed towards light source for raytexture(). */ |
714 |
if (!(emap -> src -> sflags & SDISTANT)) |
715 |
for (i = 0; i < 3; i++) |
716 |
r.rdir [i] = -r.rdir [i]; |
717 |
|
718 |
/* Port occluded in this direction? */ |
719 |
if (emap -> port && localhit(&r, &thescene)) |
720 |
continue; |
721 |
|
722 |
raytexture(&r, mod -> omod); |
723 |
setcolor(r.rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
724 |
mod -> oargs.farg [2]); |
725 |
multcolor(r.rcol, r.pcol); |
726 |
|
727 |
/* Multiply by cos(theta_surface) */ |
728 |
scalecolor(r.rcol, r.rod); |
729 |
|
730 |
/* Add PDF sample if nonzero; importance info for photon emission |
731 |
* could go here... */ |
732 |
if (colorAvg(r.rcol)) { |
733 |
copycolor(sample -> pdf, r.rcol); |
734 |
sample -> cdf = emap -> cdf += colorAvg(sample -> pdf); |
735 |
sample -> theta = t; |
736 |
sample++ -> phi = p; |
737 |
emap -> numSamples++; |
738 |
addcolor(emap -> partFlux, r.rcol); |
739 |
} |
740 |
} |
741 |
} |
742 |
|
743 |
/* Multiply by dOmega * dA */ |
744 |
scalecolor(emap -> partFlux, dOmega * emap -> partArea); |
745 |
} |
746 |
} |
747 |
|
748 |
|
749 |
|
750 |
#define vomitPhoton emitPhoton |
751 |
#define bluarrrghPhoton vomitPhoton |
752 |
|
753 |
void emitPhoton (const EmissionMap* emap, RAY* ray) |
754 |
/* Emit photon from current partition emap -> partitionCnt based on |
755 |
emission distribution. Returns new photon ray. */ |
756 |
{ |
757 |
unsigned long i, lo, hi; |
758 |
const EmissionSample* sample = emap -> samples; |
759 |
RREAL du, dv, cosTheta, cosThetaSqr, sinTheta, phi; |
760 |
const OBJREC* mod = findmaterial(emap -> src -> so); |
761 |
|
762 |
/* Choose a new origin within current partition for every |
763 |
emitted photon to break up clustering artifacts */ |
764 |
photonOrigin [emap -> src -> so -> otype] ((EmissionMap*)emap); |
765 |
/* If we have a local glow source with a maximum radius, then |
766 |
restrict our photon to the specified distance, otherwise we set |
767 |
the limit imposed by photonMaxDist (or no limit if 0) */ |
768 |
if (mod -> otype == MAT_GLOW && !(emap -> src -> sflags & SDISTANT) |
769 |
&& mod -> oargs.farg[3] > FTINY) |
770 |
ray -> rmax = mod -> oargs.farg[3]; |
771 |
else |
772 |
ray -> rmax = photonMaxDist; |
773 |
rayorigin(ray, PRIMARY, NULL, NULL); |
774 |
|
775 |
if (!emap -> numSamples) { |
776 |
/* Source is unmodified and has no port, and either local with |
777 |
normal aligned aperture, or distant with aperture above surface; |
778 |
use cosine weighted distribution */ |
779 |
cosThetaSqr = 1 - pmapRandom(emitState) * |
780 |
(1 - sqr(max(emap -> cosThetaMax, 0))); |
781 |
cosTheta = sqrt(cosThetaSqr); |
782 |
sinTheta = sqrt(1 - cosThetaSqr); |
783 |
phi = 2 * PI * pmapRandom(emitState); |
784 |
setcolor(ray -> rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
785 |
mod -> oargs.farg [2]); |
786 |
} |
787 |
|
788 |
else { |
789 |
/* Source is either modified, has a port, is local with off-normal |
790 |
aperture, or distant with aperture partly below surface; choose |
791 |
direction from constructed cumulative distribution function with |
792 |
Monte Carlo inversion using binary search. */ |
793 |
du = pmapRandom(emitState) * emap -> cdf; |
794 |
lo = 1; |
795 |
hi = emap -> numSamples; |
796 |
|
797 |
while (hi > lo) { |
798 |
i = (lo + hi) >> 1; |
799 |
sample = emap -> samples + i - 1; |
800 |
|
801 |
if (sample -> cdf >= du) |
802 |
hi = i; |
803 |
if (sample -> cdf < du) |
804 |
lo = i + 1; |
805 |
} |
806 |
|
807 |
/* This is a uniform mapping, mon */ |
808 |
cosTheta = 1 - (sample -> theta + pmapRandom(emitState)) * |
809 |
(1 - emap -> cosThetaMax) / emap -> numTheta; |
810 |
sinTheta = sqrt(1 - sqr(cosTheta)); |
811 |
phi = 2 * PI * (sample -> phi + pmapRandom(emitState)) / emap -> numPhi; |
812 |
copycolor(ray -> rcol, sample -> pdf); |
813 |
} |
814 |
|
815 |
/* Normalize photon flux so that average over RGB is 1 */ |
816 |
colorNorm(ray -> rcol); |
817 |
|
818 |
VCOPY(ray -> rorg, emap -> photonOrg); |
819 |
du = cos(phi) * sinTheta; |
820 |
dv = sin(phi) * sinTheta; |
821 |
|
822 |
for (i = 0; i < 3; i++) |
823 |
ray -> rdir [i] = du * emap -> uh [i] + dv * emap -> vh [i] + |
824 |
cosTheta * emap -> wh [i]; |
825 |
|
826 |
if (emap -> src -> sflags & SDISTANT) |
827 |
/* Distant source; reverse ray direction to point into the scene. */ |
828 |
for (i = 0; i < 3; i++) |
829 |
ray -> rdir [i] = -ray -> rdir [i]; |
830 |
|
831 |
if (emap -> port) |
832 |
/* Photon emitted from port; move origin just behind port so it |
833 |
will be scattered */ |
834 |
for (i = 0; i < 3; i++) |
835 |
ray -> rorg [i] -= 2 * FTINY * ray -> rdir [i]; |
836 |
|
837 |
/* Assign emitting light source index */ |
838 |
ray -> rsrc = emap -> src - source; |
839 |
} |
840 |
|
841 |
|
842 |
|
843 |
void multDirectPmap (RAY *r) |
844 |
/* Factor irradiance from direct photons into r -> rcol; interface to |
845 |
* direct() */ |
846 |
{ |
847 |
COLOR photonIrrad; |
848 |
|
849 |
/* Lookup direct photon irradiance */ |
850 |
(directPmap -> lookup)(directPmap, r, photonIrrad); |
851 |
|
852 |
/* Multiply with coefficient in ray */ |
853 |
multcolor(r -> rcol, photonIrrad); |
854 |
|
855 |
return; |
856 |
} |
857 |
|
858 |
|
859 |
|
860 |
void inscatterVolumePmap (RAY *r, COLOR inscatter) |
861 |
/* Add inscattering from volume photon map; interface to srcscatter() */ |
862 |
{ |
863 |
/* Add ambient in-scattering via lookup callback */ |
864 |
(volumePmap -> lookup)(volumePmap, r, inscatter); |
865 |
} |