2 |
|
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
|
/* |
5 |
< |
================================================================== |
5 |
> |
====================================================================== |
6 |
|
Photon map support routines for emission from light sources |
7 |
|
|
8 |
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
9 |
|
(c) Fraunhofer Institute for Solar Energy Systems, |
10 |
+ |
supported by the German Research Foundation (DFG) |
11 |
+ |
under the FARESYS project. |
12 |
|
(c) Lucerne University of Applied Sciences and Arts, |
13 |
< |
supported by the Swiss National Science Foundation (SNSF, #147053) |
14 |
< |
================================================================== |
15 |
< |
|
16 |
< |
$Id$ |
13 |
> |
supported by the Swiss National Science Foundation (SNSF #147053). |
14 |
> |
(c) Tokyo University of Science, |
15 |
> |
supported by the JSPS KAKENHI Grant Number JP19KK0115. |
16 |
> |
====================================================================== |
17 |
> |
|
18 |
> |
$Id$" |
19 |
|
*/ |
20 |
|
|
21 |
|
|
24 |
|
#include "pmap.h" |
25 |
|
#include "pmaprand.h" |
26 |
|
#include "otypes.h" |
27 |
+ |
#include "otspecial.h" |
28 |
|
|
29 |
|
|
30 |
|
|
31 |
< |
SRCREC *photonPorts = NULL; /* Photon port list */ |
31 |
> |
/* List of photon port modifier names */ |
32 |
> |
char *photonPortList [MAXSET + 1] = {NULL}; |
33 |
> |
/* Photon port objects (with modifiers in photonPortMods) */ |
34 |
> |
SRCREC *photonPorts = NULL; |
35 |
|
unsigned numPhotonPorts = 0; |
36 |
|
|
37 |
|
void (*photonPartition [NUMOTYPE]) (EmissionMap*); |
38 |
|
void (*photonOrigin [NUMOTYPE]) (EmissionMap*); |
39 |
|
|
32 |
– |
extern OBJECT ambset []; |
40 |
|
|
41 |
+ |
|
42 |
+ |
/* PHOTON PORT SUPPORT ROUTINES ------------------------------------------ */ |
43 |
+ |
|
44 |
+ |
|
45 |
+ |
|
46 |
+ |
/* Get/set photon port orientation flags from/in source flags. |
47 |
+ |
* HACK: the port orientation flags are embedded in the source flags and |
48 |
+ |
* shifted so they won't clobber the latter, since these are interpreted |
49 |
+ |
* by the *PhotonPartition() and *PhotonOrigin() routines! */ |
50 |
+ |
#define PMAP_SETPORTFLAGS(portdir) ((int)(portdir) << 14) |
51 |
+ |
#define PMAP_GETPORTFLAGS(sflags) ((sflags) >> 14) |
52 |
+ |
|
53 |
+ |
/* Set number of source partitions. |
54 |
+ |
* HACK: this is doubled if the source acts as a bidirectionally |
55 |
+ |
* emitting photon port, resulting in alternating front/backside partitions, |
56 |
+ |
* although essentially each partition is just used twice with opposing |
57 |
+ |
* normals. */ |
58 |
+ |
#define PMAP_SETNUMPARTITIONS(emap) ( \ |
59 |
+ |
(emap) -> numPartitions <<= ( \ |
60 |
+ |
(emap) -> port && \ |
61 |
+ |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \ |
62 |
+ |
) \ |
63 |
+ |
) |
64 |
+ |
|
65 |
+ |
/* Get current source partition and numer of partitions |
66 |
+ |
* HACK: halve the number partitions if the source acts as a bidrectionally |
67 |
+ |
* emitting photon port, since each partition is used twice with opposing |
68 |
+ |
* normals. */ |
69 |
+ |
#define PMAP_GETNUMPARTITIONS(emap) (\ |
70 |
+ |
(emap) -> numPartitions >> ( \ |
71 |
+ |
(emap) -> port && \ |
72 |
+ |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \ |
73 |
+ |
) \ |
74 |
+ |
) |
75 |
+ |
#define PMAP_GETPARTITION(emap) ( \ |
76 |
+ |
(emap) -> partitionCnt >> ( \ |
77 |
+ |
(emap) -> port && \ |
78 |
+ |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \ |
79 |
+ |
) \ |
80 |
+ |
) |
81 |
+ |
|
82 |
+ |
|
83 |
+ |
|
84 |
+ |
void getPhotonPorts (char **portList) |
85 |
+ |
/* Find geometry declared as photon ports from modifiers in portList */ |
86 |
+ |
{ |
87 |
+ |
OBJECT i; |
88 |
+ |
OBJREC *obj, *mat; |
89 |
+ |
int mLen; |
90 |
+ |
char **lp; |
91 |
|
|
92 |
+ |
/* Init photon port objects */ |
93 |
+ |
photonPorts = NULL; |
94 |
+ |
|
95 |
+ |
if (!portList [0]) |
96 |
+ |
return; |
97 |
+ |
|
98 |
+ |
for (i = numPhotonPorts = 0; i < nobjects; i++) { |
99 |
+ |
obj = objptr(i); |
100 |
+ |
mat = findmaterial(obj); |
101 |
+ |
|
102 |
+ |
/* Check if object is a surface and NOT a light source (duh) and |
103 |
+ |
* resolve its material (if any) via any aliases, then check for |
104 |
+ |
* inclusion in modifier list; note use of strncmp() to ignore port |
105 |
+ |
* flags */ |
106 |
+ |
if (issurface(obj -> otype) && mat && !islight(mat -> otype)) { |
107 |
+ |
mLen = strlen(mat -> oname); |
108 |
+ |
for (lp = portList; *lp && strncmp(mat -> oname, *lp, mLen); lp++); |
109 |
+ |
|
110 |
+ |
if (*lp) { |
111 |
+ |
/* Add photon port */ |
112 |
+ |
photonPorts = (SRCREC*)realloc( |
113 |
+ |
photonPorts, (numPhotonPorts + 1) * sizeof(SRCREC) |
114 |
+ |
); |
115 |
+ |
if (!photonPorts) |
116 |
+ |
error(USER, "can't allocate photon ports"); |
117 |
+ |
|
118 |
+ |
photonPorts [numPhotonPorts].so = obj; |
119 |
+ |
/* Extract port orientation flags and embed in source flags. |
120 |
+ |
* Note setsource() combines (i.e. ORs) these with the actual |
121 |
+ |
* source flags below. */ |
122 |
+ |
photonPorts [numPhotonPorts].sflags = |
123 |
+ |
PMAP_SETPORTFLAGS((*lp) [mLen]); |
124 |
+ |
|
125 |
+ |
if (!sfun [obj -> otype].of || !sfun[obj -> otype].of -> setsrc) |
126 |
+ |
objerror(obj, USER, "illegal photon port"); |
127 |
+ |
|
128 |
+ |
setsource(photonPorts + numPhotonPorts, obj); |
129 |
+ |
numPhotonPorts++; |
130 |
+ |
} |
131 |
+ |
} |
132 |
+ |
} |
133 |
+ |
if (!numPhotonPorts) |
134 |
+ |
error(USER, "no valid photon ports found"); |
135 |
+ |
} |
136 |
|
|
137 |
< |
static int flatPhotonPartition2 (EmissionMap* emap, unsigned long mp, |
138 |
< |
FVECT cent, FVECT u, FVECT v, |
139 |
< |
double du2, double dv2) |
137 |
> |
|
138 |
> |
|
139 |
> |
static void setPhotonPortNormal (EmissionMap* emap) |
140 |
> |
/* Set normal for current photon port partition (if defined) based on its |
141 |
> |
* orientation */ |
142 |
> |
{ |
143 |
> |
|
144 |
> |
int i, portFlags; |
145 |
> |
|
146 |
> |
if (emap -> port) { |
147 |
> |
/* Extract photon port orientation flags, set surface normal as follows: |
148 |
> |
-- Port oriented forwards --> flip surface normal to point outwards, |
149 |
> |
since normal points inwards per mkillum convention) |
150 |
> |
-- Port oriented backwards --> surface normal is NOT flipped, since |
151 |
> |
it already points inwards. |
152 |
> |
-- Port is bidirectionally/bilaterally oriented --> flip normal based |
153 |
> |
on the parity of the current partition emap -> partitionCnt. In |
154 |
> |
this case, photon emission alternates between port front/back |
155 |
> |
faces for consecutive partitions. |
156 |
> |
*/ |
157 |
> |
portFlags = PMAP_GETPORTFLAGS(emap -> port -> sflags); |
158 |
> |
|
159 |
> |
if ( |
160 |
> |
portFlags == PMAP_PORTFWD || |
161 |
> |
portFlags == PMAP_PORTBI && !(emap -> partitionCnt & 1) |
162 |
> |
) |
163 |
> |
for (i = 0; i < 3; i++) |
164 |
> |
emap -> ws [i] = -emap -> ws [i]; |
165 |
> |
} |
166 |
> |
} |
167 |
> |
|
168 |
> |
|
169 |
> |
|
170 |
> |
/* SOURCE / PHOTON PORT PARTITIONING ROUTINES----------------------------- */ |
171 |
> |
|
172 |
> |
|
173 |
> |
|
174 |
> |
static int flatPhotonPartition2 ( |
175 |
> |
EmissionMap* emap, unsigned long mp, FVECT cent, FVECT u, FVECT v, |
176 |
> |
double du2, double dv2 |
177 |
> |
) |
178 |
|
/* Recursive part of flatPhotonPartition(..) */ |
179 |
|
{ |
180 |
|
FVECT newct, newax; |
183 |
|
if (mp > emap -> maxPartitions) { |
184 |
|
/* Enlarge partition array */ |
185 |
|
emap -> maxPartitions <<= 1; |
186 |
< |
emap -> partitions = (unsigned char*)realloc(emap -> partitions, |
187 |
< |
emap -> maxPartitions >> 1); |
186 |
> |
emap -> partitions = (unsigned char*)realloc( |
187 |
> |
emap -> partitions, emap -> maxPartitions >> 1 |
188 |
> |
); |
189 |
|
|
190 |
|
if (!emap -> partitions) |
191 |
|
error(USER, "can't allocate source partitions"); |
192 |
|
|
193 |
< |
memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, |
194 |
< |
emap -> maxPartitions >> 2); |
193 |
> |
memset( |
194 |
> |
emap -> partitions + (emap -> maxPartitions >> 2), 0, |
195 |
> |
emap -> maxPartitions >> 2 |
196 |
> |
); |
197 |
|
} |
198 |
|
|
199 |
|
if (du2 * dv2 <= 1) { /* hit limit? */ |
254 |
|
vp = emap -> src -> ss [SV]; |
255 |
|
dv2 = DOT(vp, vp) / emap -> partArea; |
256 |
|
emap -> partitionCnt = 0; |
257 |
< |
emap -> numPartitions = flatPhotonPartition2(emap, 1, emap -> src -> sloc, |
258 |
< |
emap -> src -> ss [SU], |
259 |
< |
emap -> src -> ss [SV], |
260 |
< |
du2, dv2); |
257 |
> |
emap -> numPartitions = flatPhotonPartition2( |
258 |
> |
emap, 1, emap -> src -> sloc, |
259 |
> |
emap -> src -> ss [SU], emap -> src -> ss [SV], du2, dv2 |
260 |
> |
); |
261 |
|
emap -> partitionCnt = 0; |
262 |
|
emap -> partArea = emap -> src -> ss2 / emap -> numPartitions; |
263 |
|
} |
269 |
|
distant source */ |
270 |
|
{ |
271 |
|
if (emap -> port) { |
272 |
< |
/* Partition photon port */ |
272 |
> |
/* Relay partitioning to photon port */ |
273 |
|
SRCREC *src = emap -> src; |
274 |
|
emap -> src = emap -> port; |
275 |
|
photonPartition [emap -> src -> so -> otype] (emap); |
276 |
+ |
PMAP_SETNUMPARTITIONS(emap); |
277 |
|
emap -> src = src; |
278 |
|
} |
279 |
|
|
280 |
|
else { |
281 |
< |
/* No photon ports defined, so partition scene cube faces */ |
281 |
> |
/* No photon ports defined; partition scene cube faces (SUBOPTIMAL) */ |
282 |
|
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
283 |
|
setpart(emap -> partitions, 0, S0); |
284 |
|
emap -> partitionCnt = 0; |
300 |
|
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
301 |
|
setpart(emap -> partitions, 0, S0); |
302 |
|
emap -> partArea = 4 * PI * sqr(emap -> src -> srad); |
303 |
< |
emap -> numPartitions = emap -> partArea / |
304 |
< |
sqr(srcsizerat * thescene.cusize); |
303 |
> |
emap -> numPartitions = |
304 |
> |
emap -> partArea / sqr(srcsizerat * thescene.cusize); |
305 |
|
|
306 |
|
numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); |
307 |
|
numPhi = 0.5 * PI * numTheta + 0.5; |
313 |
|
|
314 |
|
|
315 |
|
|
316 |
< |
static int cylPhotonPartition2 (EmissionMap* emap, unsigned long mp, |
317 |
< |
FVECT cent, FVECT axis, double d2) |
316 |
> |
static int cylPhotonPartition2 ( |
317 |
> |
EmissionMap* emap, unsigned long mp, FVECT cent, FVECT axis, double d2 |
318 |
> |
) |
319 |
|
/* Recursive part of cyPhotonPartition(..) */ |
320 |
|
{ |
321 |
|
FVECT newct, newax; |
324 |
|
if (mp > emap -> maxPartitions) { |
325 |
|
/* Enlarge partition array */ |
326 |
|
emap -> maxPartitions <<= 1; |
327 |
< |
emap -> partitions = (unsigned char*)realloc(emap -> partitions, |
328 |
< |
emap -> maxPartitions >> 1); |
327 |
> |
emap -> partitions = (unsigned char*)realloc( |
328 |
> |
emap -> partitions, emap -> maxPartitions >> 1 |
329 |
> |
); |
330 |
|
if (!emap -> partitions) |
331 |
|
error(USER, "can't allocate source partitions"); |
332 |
|
|
333 |
< |
memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, |
334 |
< |
emap -> maxPartitions >> 2); |
333 |
> |
memset( |
334 |
> |
emap -> partitions + (emap -> maxPartitions >> 2), 0, |
335 |
> |
emap -> maxPartitions >> 2 |
336 |
> |
); |
337 |
|
} |
338 |
|
|
339 |
|
if (d2 <= 1) { |
380 |
|
d2 *= d2 * DOT(emap -> src -> ss [SU], emap -> src -> ss [SU]); |
381 |
|
|
382 |
|
emap -> partitionCnt = 0; |
383 |
< |
emap -> numPartitions = cylPhotonPartition2(emap, 1, emap -> src -> sloc, |
384 |
< |
emap -> src -> ss [SU], d2); |
383 |
> |
emap -> numPartitions = cylPhotonPartition2( |
384 |
> |
emap, 1, emap -> src -> sloc, emap -> src -> ss [SU], d2 |
385 |
> |
); |
386 |
|
emap -> partitionCnt = 0; |
387 |
|
emap -> partArea = PI * emap -> src -> ss2 / emap -> numPartitions; |
388 |
|
} |
389 |
|
|
390 |
|
|
391 |
|
|
392 |
+ |
/* PHOTON ORIGIN ROUTINES ------------------------------------------------ */ |
393 |
+ |
|
394 |
+ |
|
395 |
+ |
|
396 |
|
static void flatPhotonOrigin (EmissionMap* emap) |
397 |
|
/* Init emission map with photon origin and associated surface axes on |
398 |
|
flat light source surface. Also sets source aperture and sampling |
404 |
|
cent [0] = cent [1] = cent [2] = 0; |
405 |
|
size [0] = size [1] = size [2] = emap -> maxPartitions; |
406 |
|
parr [0] = 0; |
407 |
< |
parr [1] = emap -> partitionCnt; |
407 |
> |
parr [1] = PMAP_GETPARTITION(emap); |
408 |
|
|
409 |
|
if (!skipparts(cent, size, parr, emap -> partitions)) |
410 |
|
error(CONSISTENCY, "bad source partition in flatPhotonOrigin"); |
420 |
|
|
421 |
|
/* Get origin */ |
422 |
|
for (i = 0; i < 3; i++) |
423 |
< |
emap -> photonOrg [i] = emap -> src -> sloc [i] + |
424 |
< |
vpos [SU] * emap -> src -> ss [SU][i] + |
425 |
< |
vpos [SV] * emap -> src -> ss [SV][i] + |
426 |
< |
vpos [SW] * emap -> src -> ss [SW][i]; |
423 |
> |
emap -> photonOrg [i] = |
424 |
> |
emap -> src -> sloc [i] + |
425 |
> |
vpos [SU] * emap -> src -> ss [SU][i] + |
426 |
> |
vpos [SV] * emap -> src -> ss [SV][i] + |
427 |
> |
vpos [SW] * emap -> src -> ss [SW][i]; |
428 |
|
|
429 |
|
/* Get surface axes */ |
430 |
|
VCOPY(emap -> us, emap -> src -> ss [SU]); |
431 |
|
normalize(emap -> us); |
432 |
|
VCOPY(emap -> ws, emap -> src -> ss [SW]); |
433 |
< |
|
434 |
< |
if (emap -> port) |
282 |
< |
/* Acts as a photon port; reverse normal as it points INSIDE per |
283 |
< |
* mkillum convention */ |
284 |
< |
for (i = 0; i < 3; i++) |
285 |
< |
emap -> ws [i] = -emap -> ws [i]; |
286 |
< |
|
433 |
> |
/* Flip normal emap -> ws if port and required by its orientation */ |
434 |
> |
setPhotonPortNormal(emap); |
435 |
|
fcross(emap -> vs, emap -> ws, emap -> us); |
436 |
|
|
437 |
|
/* Get hemisphere axes & aperture */ |
469 |
|
RREAL cosTheta, sinTheta, phi; |
470 |
|
|
471 |
|
/* Get current partition */ |
472 |
< |
numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); |
472 |
> |
numTheta = max(sqrt(2 * PMAP_GETNUMPARTITIONS(emap) / PI) + 0.5, 1); |
473 |
|
numPhi = 0.5 * PI * numTheta + 0.5; |
474 |
|
|
475 |
< |
t = emap -> partitionCnt / numPhi; |
476 |
< |
p = emap -> partitionCnt - t * numPhi; |
475 |
> |
t = PMAP_GETPARTITION(emap) / numPhi; |
476 |
> |
p = PMAP_GETPARTITION(emap) - t * numPhi; |
477 |
|
|
478 |
|
emap -> ws [2] = cosTheta = 1 - 2 * (t + pmapRandom(partState)) / numTheta; |
479 |
|
sinTheta = sqrt(1 - sqr(cosTheta)); |
480 |
|
phi = 2 * PI * (p + pmapRandom(partState)) / numPhi; |
481 |
|
emap -> ws [0] = cos(phi) * sinTheta; |
482 |
|
emap -> ws [1] = sin(phi) * sinTheta; |
483 |
+ |
/* Flip normal emap -> ws if port and required by its orientation */ |
484 |
+ |
setPhotonPortNormal(emap); |
485 |
|
|
336 |
– |
if (emap -> port) |
337 |
– |
/* Acts as a photon port; reverse normal as it points INSIDE per |
338 |
– |
* mkillum convention */ |
339 |
– |
for (i = 0; i < 3; i++) |
340 |
– |
emap -> ws [i] = -emap -> ws [i]; |
341 |
– |
|
486 |
|
/* Get surface axes us & vs perpendicular to ws */ |
487 |
|
do { |
488 |
|
emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0; |
532 |
|
RREAL du, dv; |
533 |
|
|
534 |
|
if (emap -> port) { |
535 |
< |
/* Get origin on photon port */ |
535 |
> |
/* Relay to photon port; get origin on its surface */ |
536 |
|
SRCREC *src = emap -> src; |
537 |
|
emap -> src = emap -> port; |
538 |
|
photonOrigin [emap -> src -> so -> otype] (emap); |
540 |
|
} |
541 |
|
|
542 |
|
else { |
543 |
< |
/* No ports defined, so get origin on scene cube face and SUFFA! */ |
543 |
> |
/* No ports defined, so get origin on scene cube face (SUBOPTIMAL) */ |
544 |
|
/* Get current face from partition number */ |
545 |
|
partsPerDim = 1 / srcsizerat; |
546 |
|
partsPerFace = sqr(partsPerDim); |
547 |
|
face = emap -> partitionCnt / partsPerFace; |
404 |
– |
|
548 |
|
if (!(emap -> partitionCnt % partsPerFace)) { |
549 |
|
/* Skipped to a new face; get its normal */ |
550 |
|
emap -> ws [0] = emap -> ws [1] = emap -> ws [2] = 0; |
565 |
|
|
566 |
|
/* Jittered destination point within partition */ |
567 |
|
for (i = 0; i < 3; i++) |
568 |
< |
emap -> photonOrg [i] = thescene.cuorg [i] + |
569 |
< |
thescene.cusize * (0.5 + du * emap -> us [i] + |
570 |
< |
dv * emap -> vs [i] + |
571 |
< |
0.5 * emap -> ws [i]); |
568 |
> |
emap -> photonOrg [i] = thescene.cuorg [i] + thescene.cusize * ( |
569 |
> |
0.5 + du * emap -> us [i] + dv * emap -> vs [i] + |
570 |
> |
0.5 * emap -> ws [i] |
571 |
> |
); |
572 |
|
} |
573 |
|
|
574 |
|
/* Get hemisphere axes & aperture */ |
601 |
|
cent [0] = cent [1] = cent [2] = 0; |
602 |
|
size [0] = size [1] = size [2] = emap -> maxPartitions; |
603 |
|
parr [0] = 0; |
604 |
< |
parr [1] = emap -> partitionCnt; |
604 |
> |
parr [1] = PMAP_GETPARTITION(emap); |
605 |
|
|
606 |
|
if (!skipparts(cent, size, parr, emap -> partitions)) |
607 |
|
error(CONSISTENCY, "bad source partition in cylPhotonOrigin"); |
620 |
|
|
621 |
|
/* Get surface axes */ |
622 |
|
for (i = 0; i < 3; i++) |
623 |
< |
emap -> photonOrg [i] = emap -> ws [i] = |
624 |
< |
(v [SV] * emap -> src -> ss [SV][i] + |
625 |
< |
v [SW] * emap -> src -> ss [SW][i]) / 0.8559; |
623 |
> |
emap -> photonOrg [i] = emap -> ws [i] = ( |
624 |
> |
v [SV] * emap -> src -> ss [SV][i] + |
625 |
> |
v [SW] * emap -> src -> ss [SW][i] |
626 |
> |
) / 0.8559; |
627 |
|
|
628 |
< |
if (emap -> port) |
629 |
< |
/* Acts as a photon port; reverse normal as it points INSIDE per |
486 |
< |
* mkillum convention */ |
487 |
< |
for (i = 0; i < 3; i++) |
488 |
< |
emap -> ws [i] = -emap -> ws [i]; |
628 |
> |
/* Flip normal emap -> ws if port and required by its orientation */ |
629 |
> |
setPhotonPortNormal(emap); |
630 |
|
|
631 |
|
normalize(emap -> ws); |
632 |
|
VCOPY(emap -> us, emap -> src -> ss [SU]); |
635 |
|
|
636 |
|
/* Get origin */ |
637 |
|
for (i = 0; i < 3; i++) |
638 |
< |
emap -> photonOrg [i] += v [SU] * emap -> src -> ss [SU][i] + |
639 |
< |
emap -> src -> sloc [i]; |
638 |
> |
emap -> photonOrg [i] += |
639 |
> |
v [SU] * emap -> src -> ss [SU][i] + emap -> src -> sloc [i]; |
640 |
|
|
641 |
|
/* Get hemisphere axes & aperture */ |
642 |
|
if (emap -> src -> sflags & SSPOT) { |
663 |
|
|
664 |
|
|
665 |
|
|
666 |
< |
void getPhotonPorts () |
526 |
< |
/* Find geometry declared as photon ports */ |
527 |
< |
{ |
528 |
< |
OBJECT i; |
529 |
< |
OBJREC* obj; |
530 |
< |
|
531 |
< |
/* Check for missing port modifiers */ |
532 |
< |
if (!ambset [0]) |
533 |
< |
error(USER, "no photon ports found"); |
534 |
< |
|
535 |
< |
for (i = 0; i < nobjects; i++) { |
536 |
< |
obj = objptr(i); |
537 |
< |
|
538 |
< |
if (inset(ambset, obj -> omod)) { |
539 |
< |
/* Add photon port */ |
540 |
< |
photonPorts = (SRCREC*)realloc(photonPorts, |
541 |
< |
(numPhotonPorts + 1) * |
542 |
< |
sizeof(SRCREC)); |
543 |
< |
if (!photonPorts) |
544 |
< |
error(USER, "can't allocate photon ports"); |
545 |
< |
|
546 |
< |
photonPorts [numPhotonPorts].so = obj; |
547 |
< |
photonPorts [numPhotonPorts].sflags = 0; |
548 |
< |
|
549 |
< |
if (!sfun [obj -> otype].of || !sfun[obj -> otype].of -> setsrc) |
550 |
< |
objerror(obj, USER, "illegal photon port"); |
551 |
< |
|
552 |
< |
setsource(photonPorts + numPhotonPorts, obj); |
553 |
< |
numPhotonPorts++; |
554 |
< |
} |
555 |
< |
} |
556 |
< |
} |
666 |
> |
/* PHOTON EMISSION ROUTINES ---------------------------------------------- */ |
667 |
|
|
668 |
|
|
669 |
|
|
697 |
|
|
698 |
|
|
699 |
|
void initPhotonEmission (EmissionMap *emap, float numPdfSamples) |
700 |
< |
/* Initialize photon emission from partitioned light source emap -> src; |
700 |
> |
/* Initialise photon emission from partitioned light source emap -> src; |
701 |
|
* this involves integrating the flux emitted from the current photon |
702 |
|
* origin emap -> photonOrg and setting up a PDF to sample the emission |
703 |
|
* distribution with numPdfSamples samples */ |
706 |
|
double phi, cosTheta, sinTheta, du, dv, dOmega, thetaScale; |
707 |
|
EmissionSample* sample; |
708 |
|
const OBJREC* mod = findmaterial(emap -> src -> so); |
709 |
< |
static RAY r; |
600 |
< |
#if 0 |
601 |
< |
static double lastCosNorm = FHUGE; |
602 |
< |
static SRCREC *lastSrc = NULL, *lastPort = NULL; |
603 |
< |
#endif |
709 |
> |
static RAY r; |
710 |
|
|
605 |
– |
setcolor(emap -> partFlux, 0, 0, 0); |
606 |
– |
|
711 |
|
photonOrigin [emap -> src -> so -> otype] (emap); |
712 |
< |
cosTheta = DOT(emap -> ws, emap -> wh); |
609 |
< |
|
610 |
< |
#if 0 |
611 |
< |
if (emap -> src == lastSrc && emap -> port == lastPort && |
612 |
< |
(emap -> src -> sflags & SDISTANT || mod -> omod == OVOID) && |
613 |
< |
cosTheta == lastCosNorm) |
614 |
< |
/* Same source, port, and aperture-normal angle, and source is |
615 |
< |
either distant (and thus translationally invariant) or has |
616 |
< |
no modifier --> flux unchanged */ |
617 |
< |
/* BUG: this optimisation ignores partial occlusion of ports and |
618 |
< |
can lead to erroneous "zero emission" bailouts. |
619 |
< |
It can also lead to bias with modifiers exhibiting high variance! |
620 |
< |
Disabled for now -- RS 12/13 */ |
621 |
< |
return; |
622 |
< |
|
623 |
< |
lastSrc = emap -> src; |
624 |
< |
lastPort = emap -> port; |
625 |
< |
lastCosNorm = cosTheta; |
626 |
< |
#endif |
627 |
< |
|
628 |
< |
/* Need to recompute flux & PDF */ |
712 |
> |
setcolor(emap -> partFlux, 0, 0, 0); |
713 |
|
emap -> cdf = 0; |
714 |
|
emap -> numSamples = 0; |
715 |
+ |
cosTheta = DOT(emap -> ws, emap -> wh); |
716 |
|
|
717 |
< |
if (cosTheta <= 0 && |
718 |
< |
sqrt(1 - sqr(cosTheta)) <= emap -> cosThetaMax + FTINY) |
634 |
< |
/* Aperture below surface; no emission from current origin */ |
717 |
> |
if (cosTheta <= 0 && sqrt(1-sqr(cosTheta)) <= emap -> cosThetaMax + FTINY) |
718 |
> |
/* Aperture completely below surface; no emission from current origin */ |
719 |
|
return; |
720 |
|
|
721 |
< |
if (mod -> omod == OVOID && !emap -> port && |
722 |
< |
(cosTheta >= 1 - FTINY || (emap -> src -> sflags & SDISTANT && |
723 |
< |
acos(cosTheta) + acos(emap -> cosThetaMax) <= 0.5 * PI))) { |
721 |
> |
if ( |
722 |
> |
mod -> omod == OVOID && !emap -> port && ( |
723 |
> |
cosTheta >= 1 - FTINY || ( |
724 |
> |
emap -> src -> sflags & SDISTANT && |
725 |
> |
acos(cosTheta) + acos(emap -> cosThetaMax) <= 0.5 * PI |
726 |
> |
) |
727 |
> |
) |
728 |
> |
) { |
729 |
|
/* Source is unmodified and has no port (which requires testing for |
730 |
|
occlusion), and is either local with normal aligned aperture or |
731 |
< |
distant with aperture above surface; analytical flux & PDF */ |
732 |
< |
setcolor(emap -> partFlux, mod -> oargs.farg [0], |
733 |
< |
mod -> oargs.farg [1], mod -> oargs.farg [2]); |
731 |
> |
distant with aperture above surface |
732 |
> |
--> get flux & PDF via analytical solution */ |
733 |
> |
setcolor( |
734 |
> |
emap -> partFlux, mod -> oargs.farg [0], mod -> oargs.farg [1], |
735 |
> |
mod -> oargs.farg [2] |
736 |
> |
); |
737 |
|
|
738 |
< |
/* Multiply radiance by Omega * dA to get flux */ |
739 |
< |
scalecolor(emap -> partFlux, |
740 |
< |
PI * cosTheta * (1 - sqr(max(emap -> cosThetaMax, 0))) * |
741 |
< |
emap -> partArea); |
738 |
> |
/* Multiply radiance by projected Omega * dA to get flux */ |
739 |
> |
scalecolor( |
740 |
> |
emap -> partFlux, |
741 |
> |
PI * cosTheta * (1 - sqr(max(emap -> cosThetaMax, 0))) * |
742 |
> |
emap -> partArea |
743 |
> |
); |
744 |
|
} |
745 |
|
|
746 |
|
else { |
747 |
|
/* Source is either modified, has a port, is local with off-normal |
748 |
< |
aperture, or distant with aperture partly below surface; get flux |
749 |
< |
via numerical integration */ |
748 |
> |
aperture, or distant with aperture partly below surface |
749 |
> |
--> get flux via numerical integration */ |
750 |
|
thetaScale = (1 - emap -> cosThetaMax); |
751 |
|
|
752 |
|
/* Figga out numba of aperture samples for integration; |
759 |
|
thetaScale /= emap -> numTheta; |
760 |
|
|
761 |
|
/* Allocate PDF, baby */ |
762 |
< |
sample = emap -> samples = (EmissionSample*) |
763 |
< |
realloc(emap -> samples, |
764 |
< |
sizeof(EmissionSample) * |
765 |
< |
emap -> numTheta * emap -> numPhi); |
762 |
> |
sample = emap -> samples = (EmissionSample*)realloc( |
763 |
> |
emap -> samples, |
764 |
> |
sizeof(EmissionSample) * emap -> numTheta * emap -> numPhi |
765 |
> |
); |
766 |
|
if (!emap -> samples) |
767 |
|
error(USER, "can't allocate emission PDF"); |
768 |
|
|
781 |
|
rayorigin(&r, PRIMARY, NULL, NULL); |
782 |
|
|
783 |
|
for (i = 0; i < 3; i++) |
784 |
< |
r.rdir [i] = du * emap -> uh [i] + dv * emap -> vh [i] + |
785 |
< |
cosTheta * emap -> wh [i]; |
784 |
> |
r.rdir [i] = ( |
785 |
> |
du * emap -> uh [i] + dv * emap -> vh [i] + |
786 |
> |
cosTheta * emap -> wh [i] |
787 |
> |
); |
788 |
|
|
789 |
|
/* Sample behind surface? */ |
790 |
|
VCOPY(r.ron, emap -> ws); |
803 |
|
continue; |
804 |
|
|
805 |
|
raytexture(&r, mod -> omod); |
806 |
< |
setcolor(r.rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
807 |
< |
mod -> oargs.farg [2]); |
806 |
> |
setcolor( |
807 |
> |
r.rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
808 |
> |
mod -> oargs.farg [2] |
809 |
> |
); |
810 |
|
multcolor(r.rcol, r.pcol); |
811 |
|
|
812 |
|
/* Multiply by cos(theta_surface) */ |
848 |
|
emitted photon to break up clustering artifacts */ |
849 |
|
photonOrigin [emap -> src -> so -> otype] ((EmissionMap*)emap); |
850 |
|
/* If we have a local glow source with a maximum radius, then |
851 |
< |
restrict our photon to the specified distance (otherwise no limit) */ |
852 |
< |
if (mod -> otype == MAT_GLOW && !(emap -> src -> sflags & SDISTANT) |
853 |
< |
&& mod -> oargs.farg[3] > FTINY) |
851 |
> |
restrict our photon to the specified distance, otherwise we set |
852 |
> |
the limit imposed by photonMaxDist (or no limit if 0) */ |
853 |
> |
if ( |
854 |
> |
mod -> otype == MAT_GLOW && |
855 |
> |
!(emap -> src -> sflags & SDISTANT) && mod -> oargs.farg[3] > FTINY |
856 |
> |
) |
857 |
|
ray -> rmax = mod -> oargs.farg[3]; |
858 |
|
else |
859 |
< |
ray -> rmax = 0; |
859 |
> |
ray -> rmax = photonMaxDist; |
860 |
|
rayorigin(ray, PRIMARY, NULL, NULL); |
861 |
|
|
862 |
|
if (!emap -> numSamples) { |
863 |
|
/* Source is unmodified and has no port, and either local with |
864 |
< |
normal aligned aperture, or distant with aperture above surface; |
865 |
< |
use cosine weighted distribution */ |
866 |
< |
cosThetaSqr = 1 - pmapRandom(emitState) * |
867 |
< |
(1 - sqr(max(emap -> cosThetaMax, 0))); |
864 |
> |
normal aligned aperture, or distant with aperture above surface |
865 |
> |
--> use cosine weighted distribution */ |
866 |
> |
cosThetaSqr = (1 - |
867 |
> |
pmapRandom(emitState) * (1 - sqr(max(emap -> cosThetaMax, 0))) |
868 |
> |
); |
869 |
|
cosTheta = sqrt(cosThetaSqr); |
870 |
|
sinTheta = sqrt(1 - cosThetaSqr); |
871 |
|
phi = 2 * PI * pmapRandom(emitState); |
872 |
< |
setcolor(ray -> rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
873 |
< |
mod -> oargs.farg [2]); |
872 |
> |
setcolor( |
873 |
> |
ray -> rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
874 |
> |
mod -> oargs.farg [2] |
875 |
> |
); |
876 |
|
} |
877 |
|
|
878 |
|
else { |
879 |
|
/* Source is either modified, has a port, is local with off-normal |
880 |
< |
aperture, or distant with aperture partly below surface; choose |
881 |
< |
direction from constructed cumulative distribution function with |
882 |
< |
Monte Carlo inversion using binary search. */ |
880 |
> |
aperture, or distant with aperture partly below surface |
881 |
> |
--> choose direction from constructed cumulative distribution |
882 |
> |
function with Monte Carlo inversion using binary search. */ |
883 |
|
du = pmapRandom(emitState) * emap -> cdf; |
884 |
|
lo = 1; |
885 |
|
hi = emap -> numSamples; |
895 |
|
} |
896 |
|
|
897 |
|
/* This is a uniform mapping, mon */ |
898 |
< |
cosTheta = 1 - (sample -> theta + pmapRandom(emitState)) * |
899 |
< |
(1 - emap -> cosThetaMax) / emap -> numTheta; |
898 |
> |
cosTheta = (1 - |
899 |
> |
(sample -> theta + pmapRandom(emitState)) * |
900 |
> |
(1 - emap -> cosThetaMax) / emap -> numTheta |
901 |
> |
); |
902 |
|
sinTheta = sqrt(1 - sqr(cosTheta)); |
903 |
|
phi = 2 * PI * (sample -> phi + pmapRandom(emitState)) / emap -> numPhi; |
904 |
|
copycolor(ray -> rcol, sample -> pdf); |
932 |
|
|
933 |
|
|
934 |
|
|
935 |
+ |
/* SOURCE CONTRIBS FROM DIRECT / VOLUME PHOTONS -------------------------- */ |
936 |
+ |
|
937 |
+ |
|
938 |
+ |
|
939 |
|
void multDirectPmap (RAY *r) |
940 |
|
/* Factor irradiance from direct photons into r -> rcol; interface to |
941 |
|
* direct() */ |
959 |
|
/* Add ambient in-scattering via lookup callback */ |
960 |
|
(volumePmap -> lookup)(volumePmap, r, inscatter); |
961 |
|
} |
962 |
+ |
|