| 2 |
|
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 4 |
|
/* |
| 5 |
< |
================================================================== |
| 5 |
> |
====================================================================== |
| 6 |
|
Photon map support routines for emission from light sources |
| 7 |
|
|
| 8 |
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
| 9 |
|
(c) Fraunhofer Institute for Solar Energy Systems, |
| 10 |
+ |
supported by the German Research Foundation (DFG) |
| 11 |
+ |
under the FARESYS project. |
| 12 |
|
(c) Lucerne University of Applied Sciences and Arts, |
| 13 |
< |
supported by the Swiss National Science Foundation (SNSF, #147053) |
| 14 |
< |
================================================================== |
| 15 |
< |
|
| 16 |
< |
$Id$ |
| 13 |
> |
supported by the Swiss National Science Foundation (SNSF #147053). |
| 14 |
> |
(c) Tokyo University of Science, |
| 15 |
> |
supported by the JSPS KAKENHI Grant Number JP19KK0115. |
| 16 |
> |
====================================================================== |
| 17 |
> |
|
| 18 |
> |
$Id$" |
| 19 |
|
*/ |
| 20 |
|
|
| 21 |
|
|
| 24 |
|
#include "pmap.h" |
| 25 |
|
#include "pmaprand.h" |
| 26 |
|
#include "otypes.h" |
| 27 |
+ |
#include "otspecial.h" |
| 28 |
|
|
| 29 |
|
|
| 30 |
|
|
| 31 |
< |
SRCREC *photonPorts = NULL; /* Photon port list */ |
| 31 |
> |
/* List of photon port modifier names */ |
| 32 |
> |
char *photonPortList [MAXSET + 1] = {NULL}; |
| 33 |
> |
/* Photon port objects (with modifiers in photonPortMods) */ |
| 34 |
> |
SRCREC *photonPorts = NULL; |
| 35 |
|
unsigned numPhotonPorts = 0; |
| 36 |
|
|
| 37 |
|
void (*photonPartition [NUMOTYPE]) (EmissionMap*); |
| 38 |
|
void (*photonOrigin [NUMOTYPE]) (EmissionMap*); |
| 39 |
|
|
| 32 |
– |
extern OBJECT ambset []; |
| 40 |
|
|
| 41 |
+ |
|
| 42 |
+ |
/* PHOTON PORT SUPPORT ROUTINES ------------------------------------------ */ |
| 43 |
+ |
|
| 44 |
+ |
|
| 45 |
+ |
|
| 46 |
+ |
/* Get/set photon port orientation flags from/in source flags. |
| 47 |
+ |
* HACK: the port orientation flags are embedded in the source flags and |
| 48 |
+ |
* shifted so they won't clobber the latter, since these are interpreted |
| 49 |
+ |
* by the *PhotonPartition() and *PhotonOrigin() routines! */ |
| 50 |
+ |
#define PMAP_SETPORTFLAGS(portdir) ((int)(portdir) << 14) |
| 51 |
+ |
#define PMAP_GETPORTFLAGS(sflags) ((sflags) >> 14) |
| 52 |
+ |
|
| 53 |
+ |
/* Set number of source partitions. |
| 54 |
+ |
* HACK: this is doubled if the source acts as a bidirectionally |
| 55 |
+ |
* emitting photon port, resulting in alternating front/backside partitions, |
| 56 |
+ |
* although essentially each partition is just used twice with opposing |
| 57 |
+ |
* normals. */ |
| 58 |
+ |
#define PMAP_SETNUMPARTITIONS(emap) ( \ |
| 59 |
+ |
(emap) -> numPartitions <<= ( \ |
| 60 |
+ |
(emap) -> port && \ |
| 61 |
+ |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \ |
| 62 |
+ |
) \ |
| 63 |
+ |
) |
| 64 |
+ |
|
| 65 |
+ |
/* Get current source partition and numer of partitions |
| 66 |
+ |
* HACK: halve the number partitions if the source acts as a bidrectionally |
| 67 |
+ |
* emitting photon port, since each partition is used twice with opposing |
| 68 |
+ |
* normals. */ |
| 69 |
+ |
#define PMAP_GETNUMPARTITIONS(emap) (\ |
| 70 |
+ |
(emap) -> numPartitions >> ( \ |
| 71 |
+ |
(emap) -> port && \ |
| 72 |
+ |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \ |
| 73 |
+ |
) \ |
| 74 |
+ |
) |
| 75 |
+ |
#define PMAP_GETPARTITION(emap) ( \ |
| 76 |
+ |
(emap) -> partitionCnt >> ( \ |
| 77 |
+ |
(emap) -> port && \ |
| 78 |
+ |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \ |
| 79 |
+ |
) \ |
| 80 |
+ |
) |
| 81 |
+ |
|
| 82 |
+ |
|
| 83 |
+ |
|
| 84 |
+ |
void getPhotonPorts (char **portList) |
| 85 |
+ |
/* Find geometry declared as photon ports from modifiers in portList */ |
| 86 |
+ |
{ |
| 87 |
+ |
OBJECT i; |
| 88 |
+ |
OBJREC *obj, *mat; |
| 89 |
+ |
int mLen; |
| 90 |
+ |
char **lp; |
| 91 |
|
|
| 92 |
+ |
/* Init photon port objects */ |
| 93 |
+ |
photonPorts = NULL; |
| 94 |
+ |
|
| 95 |
+ |
if (!portList [0]) |
| 96 |
+ |
return; |
| 97 |
+ |
|
| 98 |
+ |
for (i = numPhotonPorts = 0; i < nobjects; i++) { |
| 99 |
+ |
obj = objptr(i); |
| 100 |
+ |
mat = findmaterial(obj); |
| 101 |
+ |
|
| 102 |
+ |
/* Check if object is a surface and NOT a light source (duh) and |
| 103 |
+ |
* resolve its material (if any) via any aliases, then check for |
| 104 |
+ |
* inclusion in modifier list; note use of strncmp() to ignore port |
| 105 |
+ |
* flags */ |
| 106 |
+ |
if (issurface(obj -> otype) && mat && !islight(mat -> otype)) { |
| 107 |
+ |
mLen = strlen(mat -> oname); |
| 108 |
+ |
for (lp = portList; *lp && strncmp(mat -> oname, *lp, mLen); lp++); |
| 109 |
+ |
|
| 110 |
+ |
if (*lp) { |
| 111 |
+ |
/* Add photon port */ |
| 112 |
+ |
photonPorts = (SRCREC*)realloc( |
| 113 |
+ |
photonPorts, (numPhotonPorts + 1) * sizeof(SRCREC) |
| 114 |
+ |
); |
| 115 |
+ |
if (!photonPorts) |
| 116 |
+ |
error(USER, "can't allocate photon ports"); |
| 117 |
+ |
|
| 118 |
+ |
photonPorts [numPhotonPorts].so = obj; |
| 119 |
+ |
/* Extract port orientation flags and embed in source flags. |
| 120 |
+ |
* Note setsource() combines (i.e. ORs) these with the actual |
| 121 |
+ |
* source flags below. */ |
| 122 |
+ |
photonPorts [numPhotonPorts].sflags = |
| 123 |
+ |
PMAP_SETPORTFLAGS((*lp) [mLen]); |
| 124 |
+ |
|
| 125 |
+ |
if (!sfun [obj -> otype].of || !sfun[obj -> otype].of -> setsrc) |
| 126 |
+ |
objerror(obj, USER, "illegal photon port"); |
| 127 |
+ |
|
| 128 |
+ |
setsource(photonPorts + numPhotonPorts, obj); |
| 129 |
+ |
numPhotonPorts++; |
| 130 |
+ |
} |
| 131 |
+ |
} |
| 132 |
+ |
} |
| 133 |
+ |
if (!numPhotonPorts) |
| 134 |
+ |
error(USER, "no valid photon ports found"); |
| 135 |
+ |
} |
| 136 |
|
|
| 137 |
< |
static int flatPhotonPartition2 (EmissionMap* emap, unsigned long mp, |
| 138 |
< |
FVECT cent, FVECT u, FVECT v, |
| 139 |
< |
double du2, double dv2) |
| 137 |
> |
|
| 138 |
> |
|
| 139 |
> |
static void setPhotonPortNormal (EmissionMap* emap) |
| 140 |
> |
/* Set normal for current photon port partition (if defined) based on its |
| 141 |
> |
* orientation */ |
| 142 |
> |
{ |
| 143 |
> |
|
| 144 |
> |
int i, portFlags; |
| 145 |
> |
|
| 146 |
> |
if (emap -> port) { |
| 147 |
> |
/* Extract photon port orientation flags, set surface normal as follows: |
| 148 |
> |
-- Port oriented forwards --> flip surface normal to point outwards, |
| 149 |
> |
since normal points inwards per mkillum convention) |
| 150 |
> |
-- Port oriented backwards --> surface normal is NOT flipped, since |
| 151 |
> |
it already points inwards. |
| 152 |
> |
-- Port is bidirectionally/bilaterally oriented --> flip normal based |
| 153 |
> |
on the parity of the current partition emap -> partitionCnt. In |
| 154 |
> |
this case, photon emission alternates between port front/back |
| 155 |
> |
faces for consecutive partitions. |
| 156 |
> |
*/ |
| 157 |
> |
portFlags = PMAP_GETPORTFLAGS(emap -> port -> sflags); |
| 158 |
> |
|
| 159 |
> |
if ( |
| 160 |
> |
portFlags == PMAP_PORTFWD || |
| 161 |
> |
portFlags == PMAP_PORTBI && !(emap -> partitionCnt & 1) |
| 162 |
> |
) |
| 163 |
> |
for (i = 0; i < 3; i++) |
| 164 |
> |
emap -> ws [i] = -emap -> ws [i]; |
| 165 |
> |
} |
| 166 |
> |
} |
| 167 |
> |
|
| 168 |
> |
|
| 169 |
> |
|
| 170 |
> |
/* SOURCE / PHOTON PORT PARTITIONING ROUTINES----------------------------- */ |
| 171 |
> |
|
| 172 |
> |
|
| 173 |
> |
|
| 174 |
> |
static int flatPhotonPartition2 ( |
| 175 |
> |
EmissionMap* emap, unsigned long mp, FVECT cent, FVECT u, FVECT v, |
| 176 |
> |
double du2, double dv2 |
| 177 |
> |
) |
| 178 |
|
/* Recursive part of flatPhotonPartition(..) */ |
| 179 |
|
{ |
| 180 |
|
FVECT newct, newax; |
| 183 |
|
if (mp > emap -> maxPartitions) { |
| 184 |
|
/* Enlarge partition array */ |
| 185 |
|
emap -> maxPartitions <<= 1; |
| 186 |
< |
emap -> partitions = (unsigned char*)realloc(emap -> partitions, |
| 187 |
< |
emap -> maxPartitions >> 1); |
| 186 |
> |
emap -> partitions = (unsigned char*)realloc( |
| 187 |
> |
emap -> partitions, emap -> maxPartitions >> 1 |
| 188 |
> |
); |
| 189 |
|
|
| 190 |
|
if (!emap -> partitions) |
| 191 |
|
error(USER, "can't allocate source partitions"); |
| 192 |
|
|
| 193 |
< |
memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, |
| 194 |
< |
emap -> maxPartitions >> 2); |
| 193 |
> |
memset( |
| 194 |
> |
emap -> partitions + (emap -> maxPartitions >> 2), 0, |
| 195 |
> |
emap -> maxPartitions >> 2 |
| 196 |
> |
); |
| 197 |
|
} |
| 198 |
|
|
| 199 |
|
if (du2 * dv2 <= 1) { /* hit limit? */ |
| 254 |
|
vp = emap -> src -> ss [SV]; |
| 255 |
|
dv2 = DOT(vp, vp) / emap -> partArea; |
| 256 |
|
emap -> partitionCnt = 0; |
| 257 |
< |
emap -> numPartitions = flatPhotonPartition2(emap, 1, emap -> src -> sloc, |
| 258 |
< |
emap -> src -> ss [SU], |
| 259 |
< |
emap -> src -> ss [SV], |
| 260 |
< |
du2, dv2); |
| 257 |
> |
emap -> numPartitions = flatPhotonPartition2( |
| 258 |
> |
emap, 1, emap -> src -> sloc, |
| 259 |
> |
emap -> src -> ss [SU], emap -> src -> ss [SV], du2, dv2 |
| 260 |
> |
); |
| 261 |
|
emap -> partitionCnt = 0; |
| 262 |
|
emap -> partArea = emap -> src -> ss2 / emap -> numPartitions; |
| 263 |
|
} |
| 269 |
|
distant source */ |
| 270 |
|
{ |
| 271 |
|
if (emap -> port) { |
| 272 |
< |
/* Partition photon port */ |
| 272 |
> |
/* Relay partitioning to photon port */ |
| 273 |
|
SRCREC *src = emap -> src; |
| 274 |
|
emap -> src = emap -> port; |
| 275 |
|
photonPartition [emap -> src -> so -> otype] (emap); |
| 276 |
+ |
PMAP_SETNUMPARTITIONS(emap); |
| 277 |
|
emap -> src = src; |
| 278 |
|
} |
| 279 |
|
|
| 280 |
|
else { |
| 281 |
< |
/* No photon ports defined, so partition scene cube faces */ |
| 281 |
> |
/* No photon ports defined; partition scene cube faces (SUBOPTIMAL) */ |
| 282 |
|
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
| 283 |
|
setpart(emap -> partitions, 0, S0); |
| 284 |
|
emap -> partitionCnt = 0; |
| 300 |
|
memset(emap -> partitions, 0, emap -> maxPartitions >> 1); |
| 301 |
|
setpart(emap -> partitions, 0, S0); |
| 302 |
|
emap -> partArea = 4 * PI * sqr(emap -> src -> srad); |
| 303 |
< |
emap -> numPartitions = emap -> partArea / |
| 304 |
< |
sqr(srcsizerat * thescene.cusize); |
| 303 |
> |
emap -> numPartitions = |
| 304 |
> |
emap -> partArea / sqr(srcsizerat * thescene.cusize); |
| 305 |
|
|
| 306 |
|
numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); |
| 307 |
|
numPhi = 0.5 * PI * numTheta + 0.5; |
| 313 |
|
|
| 314 |
|
|
| 315 |
|
|
| 316 |
< |
static int cylPhotonPartition2 (EmissionMap* emap, unsigned long mp, |
| 317 |
< |
FVECT cent, FVECT axis, double d2) |
| 316 |
> |
static int cylPhotonPartition2 ( |
| 317 |
> |
EmissionMap* emap, unsigned long mp, FVECT cent, FVECT axis, double d2 |
| 318 |
> |
) |
| 319 |
|
/* Recursive part of cyPhotonPartition(..) */ |
| 320 |
|
{ |
| 321 |
|
FVECT newct, newax; |
| 324 |
|
if (mp > emap -> maxPartitions) { |
| 325 |
|
/* Enlarge partition array */ |
| 326 |
|
emap -> maxPartitions <<= 1; |
| 327 |
< |
emap -> partitions = (unsigned char*)realloc(emap -> partitions, |
| 328 |
< |
emap -> maxPartitions >> 1); |
| 327 |
> |
emap -> partitions = (unsigned char*)realloc( |
| 328 |
> |
emap -> partitions, emap -> maxPartitions >> 1 |
| 329 |
> |
); |
| 330 |
|
if (!emap -> partitions) |
| 331 |
|
error(USER, "can't allocate source partitions"); |
| 332 |
|
|
| 333 |
< |
memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, |
| 334 |
< |
emap -> maxPartitions >> 2); |
| 333 |
> |
memset( |
| 334 |
> |
emap -> partitions + (emap -> maxPartitions >> 2), 0, |
| 335 |
> |
emap -> maxPartitions >> 2 |
| 336 |
> |
); |
| 337 |
|
} |
| 338 |
|
|
| 339 |
|
if (d2 <= 1) { |
| 380 |
|
d2 *= d2 * DOT(emap -> src -> ss [SU], emap -> src -> ss [SU]); |
| 381 |
|
|
| 382 |
|
emap -> partitionCnt = 0; |
| 383 |
< |
emap -> numPartitions = cylPhotonPartition2(emap, 1, emap -> src -> sloc, |
| 384 |
< |
emap -> src -> ss [SU], d2); |
| 383 |
> |
emap -> numPartitions = cylPhotonPartition2( |
| 384 |
> |
emap, 1, emap -> src -> sloc, emap -> src -> ss [SU], d2 |
| 385 |
> |
); |
| 386 |
|
emap -> partitionCnt = 0; |
| 387 |
|
emap -> partArea = PI * emap -> src -> ss2 / emap -> numPartitions; |
| 388 |
|
} |
| 389 |
|
|
| 390 |
|
|
| 391 |
|
|
| 392 |
+ |
/* PHOTON ORIGIN ROUTINES ------------------------------------------------ */ |
| 393 |
+ |
|
| 394 |
+ |
|
| 395 |
+ |
|
| 396 |
|
static void flatPhotonOrigin (EmissionMap* emap) |
| 397 |
|
/* Init emission map with photon origin and associated surface axes on |
| 398 |
|
flat light source surface. Also sets source aperture and sampling |
| 404 |
|
cent [0] = cent [1] = cent [2] = 0; |
| 405 |
|
size [0] = size [1] = size [2] = emap -> maxPartitions; |
| 406 |
|
parr [0] = 0; |
| 407 |
< |
parr [1] = emap -> partitionCnt; |
| 407 |
> |
parr [1] = PMAP_GETPARTITION(emap); |
| 408 |
|
|
| 409 |
|
if (!skipparts(cent, size, parr, emap -> partitions)) |
| 410 |
|
error(CONSISTENCY, "bad source partition in flatPhotonOrigin"); |
| 420 |
|
|
| 421 |
|
/* Get origin */ |
| 422 |
|
for (i = 0; i < 3; i++) |
| 423 |
< |
emap -> photonOrg [i] = emap -> src -> sloc [i] + |
| 424 |
< |
vpos [SU] * emap -> src -> ss [SU][i] + |
| 425 |
< |
vpos [SV] * emap -> src -> ss [SV][i] + |
| 426 |
< |
vpos [SW] * emap -> src -> ss [SW][i]; |
| 423 |
> |
emap -> photonOrg [i] = |
| 424 |
> |
emap -> src -> sloc [i] + |
| 425 |
> |
vpos [SU] * emap -> src -> ss [SU][i] + |
| 426 |
> |
vpos [SV] * emap -> src -> ss [SV][i] + |
| 427 |
> |
vpos [SW] * emap -> src -> ss [SW][i]; |
| 428 |
|
|
| 429 |
|
/* Get surface axes */ |
| 430 |
|
VCOPY(emap -> us, emap -> src -> ss [SU]); |
| 431 |
|
normalize(emap -> us); |
| 432 |
|
VCOPY(emap -> ws, emap -> src -> ss [SW]); |
| 433 |
< |
|
| 434 |
< |
if (emap -> port) |
| 282 |
< |
/* Acts as a photon port; reverse normal as it points INSIDE per |
| 283 |
< |
* mkillum convention */ |
| 284 |
< |
for (i = 0; i < 3; i++) |
| 285 |
< |
emap -> ws [i] = -emap -> ws [i]; |
| 286 |
< |
|
| 433 |
> |
/* Flip normal emap -> ws if port and required by its orientation */ |
| 434 |
> |
setPhotonPortNormal(emap); |
| 435 |
|
fcross(emap -> vs, emap -> ws, emap -> us); |
| 436 |
|
|
| 437 |
|
/* Get hemisphere axes & aperture */ |
| 469 |
|
RREAL cosTheta, sinTheta, phi; |
| 470 |
|
|
| 471 |
|
/* Get current partition */ |
| 472 |
< |
numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); |
| 472 |
> |
numTheta = max(sqrt(2 * PMAP_GETNUMPARTITIONS(emap) / PI) + 0.5, 1); |
| 473 |
|
numPhi = 0.5 * PI * numTheta + 0.5; |
| 474 |
|
|
| 475 |
< |
t = emap -> partitionCnt / numPhi; |
| 476 |
< |
p = emap -> partitionCnt - t * numPhi; |
| 475 |
> |
t = PMAP_GETPARTITION(emap) / numPhi; |
| 476 |
> |
p = PMAP_GETPARTITION(emap) - t * numPhi; |
| 477 |
|
|
| 478 |
|
emap -> ws [2] = cosTheta = 1 - 2 * (t + pmapRandom(partState)) / numTheta; |
| 479 |
|
sinTheta = sqrt(1 - sqr(cosTheta)); |
| 480 |
|
phi = 2 * PI * (p + pmapRandom(partState)) / numPhi; |
| 481 |
|
emap -> ws [0] = cos(phi) * sinTheta; |
| 482 |
|
emap -> ws [1] = sin(phi) * sinTheta; |
| 483 |
+ |
/* Flip normal emap -> ws if port and required by its orientation */ |
| 484 |
+ |
setPhotonPortNormal(emap); |
| 485 |
|
|
| 336 |
– |
if (emap -> port) |
| 337 |
– |
/* Acts as a photon port; reverse normal as it points INSIDE per |
| 338 |
– |
* mkillum convention */ |
| 339 |
– |
for (i = 0; i < 3; i++) |
| 340 |
– |
emap -> ws [i] = -emap -> ws [i]; |
| 341 |
– |
|
| 486 |
|
/* Get surface axes us & vs perpendicular to ws */ |
| 487 |
|
do { |
| 488 |
|
emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0; |
| 532 |
|
RREAL du, dv; |
| 533 |
|
|
| 534 |
|
if (emap -> port) { |
| 535 |
< |
/* Get origin on photon port */ |
| 535 |
> |
/* Relay to photon port; get origin on its surface */ |
| 536 |
|
SRCREC *src = emap -> src; |
| 537 |
|
emap -> src = emap -> port; |
| 538 |
|
photonOrigin [emap -> src -> so -> otype] (emap); |
| 540 |
|
} |
| 541 |
|
|
| 542 |
|
else { |
| 543 |
< |
/* No ports defined, so get origin on scene cube face and SUFFA! */ |
| 543 |
> |
/* No ports defined, so get origin on scene cube face (SUBOPTIMAL) */ |
| 544 |
|
/* Get current face from partition number */ |
| 545 |
|
partsPerDim = 1 / srcsizerat; |
| 546 |
|
partsPerFace = sqr(partsPerDim); |
| 547 |
|
face = emap -> partitionCnt / partsPerFace; |
| 404 |
– |
|
| 548 |
|
if (!(emap -> partitionCnt % partsPerFace)) { |
| 549 |
|
/* Skipped to a new face; get its normal */ |
| 550 |
|
emap -> ws [0] = emap -> ws [1] = emap -> ws [2] = 0; |
| 565 |
|
|
| 566 |
|
/* Jittered destination point within partition */ |
| 567 |
|
for (i = 0; i < 3; i++) |
| 568 |
< |
emap -> photonOrg [i] = thescene.cuorg [i] + |
| 569 |
< |
thescene.cusize * (0.5 + du * emap -> us [i] + |
| 570 |
< |
dv * emap -> vs [i] + |
| 571 |
< |
0.5 * emap -> ws [i]); |
| 568 |
> |
emap -> photonOrg [i] = thescene.cuorg [i] + thescene.cusize * ( |
| 569 |
> |
0.5 + du * emap -> us [i] + dv * emap -> vs [i] + |
| 570 |
> |
0.5 * emap -> ws [i] |
| 571 |
> |
); |
| 572 |
|
} |
| 573 |
|
|
| 574 |
|
/* Get hemisphere axes & aperture */ |
| 601 |
|
cent [0] = cent [1] = cent [2] = 0; |
| 602 |
|
size [0] = size [1] = size [2] = emap -> maxPartitions; |
| 603 |
|
parr [0] = 0; |
| 604 |
< |
parr [1] = emap -> partitionCnt; |
| 604 |
> |
parr [1] = PMAP_GETPARTITION(emap); |
| 605 |
|
|
| 606 |
|
if (!skipparts(cent, size, parr, emap -> partitions)) |
| 607 |
|
error(CONSISTENCY, "bad source partition in cylPhotonOrigin"); |
| 620 |
|
|
| 621 |
|
/* Get surface axes */ |
| 622 |
|
for (i = 0; i < 3; i++) |
| 623 |
< |
emap -> photonOrg [i] = emap -> ws [i] = |
| 624 |
< |
(v [SV] * emap -> src -> ss [SV][i] + |
| 625 |
< |
v [SW] * emap -> src -> ss [SW][i]) / 0.8559; |
| 623 |
> |
emap -> photonOrg [i] = emap -> ws [i] = ( |
| 624 |
> |
v [SV] * emap -> src -> ss [SV][i] + |
| 625 |
> |
v [SW] * emap -> src -> ss [SW][i] |
| 626 |
> |
) / 0.8559; |
| 627 |
|
|
| 628 |
< |
if (emap -> port) |
| 629 |
< |
/* Acts as a photon port; reverse normal as it points INSIDE per |
| 486 |
< |
* mkillum convention */ |
| 487 |
< |
for (i = 0; i < 3; i++) |
| 488 |
< |
emap -> ws [i] = -emap -> ws [i]; |
| 628 |
> |
/* Flip normal emap -> ws if port and required by its orientation */ |
| 629 |
> |
setPhotonPortNormal(emap); |
| 630 |
|
|
| 631 |
|
normalize(emap -> ws); |
| 632 |
|
VCOPY(emap -> us, emap -> src -> ss [SU]); |
| 635 |
|
|
| 636 |
|
/* Get origin */ |
| 637 |
|
for (i = 0; i < 3; i++) |
| 638 |
< |
emap -> photonOrg [i] += v [SU] * emap -> src -> ss [SU][i] + |
| 639 |
< |
emap -> src -> sloc [i]; |
| 638 |
> |
emap -> photonOrg [i] += |
| 639 |
> |
v [SU] * emap -> src -> ss [SU][i] + emap -> src -> sloc [i]; |
| 640 |
|
|
| 641 |
|
/* Get hemisphere axes & aperture */ |
| 642 |
|
if (emap -> src -> sflags & SSPOT) { |
| 663 |
|
|
| 664 |
|
|
| 665 |
|
|
| 666 |
< |
void getPhotonPorts () |
| 526 |
< |
/* Find geometry declared as photon ports */ |
| 527 |
< |
{ |
| 528 |
< |
OBJECT i; |
| 529 |
< |
OBJREC* obj; |
| 530 |
< |
|
| 531 |
< |
/* Check for missing port modifiers */ |
| 532 |
< |
if (!ambset [0]) |
| 533 |
< |
error(USER, "no photon ports found"); |
| 534 |
< |
|
| 535 |
< |
for (i = 0; i < nobjects; i++) { |
| 536 |
< |
obj = objptr(i); |
| 537 |
< |
|
| 538 |
< |
if (inset(ambset, obj -> omod)) { |
| 539 |
< |
/* Add photon port */ |
| 540 |
< |
photonPorts = (SRCREC*)realloc(photonPorts, |
| 541 |
< |
(numPhotonPorts + 1) * |
| 542 |
< |
sizeof(SRCREC)); |
| 543 |
< |
if (!photonPorts) |
| 544 |
< |
error(USER, "can't allocate photon ports"); |
| 545 |
< |
|
| 546 |
< |
photonPorts [numPhotonPorts].so = obj; |
| 547 |
< |
photonPorts [numPhotonPorts].sflags = 0; |
| 548 |
< |
|
| 549 |
< |
if (!sfun [obj -> otype].of || !sfun[obj -> otype].of -> setsrc) |
| 550 |
< |
objerror(obj, USER, "illegal photon port"); |
| 551 |
< |
|
| 552 |
< |
setsource(photonPorts + numPhotonPorts, obj); |
| 553 |
< |
numPhotonPorts++; |
| 554 |
< |
} |
| 555 |
< |
} |
| 556 |
< |
} |
| 666 |
> |
/* PHOTON EMISSION ROUTINES ---------------------------------------------- */ |
| 667 |
|
|
| 668 |
|
|
| 669 |
|
|
| 697 |
|
|
| 698 |
|
|
| 699 |
|
void initPhotonEmission (EmissionMap *emap, float numPdfSamples) |
| 700 |
< |
/* Initialize photon emission from partitioned light source emap -> src; |
| 700 |
> |
/* Initialise photon emission from partitioned light source emap -> src; |
| 701 |
|
* this involves integrating the flux emitted from the current photon |
| 702 |
|
* origin emap -> photonOrg and setting up a PDF to sample the emission |
| 703 |
|
* distribution with numPdfSamples samples */ |
| 706 |
|
double phi, cosTheta, sinTheta, du, dv, dOmega, thetaScale; |
| 707 |
|
EmissionSample* sample; |
| 708 |
|
const OBJREC* mod = findmaterial(emap -> src -> so); |
| 709 |
< |
static RAY r; |
| 600 |
< |
#if 0 |
| 601 |
< |
static double lastCosNorm = FHUGE; |
| 602 |
< |
static SRCREC *lastSrc = NULL, *lastPort = NULL; |
| 603 |
< |
#endif |
| 709 |
> |
static RAY r; |
| 710 |
|
|
| 605 |
– |
setcolor(emap -> partFlux, 0, 0, 0); |
| 606 |
– |
|
| 711 |
|
photonOrigin [emap -> src -> so -> otype] (emap); |
| 712 |
< |
cosTheta = DOT(emap -> ws, emap -> wh); |
| 609 |
< |
|
| 610 |
< |
#if 0 |
| 611 |
< |
if (emap -> src == lastSrc && emap -> port == lastPort && |
| 612 |
< |
(emap -> src -> sflags & SDISTANT || mod -> omod == OVOID) && |
| 613 |
< |
cosTheta == lastCosNorm) |
| 614 |
< |
/* Same source, port, and aperture-normal angle, and source is |
| 615 |
< |
either distant (and thus translationally invariant) or has |
| 616 |
< |
no modifier --> flux unchanged */ |
| 617 |
< |
/* BUG: this optimisation ignores partial occlusion of ports and |
| 618 |
< |
can lead to erroneous "zero emission" bailouts. |
| 619 |
< |
It can also lead to bias with modifiers exhibiting high variance! |
| 620 |
< |
Disabled for now -- RS 12/13 */ |
| 621 |
< |
return; |
| 622 |
< |
|
| 623 |
< |
lastSrc = emap -> src; |
| 624 |
< |
lastPort = emap -> port; |
| 625 |
< |
lastCosNorm = cosTheta; |
| 626 |
< |
#endif |
| 627 |
< |
|
| 628 |
< |
/* Need to recompute flux & PDF */ |
| 712 |
> |
setcolor(emap -> partFlux, 0, 0, 0); |
| 713 |
|
emap -> cdf = 0; |
| 714 |
|
emap -> numSamples = 0; |
| 715 |
+ |
cosTheta = DOT(emap -> ws, emap -> wh); |
| 716 |
|
|
| 717 |
< |
if (cosTheta <= 0 && |
| 718 |
< |
sqrt(1 - sqr(cosTheta)) <= emap -> cosThetaMax + FTINY) |
| 634 |
< |
/* Aperture below surface; no emission from current origin */ |
| 717 |
> |
if (cosTheta <= 0 && sqrt(1-sqr(cosTheta)) <= emap -> cosThetaMax + FTINY) |
| 718 |
> |
/* Aperture completely below surface; no emission from current origin */ |
| 719 |
|
return; |
| 720 |
|
|
| 721 |
< |
if (mod -> omod == OVOID && !emap -> port && |
| 722 |
< |
(cosTheta >= 1 - FTINY || (emap -> src -> sflags & SDISTANT && |
| 723 |
< |
acos(cosTheta) + acos(emap -> cosThetaMax) <= 0.5 * PI))) { |
| 721 |
> |
if ( |
| 722 |
> |
mod -> omod == OVOID && !emap -> port && ( |
| 723 |
> |
cosTheta >= 1 - FTINY || ( |
| 724 |
> |
emap -> src -> sflags & SDISTANT && |
| 725 |
> |
acos(cosTheta) + acos(emap -> cosThetaMax) <= 0.5 * PI |
| 726 |
> |
) |
| 727 |
> |
) |
| 728 |
> |
) { |
| 729 |
|
/* Source is unmodified and has no port (which requires testing for |
| 730 |
|
occlusion), and is either local with normal aligned aperture or |
| 731 |
< |
distant with aperture above surface; analytical flux & PDF */ |
| 732 |
< |
setcolor(emap -> partFlux, mod -> oargs.farg [0], |
| 733 |
< |
mod -> oargs.farg [1], mod -> oargs.farg [2]); |
| 731 |
> |
distant with aperture above surface |
| 732 |
> |
--> get flux & PDF via analytical solution */ |
| 733 |
> |
setcolor( |
| 734 |
> |
emap -> partFlux, mod -> oargs.farg [0], mod -> oargs.farg [1], |
| 735 |
> |
mod -> oargs.farg [2] |
| 736 |
> |
); |
| 737 |
|
|
| 738 |
< |
/* Multiply radiance by Omega * dA to get flux */ |
| 739 |
< |
scalecolor(emap -> partFlux, |
| 740 |
< |
PI * cosTheta * (1 - sqr(max(emap -> cosThetaMax, 0))) * |
| 741 |
< |
emap -> partArea); |
| 738 |
> |
/* Multiply radiance by projected Omega * dA to get flux */ |
| 739 |
> |
scalecolor( |
| 740 |
> |
emap -> partFlux, |
| 741 |
> |
PI * cosTheta * (1 - sqr(max(emap -> cosThetaMax, 0))) * |
| 742 |
> |
emap -> partArea |
| 743 |
> |
); |
| 744 |
|
} |
| 745 |
|
|
| 746 |
|
else { |
| 747 |
|
/* Source is either modified, has a port, is local with off-normal |
| 748 |
< |
aperture, or distant with aperture partly below surface; get flux |
| 749 |
< |
via numerical integration */ |
| 748 |
> |
aperture, or distant with aperture partly below surface |
| 749 |
> |
--> get flux via numerical integration */ |
| 750 |
|
thetaScale = (1 - emap -> cosThetaMax); |
| 751 |
|
|
| 752 |
|
/* Figga out numba of aperture samples for integration; |
| 759 |
|
thetaScale /= emap -> numTheta; |
| 760 |
|
|
| 761 |
|
/* Allocate PDF, baby */ |
| 762 |
< |
sample = emap -> samples = (EmissionSample*) |
| 763 |
< |
realloc(emap -> samples, |
| 764 |
< |
sizeof(EmissionSample) * |
| 765 |
< |
emap -> numTheta * emap -> numPhi); |
| 762 |
> |
sample = emap -> samples = (EmissionSample*)realloc( |
| 763 |
> |
emap -> samples, |
| 764 |
> |
sizeof(EmissionSample) * emap -> numTheta * emap -> numPhi |
| 765 |
> |
); |
| 766 |
|
if (!emap -> samples) |
| 767 |
|
error(USER, "can't allocate emission PDF"); |
| 768 |
|
|
| 781 |
|
rayorigin(&r, PRIMARY, NULL, NULL); |
| 782 |
|
|
| 783 |
|
for (i = 0; i < 3; i++) |
| 784 |
< |
r.rdir [i] = du * emap -> uh [i] + dv * emap -> vh [i] + |
| 785 |
< |
cosTheta * emap -> wh [i]; |
| 784 |
> |
r.rdir [i] = ( |
| 785 |
> |
du * emap -> uh [i] + dv * emap -> vh [i] + |
| 786 |
> |
cosTheta * emap -> wh [i] |
| 787 |
> |
); |
| 788 |
|
|
| 789 |
|
/* Sample behind surface? */ |
| 790 |
|
VCOPY(r.ron, emap -> ws); |
| 803 |
|
continue; |
| 804 |
|
|
| 805 |
|
raytexture(&r, mod -> omod); |
| 806 |
< |
setcolor(r.rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
| 807 |
< |
mod -> oargs.farg [2]); |
| 806 |
> |
setcolor( |
| 807 |
> |
r.rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
| 808 |
> |
mod -> oargs.farg [2] |
| 809 |
> |
); |
| 810 |
|
multcolor(r.rcol, r.pcol); |
| 811 |
|
|
| 812 |
|
/* Multiply by cos(theta_surface) */ |
| 848 |
|
emitted photon to break up clustering artifacts */ |
| 849 |
|
photonOrigin [emap -> src -> so -> otype] ((EmissionMap*)emap); |
| 850 |
|
/* If we have a local glow source with a maximum radius, then |
| 851 |
< |
restrict our photon to the specified distance (otherwise no limit) */ |
| 852 |
< |
if (mod -> otype == MAT_GLOW && !(emap -> src -> sflags & SDISTANT) |
| 853 |
< |
&& mod -> oargs.farg[3] > FTINY) |
| 851 |
> |
restrict our photon to the specified distance, otherwise we set |
| 852 |
> |
the limit imposed by photonMaxDist (or no limit if 0) */ |
| 853 |
> |
if ( |
| 854 |
> |
mod -> otype == MAT_GLOW && |
| 855 |
> |
!(emap -> src -> sflags & SDISTANT) && mod -> oargs.farg[3] > FTINY |
| 856 |
> |
) |
| 857 |
|
ray -> rmax = mod -> oargs.farg[3]; |
| 858 |
|
else |
| 859 |
< |
ray -> rmax = 0; |
| 859 |
> |
ray -> rmax = photonMaxDist; |
| 860 |
|
rayorigin(ray, PRIMARY, NULL, NULL); |
| 861 |
|
|
| 862 |
|
if (!emap -> numSamples) { |
| 863 |
|
/* Source is unmodified and has no port, and either local with |
| 864 |
< |
normal aligned aperture, or distant with aperture above surface; |
| 865 |
< |
use cosine weighted distribution */ |
| 866 |
< |
cosThetaSqr = 1 - pmapRandom(emitState) * |
| 867 |
< |
(1 - sqr(max(emap -> cosThetaMax, 0))); |
| 864 |
> |
normal aligned aperture, or distant with aperture above surface |
| 865 |
> |
--> use cosine weighted distribution */ |
| 866 |
> |
cosThetaSqr = (1 - |
| 867 |
> |
pmapRandom(emitState) * (1 - sqr(max(emap -> cosThetaMax, 0))) |
| 868 |
> |
); |
| 869 |
|
cosTheta = sqrt(cosThetaSqr); |
| 870 |
|
sinTheta = sqrt(1 - cosThetaSqr); |
| 871 |
|
phi = 2 * PI * pmapRandom(emitState); |
| 872 |
< |
setcolor(ray -> rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
| 873 |
< |
mod -> oargs.farg [2]); |
| 872 |
> |
setcolor( |
| 873 |
> |
ray -> rcol, mod -> oargs.farg [0], mod -> oargs.farg [1], |
| 874 |
> |
mod -> oargs.farg [2] |
| 875 |
> |
); |
| 876 |
|
} |
| 877 |
|
|
| 878 |
|
else { |
| 879 |
|
/* Source is either modified, has a port, is local with off-normal |
| 880 |
< |
aperture, or distant with aperture partly below surface; choose |
| 881 |
< |
direction from constructed cumulative distribution function with |
| 882 |
< |
Monte Carlo inversion using binary search. */ |
| 880 |
> |
aperture, or distant with aperture partly below surface |
| 881 |
> |
--> choose direction from constructed cumulative distribution |
| 882 |
> |
function with Monte Carlo inversion using binary search. */ |
| 883 |
|
du = pmapRandom(emitState) * emap -> cdf; |
| 884 |
|
lo = 1; |
| 885 |
|
hi = emap -> numSamples; |
| 895 |
|
} |
| 896 |
|
|
| 897 |
|
/* This is a uniform mapping, mon */ |
| 898 |
< |
cosTheta = 1 - (sample -> theta + pmapRandom(emitState)) * |
| 899 |
< |
(1 - emap -> cosThetaMax) / emap -> numTheta; |
| 898 |
> |
cosTheta = (1 - |
| 899 |
> |
(sample -> theta + pmapRandom(emitState)) * |
| 900 |
> |
(1 - emap -> cosThetaMax) / emap -> numTheta |
| 901 |
> |
); |
| 902 |
|
sinTheta = sqrt(1 - sqr(cosTheta)); |
| 903 |
|
phi = 2 * PI * (sample -> phi + pmapRandom(emitState)) / emap -> numPhi; |
| 904 |
|
copycolor(ray -> rcol, sample -> pdf); |
| 932 |
|
|
| 933 |
|
|
| 934 |
|
|
| 935 |
+ |
/* SOURCE CONTRIBS FROM DIRECT / VOLUME PHOTONS -------------------------- */ |
| 936 |
+ |
|
| 937 |
+ |
|
| 938 |
+ |
|
| 939 |
|
void multDirectPmap (RAY *r) |
| 940 |
|
/* Factor irradiance from direct photons into r -> rcol; interface to |
| 941 |
|
* direct() */ |
| 959 |
|
/* Add ambient in-scattering via lookup callback */ |
| 960 |
|
(volumePmap -> lookup)(volumePmap, r, inscatter); |
| 961 |
|
} |
| 962 |
+ |
|