| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: pmapsrc.c,v 2.19 2020/08/10 19:51:20 rschregle Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
======================================================================
|
| 6 |
Photon map support routines for emission from light sources
|
| 7 |
|
| 8 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
|
| 9 |
(c) Fraunhofer Institute for Solar Energy Systems,
|
| 10 |
supported by the German Research Foundation (DFG)
|
| 11 |
under the FARESYS project.
|
| 12 |
(c) Lucerne University of Applied Sciences and Arts,
|
| 13 |
supported by the Swiss National Science Foundation (SNSF #147053).
|
| 14 |
(c) Tokyo University of Science,
|
| 15 |
supported by the JSPS KAKENHI Grant Number JP19KK0115.
|
| 16 |
======================================================================
|
| 17 |
|
| 18 |
$Id: pmapsrc.c,v 2.19 2020/08/10 19:51:20 rschregle Exp $"
|
| 19 |
*/
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
#include "pmapsrc.h"
|
| 24 |
#include "pmap.h"
|
| 25 |
#include "pmaprand.h"
|
| 26 |
#include "otypes.h"
|
| 27 |
#include "otspecial.h"
|
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
/* List of photon port modifier names */
|
| 32 |
char *photonPortList [MAXSET + 1] = {NULL};
|
| 33 |
/* Photon port objects (with modifiers in photonPortMods) */
|
| 34 |
SRCREC *photonPorts = NULL;
|
| 35 |
unsigned numPhotonPorts = 0;
|
| 36 |
|
| 37 |
void (*photonPartition [NUMOTYPE]) (EmissionMap*);
|
| 38 |
void (*photonOrigin [NUMOTYPE]) (EmissionMap*);
|
| 39 |
|
| 40 |
|
| 41 |
|
| 42 |
/* PHOTON PORT SUPPORT ROUTINES ------------------------------------------ */
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
/* Get/set photon port orientation flags from/in source flags.
|
| 47 |
* HACK: the port orientation flags are embedded in the source flags and
|
| 48 |
* shifted so they won't clobber the latter, since these are interpreted
|
| 49 |
* by the *PhotonPartition() and *PhotonOrigin() routines! */
|
| 50 |
#define PMAP_SETPORTFLAGS(portdir) ((int)(portdir) << 14)
|
| 51 |
#define PMAP_GETPORTFLAGS(sflags) ((sflags) >> 14)
|
| 52 |
|
| 53 |
/* Set number of source partitions.
|
| 54 |
* HACK: this is doubled if the source acts as a bidirectionally
|
| 55 |
* emitting photon port, resulting in alternating front/backside partitions,
|
| 56 |
* although essentially each partition is just used twice with opposing
|
| 57 |
* normals. */
|
| 58 |
#define PMAP_SETNUMPARTITIONS(emap) ( \
|
| 59 |
(emap) -> numPartitions <<= ( \
|
| 60 |
(emap) -> port && \
|
| 61 |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \
|
| 62 |
) \
|
| 63 |
)
|
| 64 |
|
| 65 |
/* Get current source partition and numer of partitions
|
| 66 |
* HACK: halve the number partitions if the source acts as a bidrectionally
|
| 67 |
* emitting photon port, since each partition is used twice with opposing
|
| 68 |
* normals. */
|
| 69 |
#define PMAP_GETNUMPARTITIONS(emap) (\
|
| 70 |
(emap) -> numPartitions >> ( \
|
| 71 |
(emap) -> port && \
|
| 72 |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \
|
| 73 |
) \
|
| 74 |
)
|
| 75 |
#define PMAP_GETPARTITION(emap) ( \
|
| 76 |
(emap) -> partitionCnt >> ( \
|
| 77 |
(emap) -> port && \
|
| 78 |
PMAP_GETPORTFLAGS((emap) -> port -> sflags) == PMAP_PORTBI \
|
| 79 |
) \
|
| 80 |
)
|
| 81 |
|
| 82 |
|
| 83 |
|
| 84 |
void getPhotonPorts (char **portList)
|
| 85 |
/* Find geometry declared as photon ports from modifiers in portList */
|
| 86 |
{
|
| 87 |
OBJECT i;
|
| 88 |
OBJREC *obj, *mat;
|
| 89 |
int mLen;
|
| 90 |
char **lp;
|
| 91 |
|
| 92 |
/* Init photon port objects */
|
| 93 |
photonPorts = NULL;
|
| 94 |
|
| 95 |
if (!portList [0])
|
| 96 |
return;
|
| 97 |
|
| 98 |
for (i = numPhotonPorts = 0; i < nobjects; i++) {
|
| 99 |
obj = objptr(i);
|
| 100 |
mat = findmaterial(obj);
|
| 101 |
|
| 102 |
/* Check if object is a surface and NOT a light source (duh) and
|
| 103 |
* resolve its material (if any) via any aliases, then check for
|
| 104 |
* inclusion in modifier list; note use of strncmp() to ignore port
|
| 105 |
* flags */
|
| 106 |
if (issurface(obj -> otype) && mat && !islight(mat -> otype)) {
|
| 107 |
mLen = strlen(mat -> oname);
|
| 108 |
for (lp = portList; *lp && strncmp(mat -> oname, *lp, mLen); lp++);
|
| 109 |
|
| 110 |
if (*lp) {
|
| 111 |
/* Add photon port */
|
| 112 |
photonPorts = (SRCREC*)realloc(
|
| 113 |
photonPorts, (numPhotonPorts + 1) * sizeof(SRCREC)
|
| 114 |
);
|
| 115 |
if (!photonPorts)
|
| 116 |
error(USER, "can't allocate photon ports");
|
| 117 |
|
| 118 |
photonPorts [numPhotonPorts].so = obj;
|
| 119 |
/* Extract port orientation flags and embed in source flags.
|
| 120 |
* Note setsource() combines (i.e. ORs) these with the actual
|
| 121 |
* source flags below. */
|
| 122 |
photonPorts [numPhotonPorts].sflags =
|
| 123 |
PMAP_SETPORTFLAGS((*lp) [mLen]);
|
| 124 |
|
| 125 |
if (!sfun [obj -> otype].of || !sfun[obj -> otype].of -> setsrc)
|
| 126 |
objerror(obj, USER, "illegal photon port");
|
| 127 |
|
| 128 |
setsource(photonPorts + numPhotonPorts, obj);
|
| 129 |
numPhotonPorts++;
|
| 130 |
}
|
| 131 |
}
|
| 132 |
}
|
| 133 |
if (!numPhotonPorts)
|
| 134 |
error(USER, "no valid photon ports found");
|
| 135 |
}
|
| 136 |
|
| 137 |
|
| 138 |
|
| 139 |
static void setPhotonPortNormal (EmissionMap* emap)
|
| 140 |
/* Set normal for current photon port partition (if defined) based on its
|
| 141 |
* orientation */
|
| 142 |
{
|
| 143 |
|
| 144 |
int i, portFlags;
|
| 145 |
|
| 146 |
if (emap -> port) {
|
| 147 |
/* Extract photon port orientation flags, set surface normal as follows:
|
| 148 |
-- Port oriented forwards --> flip surface normal to point outwards,
|
| 149 |
since normal points inwards per mkillum convention)
|
| 150 |
-- Port oriented backwards --> surface normal is NOT flipped, since
|
| 151 |
it already points inwards.
|
| 152 |
-- Port is bidirectionally/bilaterally oriented --> flip normal based
|
| 153 |
on the parity of the current partition emap -> partitionCnt. In
|
| 154 |
this case, photon emission alternates between port front/back
|
| 155 |
faces for consecutive partitions.
|
| 156 |
*/
|
| 157 |
portFlags = PMAP_GETPORTFLAGS(emap -> port -> sflags);
|
| 158 |
|
| 159 |
if (
|
| 160 |
portFlags == PMAP_PORTFWD ||
|
| 161 |
portFlags == PMAP_PORTBI && !(emap -> partitionCnt & 1)
|
| 162 |
)
|
| 163 |
for (i = 0; i < 3; i++)
|
| 164 |
emap -> ws [i] = -emap -> ws [i];
|
| 165 |
}
|
| 166 |
}
|
| 167 |
|
| 168 |
|
| 169 |
|
| 170 |
/* SOURCE / PHOTON PORT PARTITIONING ROUTINES----------------------------- */
|
| 171 |
|
| 172 |
|
| 173 |
|
| 174 |
static int flatPhotonPartition2 (
|
| 175 |
EmissionMap* emap, unsigned long mp, FVECT cent, FVECT u, FVECT v,
|
| 176 |
double du2, double dv2
|
| 177 |
)
|
| 178 |
/* Recursive part of flatPhotonPartition(..) */
|
| 179 |
{
|
| 180 |
FVECT newct, newax;
|
| 181 |
unsigned long npl, npu;
|
| 182 |
|
| 183 |
if (mp > emap -> maxPartitions) {
|
| 184 |
/* Enlarge partition array */
|
| 185 |
emap -> maxPartitions <<= 1;
|
| 186 |
emap -> partitions = (unsigned char*)realloc(
|
| 187 |
emap -> partitions, emap -> maxPartitions >> 1
|
| 188 |
);
|
| 189 |
|
| 190 |
if (!emap -> partitions)
|
| 191 |
error(USER, "can't allocate source partitions");
|
| 192 |
|
| 193 |
memset(
|
| 194 |
emap -> partitions + (emap -> maxPartitions >> 2), 0,
|
| 195 |
emap -> maxPartitions >> 2
|
| 196 |
);
|
| 197 |
}
|
| 198 |
|
| 199 |
if (du2 * dv2 <= 1) { /* hit limit? */
|
| 200 |
setpart(emap -> partitions, emap -> partitionCnt, S0);
|
| 201 |
emap -> partitionCnt++;
|
| 202 |
return 1;
|
| 203 |
}
|
| 204 |
|
| 205 |
if (du2 > dv2) { /* subdivide in U */
|
| 206 |
setpart(emap -> partitions, emap -> partitionCnt, SU);
|
| 207 |
emap -> partitionCnt++;
|
| 208 |
newax [0] = 0.5 * u [0];
|
| 209 |
newax [1] = 0.5 * u [1];
|
| 210 |
newax [2] = 0.5 * u [2];
|
| 211 |
u = newax;
|
| 212 |
du2 *= 0.25;
|
| 213 |
}
|
| 214 |
|
| 215 |
else { /* subdivide in V */
|
| 216 |
setpart(emap -> partitions, emap -> partitionCnt, SV);
|
| 217 |
emap -> partitionCnt++;
|
| 218 |
newax [0] = 0.5 * v [0];
|
| 219 |
newax [1] = 0.5 * v [1];
|
| 220 |
newax [2] = 0.5 * v [2];
|
| 221 |
v = newax;
|
| 222 |
dv2 *= 0.25;
|
| 223 |
}
|
| 224 |
|
| 225 |
/* lower half */
|
| 226 |
newct [0] = cent [0] - newax [0];
|
| 227 |
newct [1] = cent [1] - newax [1];
|
| 228 |
newct [2] = cent [2] - newax [2];
|
| 229 |
npl = flatPhotonPartition2(emap, mp << 1, newct, u, v, du2, dv2);
|
| 230 |
|
| 231 |
/* upper half */
|
| 232 |
newct [0] = cent [0] + newax [0];
|
| 233 |
newct [1] = cent [1] + newax [1];
|
| 234 |
newct [2] = cent [2] + newax [2];
|
| 235 |
npu = flatPhotonPartition2(emap, mp << 1, newct, u, v, du2, dv2);
|
| 236 |
|
| 237 |
/* return total */
|
| 238 |
return npl + npu;
|
| 239 |
}
|
| 240 |
|
| 241 |
|
| 242 |
|
| 243 |
static void flatPhotonPartition (EmissionMap* emap)
|
| 244 |
/* Partition flat source for photon emission */
|
| 245 |
{
|
| 246 |
RREAL *vp;
|
| 247 |
double du2, dv2;
|
| 248 |
|
| 249 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1);
|
| 250 |
emap -> partArea = srcsizerat * thescene.cusize;
|
| 251 |
emap -> partArea *= emap -> partArea;
|
| 252 |
vp = emap -> src -> ss [SU];
|
| 253 |
du2 = DOT(vp, vp) / emap -> partArea;
|
| 254 |
vp = emap -> src -> ss [SV];
|
| 255 |
dv2 = DOT(vp, vp) / emap -> partArea;
|
| 256 |
emap -> partitionCnt = 0;
|
| 257 |
emap -> numPartitions = flatPhotonPartition2(
|
| 258 |
emap, 1, emap -> src -> sloc,
|
| 259 |
emap -> src -> ss [SU], emap -> src -> ss [SV], du2, dv2
|
| 260 |
);
|
| 261 |
emap -> partitionCnt = 0;
|
| 262 |
emap -> partArea = emap -> src -> ss2 / emap -> numPartitions;
|
| 263 |
}
|
| 264 |
|
| 265 |
|
| 266 |
|
| 267 |
static void sourcePhotonPartition (EmissionMap* emap)
|
| 268 |
/* Partition scene cube faces or photon port for photon emission from
|
| 269 |
distant source */
|
| 270 |
{
|
| 271 |
if (emap -> port) {
|
| 272 |
/* Relay partitioning to photon port */
|
| 273 |
SRCREC *src = emap -> src;
|
| 274 |
emap -> src = emap -> port;
|
| 275 |
photonPartition [emap -> src -> so -> otype] (emap);
|
| 276 |
PMAP_SETNUMPARTITIONS(emap);
|
| 277 |
emap -> src = src;
|
| 278 |
}
|
| 279 |
|
| 280 |
else {
|
| 281 |
/* No photon ports defined; partition scene cube faces (SUBOPTIMAL) */
|
| 282 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1);
|
| 283 |
setpart(emap -> partitions, 0, S0);
|
| 284 |
emap -> partitionCnt = 0;
|
| 285 |
emap -> numPartitions = 1 / srcsizerat;
|
| 286 |
emap -> numPartitions *= emap -> numPartitions;
|
| 287 |
emap -> partArea = sqr(thescene.cusize) / emap -> numPartitions;
|
| 288 |
emap -> numPartitions *= 6;
|
| 289 |
}
|
| 290 |
}
|
| 291 |
|
| 292 |
|
| 293 |
|
| 294 |
static void spherePhotonPartition (EmissionMap* emap)
|
| 295 |
/* Partition spherical source into equal solid angles using uniform
|
| 296 |
mapping for photon emission */
|
| 297 |
{
|
| 298 |
unsigned numTheta, numPhi;
|
| 299 |
|
| 300 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1);
|
| 301 |
setpart(emap -> partitions, 0, S0);
|
| 302 |
emap -> partArea = 4 * PI * sqr(emap -> src -> srad);
|
| 303 |
emap -> numPartitions =
|
| 304 |
emap -> partArea / sqr(srcsizerat * thescene.cusize);
|
| 305 |
|
| 306 |
numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1);
|
| 307 |
numPhi = 0.5 * PI * numTheta + 0.5;
|
| 308 |
|
| 309 |
emap -> numPartitions = (unsigned long)numTheta * numPhi;
|
| 310 |
emap -> partitionCnt = 0;
|
| 311 |
emap -> partArea /= emap -> numPartitions;
|
| 312 |
}
|
| 313 |
|
| 314 |
|
| 315 |
|
| 316 |
static int cylPhotonPartition2 (
|
| 317 |
EmissionMap* emap, unsigned long mp, FVECT cent, FVECT axis, double d2
|
| 318 |
)
|
| 319 |
/* Recursive part of cyPhotonPartition(..) */
|
| 320 |
{
|
| 321 |
FVECT newct, newax;
|
| 322 |
unsigned long npl, npu;
|
| 323 |
|
| 324 |
if (mp > emap -> maxPartitions) {
|
| 325 |
/* Enlarge partition array */
|
| 326 |
emap -> maxPartitions <<= 1;
|
| 327 |
emap -> partitions = (unsigned char*)realloc(
|
| 328 |
emap -> partitions, emap -> maxPartitions >> 1
|
| 329 |
);
|
| 330 |
if (!emap -> partitions)
|
| 331 |
error(USER, "can't allocate source partitions");
|
| 332 |
|
| 333 |
memset(
|
| 334 |
emap -> partitions + (emap -> maxPartitions >> 2), 0,
|
| 335 |
emap -> maxPartitions >> 2
|
| 336 |
);
|
| 337 |
}
|
| 338 |
|
| 339 |
if (d2 <= 1) {
|
| 340 |
/* hit limit? */
|
| 341 |
setpart(emap -> partitions, emap -> partitionCnt, S0);
|
| 342 |
emap -> partitionCnt++;
|
| 343 |
return 1;
|
| 344 |
}
|
| 345 |
|
| 346 |
/* subdivide */
|
| 347 |
setpart(emap -> partitions, emap -> partitionCnt, SU);
|
| 348 |
emap -> partitionCnt++;
|
| 349 |
newax [0] = 0.5 * axis [0];
|
| 350 |
newax [1] = 0.5 * axis [1];
|
| 351 |
newax [2] = 0.5 * axis [2];
|
| 352 |
d2 *= 0.25;
|
| 353 |
|
| 354 |
/* lower half */
|
| 355 |
newct [0] = cent [0] - newax [0];
|
| 356 |
newct [1] = cent [1] - newax [1];
|
| 357 |
newct [2] = cent [2] - newax [2];
|
| 358 |
npl = cylPhotonPartition2(emap, mp << 1, newct, newax, d2);
|
| 359 |
|
| 360 |
/* upper half */
|
| 361 |
newct [0] = cent [0] + newax [0];
|
| 362 |
newct [1] = cent [1] + newax [1];
|
| 363 |
newct [2] = cent [2] + newax [2];
|
| 364 |
npu = cylPhotonPartition2(emap, mp << 1, newct, newax, d2);
|
| 365 |
|
| 366 |
/* return total */
|
| 367 |
return npl + npu;
|
| 368 |
}
|
| 369 |
|
| 370 |
|
| 371 |
|
| 372 |
static void cylPhotonPartition (EmissionMap* emap)
|
| 373 |
/* Partition cylindrical source for photon emission */
|
| 374 |
{
|
| 375 |
double d2;
|
| 376 |
|
| 377 |
memset(emap -> partitions, 0, emap -> maxPartitions >> 1);
|
| 378 |
d2 = srcsizerat * thescene.cusize;
|
| 379 |
d2 = PI * emap -> src -> ss2 / (2 * emap -> src -> srad * sqr(d2));
|
| 380 |
d2 *= d2 * DOT(emap -> src -> ss [SU], emap -> src -> ss [SU]);
|
| 381 |
|
| 382 |
emap -> partitionCnt = 0;
|
| 383 |
emap -> numPartitions = cylPhotonPartition2(
|
| 384 |
emap, 1, emap -> src -> sloc, emap -> src -> ss [SU], d2
|
| 385 |
);
|
| 386 |
emap -> partitionCnt = 0;
|
| 387 |
emap -> partArea = PI * emap -> src -> ss2 / emap -> numPartitions;
|
| 388 |
}
|
| 389 |
|
| 390 |
|
| 391 |
|
| 392 |
/* PHOTON ORIGIN ROUTINES ------------------------------------------------ */
|
| 393 |
|
| 394 |
|
| 395 |
|
| 396 |
static void flatPhotonOrigin (EmissionMap* emap)
|
| 397 |
/* Init emission map with photon origin and associated surface axes on
|
| 398 |
flat light source surface. Also sets source aperture and sampling
|
| 399 |
hemisphere axes at origin */
|
| 400 |
{
|
| 401 |
int i, cent[3], size[3], parr[2];
|
| 402 |
FVECT vpos;
|
| 403 |
|
| 404 |
cent [0] = cent [1] = cent [2] = 0;
|
| 405 |
size [0] = size [1] = size [2] = emap -> maxPartitions;
|
| 406 |
parr [0] = 0;
|
| 407 |
parr [1] = PMAP_GETPARTITION(emap);
|
| 408 |
|
| 409 |
if (!skipparts(cent, size, parr, emap -> partitions))
|
| 410 |
error(CONSISTENCY, "bad source partition in flatPhotonOrigin");
|
| 411 |
|
| 412 |
vpos [0] = (1 - 2 * pmapRandom(partState)) * size [0] /
|
| 413 |
emap -> maxPartitions;
|
| 414 |
vpos [1] = (1 - 2 * pmapRandom(partState)) * size [1] /
|
| 415 |
emap -> maxPartitions;
|
| 416 |
vpos [2] = 0;
|
| 417 |
|
| 418 |
for (i = 0; i < 3; i++)
|
| 419 |
vpos [i] += (double)cent [i] / emap -> maxPartitions;
|
| 420 |
|
| 421 |
/* Get origin */
|
| 422 |
for (i = 0; i < 3; i++)
|
| 423 |
emap -> photonOrg [i] =
|
| 424 |
emap -> src -> sloc [i] +
|
| 425 |
vpos [SU] * emap -> src -> ss [SU][i] +
|
| 426 |
vpos [SV] * emap -> src -> ss [SV][i] +
|
| 427 |
vpos [SW] * emap -> src -> ss [SW][i];
|
| 428 |
|
| 429 |
/* Get surface axes */
|
| 430 |
VCOPY(emap -> us, emap -> src -> ss [SU]);
|
| 431 |
normalize(emap -> us);
|
| 432 |
VCOPY(emap -> ws, emap -> src -> ss [SW]);
|
| 433 |
/* Flip normal emap -> ws if port and required by its orientation */
|
| 434 |
setPhotonPortNormal(emap);
|
| 435 |
fcross(emap -> vs, emap -> ws, emap -> us);
|
| 436 |
|
| 437 |
/* Get hemisphere axes & aperture */
|
| 438 |
if (emap -> src -> sflags & SSPOT) {
|
| 439 |
VCOPY(emap -> wh, emap -> src -> sl.s -> aim);
|
| 440 |
i = 0;
|
| 441 |
|
| 442 |
do {
|
| 443 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0;
|
| 444 |
emap -> vh [i++] = 1;
|
| 445 |
fcross(emap -> uh, emap -> vh, emap -> wh);
|
| 446 |
} while (normalize(emap -> uh) < FTINY);
|
| 447 |
|
| 448 |
fcross(emap -> vh, emap -> wh, emap -> uh);
|
| 449 |
emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI);
|
| 450 |
}
|
| 451 |
|
| 452 |
else {
|
| 453 |
VCOPY(emap -> uh, emap -> us);
|
| 454 |
VCOPY(emap -> vh, emap -> vs);
|
| 455 |
VCOPY(emap -> wh, emap -> ws);
|
| 456 |
emap -> cosThetaMax = 0;
|
| 457 |
}
|
| 458 |
}
|
| 459 |
|
| 460 |
|
| 461 |
|
| 462 |
static void spherePhotonOrigin (EmissionMap* emap)
|
| 463 |
/* Init emission map with photon origin and associated surface axes on
|
| 464 |
spherical light source. Also sets source aperture and sampling
|
| 465 |
hemisphere axes at origin */
|
| 466 |
{
|
| 467 |
int i = 0;
|
| 468 |
unsigned numTheta, numPhi, t, p;
|
| 469 |
RREAL cosTheta, sinTheta, phi;
|
| 470 |
|
| 471 |
/* Get current partition */
|
| 472 |
numTheta = max(sqrt(2 * PMAP_GETNUMPARTITIONS(emap) / PI) + 0.5, 1);
|
| 473 |
numPhi = 0.5 * PI * numTheta + 0.5;
|
| 474 |
|
| 475 |
t = PMAP_GETPARTITION(emap) / numPhi;
|
| 476 |
p = PMAP_GETPARTITION(emap) - t * numPhi;
|
| 477 |
|
| 478 |
emap -> ws [2] = cosTheta = 1 - 2 * (t + pmapRandom(partState)) / numTheta;
|
| 479 |
sinTheta = sqrt(1 - sqr(cosTheta));
|
| 480 |
phi = 2 * PI * (p + pmapRandom(partState)) / numPhi;
|
| 481 |
emap -> ws [0] = cos(phi) * sinTheta;
|
| 482 |
emap -> ws [1] = sin(phi) * sinTheta;
|
| 483 |
/* Flip normal emap -> ws if port and required by its orientation */
|
| 484 |
setPhotonPortNormal(emap);
|
| 485 |
|
| 486 |
/* Get surface axes us & vs perpendicular to ws */
|
| 487 |
do {
|
| 488 |
emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0;
|
| 489 |
emap -> vs [i++] = 1;
|
| 490 |
fcross(emap -> us, emap -> vs, emap -> ws);
|
| 491 |
} while (normalize(emap -> us) < FTINY);
|
| 492 |
|
| 493 |
fcross(emap -> vs, emap -> ws, emap -> us);
|
| 494 |
|
| 495 |
/* Get origin */
|
| 496 |
for (i = 0; i < 3; i++)
|
| 497 |
emap -> photonOrg [i] = emap -> src -> sloc [i] +
|
| 498 |
emap -> src -> srad * emap -> ws [i];
|
| 499 |
|
| 500 |
/* Get hemisphere axes & aperture */
|
| 501 |
if (emap -> src -> sflags & SSPOT) {
|
| 502 |
VCOPY(emap -> wh, emap -> src -> sl.s -> aim);
|
| 503 |
i = 0;
|
| 504 |
|
| 505 |
do {
|
| 506 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0;
|
| 507 |
emap -> vh [i++] = 1;
|
| 508 |
fcross(emap -> uh, emap -> vh, emap -> wh);
|
| 509 |
} while (normalize(emap -> uh) < FTINY);
|
| 510 |
|
| 511 |
fcross(emap -> vh, emap -> wh, emap -> uh);
|
| 512 |
emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI);
|
| 513 |
}
|
| 514 |
|
| 515 |
else {
|
| 516 |
VCOPY(emap -> uh, emap -> us);
|
| 517 |
VCOPY(emap -> vh, emap -> vs);
|
| 518 |
VCOPY(emap -> wh, emap -> ws);
|
| 519 |
emap -> cosThetaMax = 0;
|
| 520 |
}
|
| 521 |
}
|
| 522 |
|
| 523 |
|
| 524 |
|
| 525 |
static void sourcePhotonOrigin (EmissionMap* emap)
|
| 526 |
/* Init emission map with photon origin and associated surface axes
|
| 527 |
on scene cube face for distant light source. Also sets source
|
| 528 |
aperture (solid angle) and sampling hemisphere axes at origin */
|
| 529 |
{
|
| 530 |
unsigned long i, partsPerDim, partsPerFace;
|
| 531 |
unsigned face;
|
| 532 |
RREAL du, dv;
|
| 533 |
|
| 534 |
if (emap -> port) {
|
| 535 |
/* Relay to photon port; get origin on its surface */
|
| 536 |
SRCREC *src = emap -> src;
|
| 537 |
emap -> src = emap -> port;
|
| 538 |
photonOrigin [emap -> src -> so -> otype] (emap);
|
| 539 |
emap -> src = src;
|
| 540 |
}
|
| 541 |
|
| 542 |
else {
|
| 543 |
/* No ports defined, so get origin on scene cube face (SUBOPTIMAL) */
|
| 544 |
/* Get current face from partition number */
|
| 545 |
partsPerDim = 1 / srcsizerat;
|
| 546 |
partsPerFace = sqr(partsPerDim);
|
| 547 |
face = emap -> partitionCnt / partsPerFace;
|
| 548 |
if (!(emap -> partitionCnt % partsPerFace)) {
|
| 549 |
/* Skipped to a new face; get its normal */
|
| 550 |
emap -> ws [0] = emap -> ws [1] = emap -> ws [2] = 0;
|
| 551 |
emap -> ws [face >> 1] = face & 1 ? 1 : -1;
|
| 552 |
|
| 553 |
/* Get surface axes us & vs perpendicular to ws */
|
| 554 |
face >>= 1;
|
| 555 |
emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0;
|
| 556 |
emap -> vs [(face + (emap -> ws [face] > 0 ? 2 : 1)) % 3] = 1;
|
| 557 |
fcross(emap -> us, emap -> vs, emap -> ws);
|
| 558 |
}
|
| 559 |
|
| 560 |
/* Get jittered offsets within face from partition number
|
| 561 |
(in range [-0.5, 0.5]) */
|
| 562 |
i = emap -> partitionCnt % partsPerFace;
|
| 563 |
du = (i / partsPerDim + pmapRandom(partState)) / partsPerDim - 0.5;
|
| 564 |
dv = (i % partsPerDim + pmapRandom(partState)) / partsPerDim - 0.5;
|
| 565 |
|
| 566 |
/* Jittered destination point within partition */
|
| 567 |
for (i = 0; i < 3; i++)
|
| 568 |
emap -> photonOrg [i] = thescene.cuorg [i] + thescene.cusize * (
|
| 569 |
0.5 + du * emap -> us [i] + dv * emap -> vs [i] +
|
| 570 |
0.5 * emap -> ws [i]
|
| 571 |
);
|
| 572 |
}
|
| 573 |
|
| 574 |
/* Get hemisphere axes & aperture */
|
| 575 |
VCOPY(emap -> wh, emap -> src -> sloc);
|
| 576 |
i = 0;
|
| 577 |
|
| 578 |
do {
|
| 579 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0;
|
| 580 |
emap -> vh [i++] = 1;
|
| 581 |
fcross(emap -> uh, emap -> vh, emap -> wh);
|
| 582 |
} while (normalize(emap -> uh) < FTINY);
|
| 583 |
|
| 584 |
fcross(emap -> vh, emap -> wh, emap -> uh);
|
| 585 |
|
| 586 |
/* Get aperture */
|
| 587 |
emap -> cosThetaMax = 1 - emap -> src -> ss2 / (2 * PI);
|
| 588 |
emap -> cosThetaMax = min(1, max(-1, emap -> cosThetaMax));
|
| 589 |
}
|
| 590 |
|
| 591 |
|
| 592 |
|
| 593 |
static void cylPhotonOrigin (EmissionMap* emap)
|
| 594 |
/* Init emission map with photon origin and associated surface axes
|
| 595 |
on cylindrical light source surface. Also sets source aperture
|
| 596 |
and sampling hemisphere axes at origin */
|
| 597 |
{
|
| 598 |
int i, cent[3], size[3], parr[2];
|
| 599 |
FVECT v;
|
| 600 |
|
| 601 |
cent [0] = cent [1] = cent [2] = 0;
|
| 602 |
size [0] = size [1] = size [2] = emap -> maxPartitions;
|
| 603 |
parr [0] = 0;
|
| 604 |
parr [1] = PMAP_GETPARTITION(emap);
|
| 605 |
|
| 606 |
if (!skipparts(cent, size, parr, emap -> partitions))
|
| 607 |
error(CONSISTENCY, "bad source partition in cylPhotonOrigin");
|
| 608 |
|
| 609 |
v [SU] = 0;
|
| 610 |
v [SV] = (1 - 2 * pmapRandom(partState)) * (double)size [1] /
|
| 611 |
emap -> maxPartitions;
|
| 612 |
v [SW] = (1 - 2 * pmapRandom(partState)) * (double)size [2] /
|
| 613 |
emap -> maxPartitions;
|
| 614 |
normalize(v);
|
| 615 |
v [SU] = (1 - 2 * pmapRandom(partState)) * (double)size [1] /
|
| 616 |
emap -> maxPartitions;
|
| 617 |
|
| 618 |
for (i = 0; i < 3; i++)
|
| 619 |
v [i] += (double)cent [i] / emap -> maxPartitions;
|
| 620 |
|
| 621 |
/* Get surface axes */
|
| 622 |
for (i = 0; i < 3; i++)
|
| 623 |
emap -> photonOrg [i] = emap -> ws [i] = (
|
| 624 |
v [SV] * emap -> src -> ss [SV][i] +
|
| 625 |
v [SW] * emap -> src -> ss [SW][i]
|
| 626 |
) / 0.8559;
|
| 627 |
|
| 628 |
/* Flip normal emap -> ws if port and required by its orientation */
|
| 629 |
setPhotonPortNormal(emap);
|
| 630 |
|
| 631 |
normalize(emap -> ws);
|
| 632 |
VCOPY(emap -> us, emap -> src -> ss [SU]);
|
| 633 |
normalize(emap -> us);
|
| 634 |
fcross(emap -> vs, emap -> ws, emap -> us);
|
| 635 |
|
| 636 |
/* Get origin */
|
| 637 |
for (i = 0; i < 3; i++)
|
| 638 |
emap -> photonOrg [i] +=
|
| 639 |
v [SU] * emap -> src -> ss [SU][i] + emap -> src -> sloc [i];
|
| 640 |
|
| 641 |
/* Get hemisphere axes & aperture */
|
| 642 |
if (emap -> src -> sflags & SSPOT) {
|
| 643 |
VCOPY(emap -> wh, emap -> src -> sl.s -> aim);
|
| 644 |
i = 0;
|
| 645 |
|
| 646 |
do {
|
| 647 |
emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0;
|
| 648 |
emap -> vh [i++] = 1;
|
| 649 |
fcross(emap -> uh, emap -> vh, emap -> wh);
|
| 650 |
} while (normalize(emap -> uh) < FTINY);
|
| 651 |
|
| 652 |
fcross(emap -> vh, emap -> wh, emap -> uh);
|
| 653 |
emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI);
|
| 654 |
}
|
| 655 |
|
| 656 |
else {
|
| 657 |
VCOPY(emap -> uh, emap -> us);
|
| 658 |
VCOPY(emap -> vh, emap -> vs);
|
| 659 |
VCOPY(emap -> wh, emap -> ws);
|
| 660 |
emap -> cosThetaMax = 0;
|
| 661 |
}
|
| 662 |
}
|
| 663 |
|
| 664 |
|
| 665 |
|
| 666 |
/* PHOTON EMISSION ROUTINES ---------------------------------------------- */
|
| 667 |
|
| 668 |
|
| 669 |
|
| 670 |
static void defaultEmissionFunc (EmissionMap* emap)
|
| 671 |
/* Default behaviour when no emission funcs defined for this source type */
|
| 672 |
{
|
| 673 |
objerror(emap -> src -> so, INTERNAL,
|
| 674 |
"undefined photon emission function");
|
| 675 |
}
|
| 676 |
|
| 677 |
|
| 678 |
|
| 679 |
void initPhotonEmissionFuncs ()
|
| 680 |
/* Init photonPartition[] and photonOrigin[] dispatch tables */
|
| 681 |
{
|
| 682 |
int i;
|
| 683 |
|
| 684 |
for (i = 0; i < NUMOTYPE; i++)
|
| 685 |
photonPartition [i] = photonOrigin [i] = defaultEmissionFunc;
|
| 686 |
|
| 687 |
photonPartition [OBJ_FACE] = photonPartition [OBJ_RING] = flatPhotonPartition;
|
| 688 |
photonPartition [OBJ_SOURCE] = sourcePhotonPartition;
|
| 689 |
photonPartition [OBJ_SPHERE] = spherePhotonPartition;
|
| 690 |
photonPartition [OBJ_CYLINDER] = cylPhotonPartition;
|
| 691 |
photonOrigin [OBJ_FACE] = photonOrigin [OBJ_RING] = flatPhotonOrigin;
|
| 692 |
photonOrigin [OBJ_SOURCE] = sourcePhotonOrigin;
|
| 693 |
photonOrigin [OBJ_SPHERE] = spherePhotonOrigin;
|
| 694 |
photonOrigin [OBJ_CYLINDER] = cylPhotonOrigin;
|
| 695 |
}
|
| 696 |
|
| 697 |
|
| 698 |
|
| 699 |
void initPhotonEmission (EmissionMap *emap, float numPdfSamples)
|
| 700 |
/* Initialise photon emission from partitioned light source emap -> src;
|
| 701 |
* this involves integrating the flux emitted from the current photon
|
| 702 |
* origin emap -> photonOrg and setting up a PDF to sample the emission
|
| 703 |
* distribution with numPdfSamples samples */
|
| 704 |
{
|
| 705 |
unsigned i, t, p;
|
| 706 |
double phi, cosTheta, sinTheta, du, dv, dOmega, thetaScale;
|
| 707 |
EmissionSample* sample;
|
| 708 |
const OBJREC* mod = findmaterial(emap -> src -> so);
|
| 709 |
static RAY r;
|
| 710 |
|
| 711 |
photonOrigin [emap -> src -> so -> otype] (emap);
|
| 712 |
setcolor(emap -> partFlux, 0, 0, 0);
|
| 713 |
emap -> cdf = 0;
|
| 714 |
emap -> numSamples = 0;
|
| 715 |
cosTheta = DOT(emap -> ws, emap -> wh);
|
| 716 |
|
| 717 |
if (cosTheta <= 0 && sqrt(1-sqr(cosTheta)) <= emap -> cosThetaMax + FTINY)
|
| 718 |
/* Aperture completely below surface; no emission from current origin */
|
| 719 |
return;
|
| 720 |
|
| 721 |
if (
|
| 722 |
mod -> omod == OVOID && !emap -> port && (
|
| 723 |
cosTheta >= 1 - FTINY || (
|
| 724 |
emap -> src -> sflags & SDISTANT &&
|
| 725 |
acos(cosTheta) + acos(emap -> cosThetaMax) <= 0.5 * PI
|
| 726 |
)
|
| 727 |
)
|
| 728 |
) {
|
| 729 |
/* Source is unmodified and has no port (which requires testing for
|
| 730 |
occlusion), and is either local with normal aligned aperture or
|
| 731 |
distant with aperture above surface
|
| 732 |
--> get flux & PDF via analytical solution */
|
| 733 |
setcolor(
|
| 734 |
emap -> partFlux, mod -> oargs.farg [0], mod -> oargs.farg [1],
|
| 735 |
mod -> oargs.farg [2]
|
| 736 |
);
|
| 737 |
|
| 738 |
/* Multiply radiance by projected Omega * dA to get flux */
|
| 739 |
scalecolor(
|
| 740 |
emap -> partFlux,
|
| 741 |
PI * cosTheta * (1 - sqr(max(emap -> cosThetaMax, 0))) *
|
| 742 |
emap -> partArea
|
| 743 |
);
|
| 744 |
}
|
| 745 |
|
| 746 |
else {
|
| 747 |
/* Source is either modified, has a port, is local with off-normal
|
| 748 |
aperture, or distant with aperture partly below surface
|
| 749 |
--> get flux via numerical integration */
|
| 750 |
thetaScale = (1 - emap -> cosThetaMax);
|
| 751 |
|
| 752 |
/* Figga out numba of aperture samples for integration;
|
| 753 |
numTheta / numPhi ratio is 1 / PI */
|
| 754 |
du = sqrt(pdfSamples * 2 * thetaScale);
|
| 755 |
emap -> numTheta = max(du + 0.5, 1);
|
| 756 |
emap -> numPhi = max(PI * du + 0.5, 1);
|
| 757 |
|
| 758 |
dOmega = 2 * PI * thetaScale / (emap -> numTheta * emap -> numPhi);
|
| 759 |
thetaScale /= emap -> numTheta;
|
| 760 |
|
| 761 |
/* Allocate PDF, baby */
|
| 762 |
sample = emap -> samples = (EmissionSample*)realloc(
|
| 763 |
emap -> samples,
|
| 764 |
sizeof(EmissionSample) * emap -> numTheta * emap -> numPhi
|
| 765 |
);
|
| 766 |
if (!emap -> samples)
|
| 767 |
error(USER, "can't allocate emission PDF");
|
| 768 |
|
| 769 |
VCOPY(r.rorg, emap -> photonOrg);
|
| 770 |
VCOPY(r.rop, emap -> photonOrg);
|
| 771 |
r.rmax = 0;
|
| 772 |
|
| 773 |
for (t = 0; t < emap -> numTheta; t++) {
|
| 774 |
for (p = 0; p < emap -> numPhi; p++) {
|
| 775 |
/* This uniform mapping handles 0 <= thetaMax <= PI */
|
| 776 |
cosTheta = 1 - (t + pmapRandom(emitState)) * thetaScale;
|
| 777 |
sinTheta = sqrt(1 - sqr(cosTheta));
|
| 778 |
phi = 2 * PI * (p + pmapRandom(emitState)) / emap -> numPhi;
|
| 779 |
du = cos(phi) * sinTheta;
|
| 780 |
dv = sin(phi) * sinTheta;
|
| 781 |
rayorigin(&r, PRIMARY, NULL, NULL);
|
| 782 |
|
| 783 |
for (i = 0; i < 3; i++)
|
| 784 |
r.rdir [i] = (
|
| 785 |
du * emap -> uh [i] + dv * emap -> vh [i] +
|
| 786 |
cosTheta * emap -> wh [i]
|
| 787 |
);
|
| 788 |
|
| 789 |
/* Sample behind surface? */
|
| 790 |
VCOPY(r.ron, emap -> ws);
|
| 791 |
if ((r.rod = DOT(r.rdir, r.ron)) <= 0)
|
| 792 |
continue;
|
| 793 |
|
| 794 |
/* Get radiance emitted in this direction; to get flux we
|
| 795 |
multiply by cos(theta_surface), dOmega, and dA. Ray
|
| 796 |
is directed towards light source for raytexture(). */
|
| 797 |
if (!(emap -> src -> sflags & SDISTANT))
|
| 798 |
for (i = 0; i < 3; i++)
|
| 799 |
r.rdir [i] = -r.rdir [i];
|
| 800 |
|
| 801 |
/* Port occluded in this direction? */
|
| 802 |
if (emap -> port && localhit(&r, &thescene))
|
| 803 |
continue;
|
| 804 |
|
| 805 |
raytexture(&r, mod -> omod);
|
| 806 |
setcolor(
|
| 807 |
r.rcol, mod -> oargs.farg [0], mod -> oargs.farg [1],
|
| 808 |
mod -> oargs.farg [2]
|
| 809 |
);
|
| 810 |
multcolor(r.rcol, r.pcol);
|
| 811 |
|
| 812 |
/* Multiply by cos(theta_surface) */
|
| 813 |
scalecolor(r.rcol, r.rod);
|
| 814 |
|
| 815 |
/* Add PDF sample if nonzero; importance info for photon emission
|
| 816 |
* could go here... */
|
| 817 |
if (colorAvg(r.rcol)) {
|
| 818 |
copycolor(sample -> pdf, r.rcol);
|
| 819 |
sample -> cdf = emap -> cdf += colorAvg(sample -> pdf);
|
| 820 |
sample -> theta = t;
|
| 821 |
sample++ -> phi = p;
|
| 822 |
emap -> numSamples++;
|
| 823 |
addcolor(emap -> partFlux, r.rcol);
|
| 824 |
}
|
| 825 |
}
|
| 826 |
}
|
| 827 |
|
| 828 |
/* Multiply by dOmega * dA */
|
| 829 |
scalecolor(emap -> partFlux, dOmega * emap -> partArea);
|
| 830 |
}
|
| 831 |
}
|
| 832 |
|
| 833 |
|
| 834 |
|
| 835 |
#define vomitPhoton emitPhoton
|
| 836 |
#define bluarrrghPhoton vomitPhoton
|
| 837 |
|
| 838 |
void emitPhoton (const EmissionMap* emap, RAY* ray)
|
| 839 |
/* Emit photon from current partition emap -> partitionCnt based on
|
| 840 |
emission distribution. Returns new photon ray. */
|
| 841 |
{
|
| 842 |
unsigned long i, lo, hi;
|
| 843 |
const EmissionSample* sample = emap -> samples;
|
| 844 |
RREAL du, dv, cosTheta, cosThetaSqr, sinTheta, phi;
|
| 845 |
const OBJREC* mod = findmaterial(emap -> src -> so);
|
| 846 |
|
| 847 |
/* Choose a new origin within current partition for every
|
| 848 |
emitted photon to break up clustering artifacts */
|
| 849 |
photonOrigin [emap -> src -> so -> otype] ((EmissionMap*)emap);
|
| 850 |
/* If we have a local glow source with a maximum radius, then
|
| 851 |
restrict our photon to the specified distance, otherwise we set
|
| 852 |
the limit imposed by photonMaxDist (or no limit if 0) */
|
| 853 |
if (
|
| 854 |
mod -> otype == MAT_GLOW &&
|
| 855 |
!(emap -> src -> sflags & SDISTANT) && mod -> oargs.farg[3] > FTINY
|
| 856 |
)
|
| 857 |
ray -> rmax = mod -> oargs.farg[3];
|
| 858 |
else
|
| 859 |
ray -> rmax = photonMaxDist;
|
| 860 |
rayorigin(ray, PRIMARY, NULL, NULL);
|
| 861 |
|
| 862 |
if (!emap -> numSamples) {
|
| 863 |
/* Source is unmodified and has no port, and either local with
|
| 864 |
normal aligned aperture, or distant with aperture above surface
|
| 865 |
--> use cosine weighted distribution */
|
| 866 |
cosThetaSqr = (1 -
|
| 867 |
pmapRandom(emitState) * (1 - sqr(max(emap -> cosThetaMax, 0)))
|
| 868 |
);
|
| 869 |
cosTheta = sqrt(cosThetaSqr);
|
| 870 |
sinTheta = sqrt(1 - cosThetaSqr);
|
| 871 |
phi = 2 * PI * pmapRandom(emitState);
|
| 872 |
setcolor(
|
| 873 |
ray -> rcol, mod -> oargs.farg [0], mod -> oargs.farg [1],
|
| 874 |
mod -> oargs.farg [2]
|
| 875 |
);
|
| 876 |
}
|
| 877 |
|
| 878 |
else {
|
| 879 |
/* Source is either modified, has a port, is local with off-normal
|
| 880 |
aperture, or distant with aperture partly below surface
|
| 881 |
--> choose direction from constructed cumulative distribution
|
| 882 |
function with Monte Carlo inversion using binary search. */
|
| 883 |
du = pmapRandom(emitState) * emap -> cdf;
|
| 884 |
lo = 1;
|
| 885 |
hi = emap -> numSamples;
|
| 886 |
|
| 887 |
while (hi > lo) {
|
| 888 |
i = (lo + hi) >> 1;
|
| 889 |
sample = emap -> samples + i - 1;
|
| 890 |
|
| 891 |
if (sample -> cdf >= du)
|
| 892 |
hi = i;
|
| 893 |
if (sample -> cdf < du)
|
| 894 |
lo = i + 1;
|
| 895 |
}
|
| 896 |
|
| 897 |
/* Finalise found sample */
|
| 898 |
i = (lo + hi) >> 1;
|
| 899 |
sample = emap -> samples + i - 1;
|
| 900 |
|
| 901 |
/* This is a uniform mapping, mon */
|
| 902 |
cosTheta = (1 -
|
| 903 |
(sample -> theta + pmapRandom(emitState)) *
|
| 904 |
(1 - emap -> cosThetaMax) / emap -> numTheta
|
| 905 |
);
|
| 906 |
sinTheta = sqrt(1 - sqr(cosTheta));
|
| 907 |
phi = 2 * PI * (sample -> phi + pmapRandom(emitState)) / emap -> numPhi;
|
| 908 |
copycolor(ray -> rcol, sample -> pdf);
|
| 909 |
}
|
| 910 |
|
| 911 |
/* Normalize photon flux so that average over RGB is 1 */
|
| 912 |
colorNorm(ray -> rcol);
|
| 913 |
|
| 914 |
VCOPY(ray -> rorg, emap -> photonOrg);
|
| 915 |
du = cos(phi) * sinTheta;
|
| 916 |
dv = sin(phi) * sinTheta;
|
| 917 |
|
| 918 |
for (i = 0; i < 3; i++)
|
| 919 |
ray -> rdir [i] = du * emap -> uh [i] + dv * emap -> vh [i] +
|
| 920 |
cosTheta * emap -> wh [i];
|
| 921 |
|
| 922 |
if (emap -> src -> sflags & SDISTANT)
|
| 923 |
/* Distant source; reverse ray direction to point into the scene. */
|
| 924 |
for (i = 0; i < 3; i++)
|
| 925 |
ray -> rdir [i] = -ray -> rdir [i];
|
| 926 |
|
| 927 |
if (emap -> port)
|
| 928 |
/* Photon emitted from port; move origin just behind port so it
|
| 929 |
will be scattered */
|
| 930 |
for (i = 0; i < 3; i++)
|
| 931 |
ray -> rorg [i] -= 2 * FTINY * ray -> rdir [i];
|
| 932 |
|
| 933 |
/* Assign emitting light source index */
|
| 934 |
ray -> rsrc = emap -> src - source;
|
| 935 |
}
|
| 936 |
|
| 937 |
|
| 938 |
|
| 939 |
/* SOURCE CONTRIBS FROM DIRECT / VOLUME PHOTONS -------------------------- */
|
| 940 |
|
| 941 |
|
| 942 |
|
| 943 |
void multDirectPmap (RAY *r)
|
| 944 |
/* Factor irradiance from direct photons into r -> rcol; interface to
|
| 945 |
* direct() */
|
| 946 |
{
|
| 947 |
COLOR photonIrrad;
|
| 948 |
|
| 949 |
/* Lookup direct photon irradiance */
|
| 950 |
(directPmap -> lookup)(directPmap, r, photonIrrad);
|
| 951 |
|
| 952 |
/* Multiply with coefficient in ray */
|
| 953 |
multcolor(r -> rcol, photonIrrad);
|
| 954 |
|
| 955 |
return;
|
| 956 |
}
|
| 957 |
|
| 958 |
|
| 959 |
|
| 960 |
void inscatterVolumePmap (RAY *r, COLOR inscatter)
|
| 961 |
/* Add inscattering from volume photon map; interface to srcscatter() */
|
| 962 |
{
|
| 963 |
/* Add ambient in-scattering via lookup callback */
|
| 964 |
(volumePmap -> lookup)(volumePmap, r, inscatter);
|
| 965 |
}
|
| 966 |
|