| 1 | 
greg | 
2.1 | 
/*  | 
| 2 | 
  | 
  | 
   ================================================================== | 
| 3 | 
  | 
  | 
   Photon map support routines for emission from light sources | 
| 4 | 
  | 
  | 
 | 
| 5 | 
  | 
  | 
   Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) | 
| 6 | 
  | 
  | 
   (c) Fraunhofer Institute for Solar Energy Systems, | 
| 7 | 
rschregle | 
2.3 | 
   (c) Lucerne University of Applied Sciences and Arts, | 
| 8 | 
  | 
  | 
   supported by the Swiss National Science Foundation (SNSF, #147053) | 
| 9 | 
greg | 
2.1 | 
   ================================================================== | 
| 10 | 
  | 
  | 
    | 
| 11 | 
rschregle | 
2.3 | 
   $Id: pmapsrc.c,v 2.2 2015/04/21 19:16:51 greg Exp $ | 
| 12 | 
greg | 
2.1 | 
*/ | 
| 13 | 
  | 
  | 
 | 
| 14 | 
  | 
  | 
 | 
| 15 | 
  | 
  | 
 | 
| 16 | 
  | 
  | 
#include "pmapsrc.h" | 
| 17 | 
  | 
  | 
#include "pmap.h" | 
| 18 | 
  | 
  | 
#include "pmaprand.h" | 
| 19 | 
  | 
  | 
#include "otypes.h" | 
| 20 | 
  | 
  | 
 | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
SRCREC *photonPorts = NULL;             /* Photon port list */ | 
| 24 | 
  | 
  | 
unsigned numPhotonPorts = 0; | 
| 25 | 
  | 
  | 
 | 
| 26 | 
  | 
  | 
void (*photonPartition [NUMOTYPE]) (EmissionMap*); | 
| 27 | 
  | 
  | 
void (*photonOrigin [NUMOTYPE]) (EmissionMap*); | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
extern OBJECT ambset []; | 
| 30 | 
  | 
  | 
 | 
| 31 | 
  | 
  | 
    | 
| 32 | 
  | 
  | 
 | 
| 33 | 
  | 
  | 
static int flatPhotonPartition2 (EmissionMap* emap, unsigned long mp,  | 
| 34 | 
  | 
  | 
                                 FVECT cent, FVECT u, FVECT v,  | 
| 35 | 
  | 
  | 
                                 double du2, double dv2) | 
| 36 | 
  | 
  | 
/* Recursive part of flatPhotonPartition(..) */ | 
| 37 | 
  | 
  | 
{ | 
| 38 | 
  | 
  | 
   FVECT newct, newax; | 
| 39 | 
  | 
  | 
   unsigned long npl, npu; | 
| 40 | 
  | 
  | 
 | 
| 41 | 
  | 
  | 
   if (mp > emap -> maxPartitions) { | 
| 42 | 
  | 
  | 
      /* Enlarge partition array */ | 
| 43 | 
  | 
  | 
      emap -> maxPartitions <<= 1; | 
| 44 | 
  | 
  | 
      emap -> partitions = (unsigned char*)realloc(emap -> partitions,  | 
| 45 | 
  | 
  | 
                                           emap -> maxPartitions >> 1); | 
| 46 | 
  | 
  | 
 | 
| 47 | 
  | 
  | 
      if (!emap -> partitions)  | 
| 48 | 
  | 
  | 
         error(USER, "can't allocate source partitions"); | 
| 49 | 
  | 
  | 
 | 
| 50 | 
greg | 
2.2 | 
      memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, | 
| 51 | 
  | 
  | 
             emap -> maxPartitions >> 2); | 
| 52 | 
greg | 
2.1 | 
   } | 
| 53 | 
  | 
  | 
    | 
| 54 | 
  | 
  | 
   if (du2 * dv2 <= 1) {                /* hit limit? */ | 
| 55 | 
  | 
  | 
      setpart(emap -> partitions, emap -> partitionCnt, S0); | 
| 56 | 
  | 
  | 
      emap -> partitionCnt++; | 
| 57 | 
  | 
  | 
      return 1;       | 
| 58 | 
  | 
  | 
   } | 
| 59 | 
  | 
  | 
    | 
| 60 | 
  | 
  | 
   if (du2 > dv2) {                     /* subdivide in U */ | 
| 61 | 
  | 
  | 
      setpart(emap -> partitions, emap -> partitionCnt, SU); | 
| 62 | 
  | 
  | 
      emap -> partitionCnt++; | 
| 63 | 
  | 
  | 
      newax [0] = 0.5 * u [0]; | 
| 64 | 
  | 
  | 
      newax [1] = 0.5 * u [1]; | 
| 65 | 
  | 
  | 
      newax [2] = 0.5 * u [2]; | 
| 66 | 
  | 
  | 
      u = newax; | 
| 67 | 
  | 
  | 
      du2 *= 0.25; | 
| 68 | 
  | 
  | 
   }  | 
| 69 | 
  | 
  | 
    | 
| 70 | 
  | 
  | 
   else {                               /* subdivide in V */ | 
| 71 | 
  | 
  | 
      setpart(emap -> partitions, emap -> partitionCnt, SV); | 
| 72 | 
  | 
  | 
      emap -> partitionCnt++; | 
| 73 | 
  | 
  | 
      newax [0] = 0.5 * v [0]; | 
| 74 | 
  | 
  | 
      newax [1] = 0.5 * v [1]; | 
| 75 | 
  | 
  | 
      newax [2] = 0.5 * v [2]; | 
| 76 | 
  | 
  | 
      v = newax; | 
| 77 | 
  | 
  | 
      dv2 *= 0.25; | 
| 78 | 
  | 
  | 
   } | 
| 79 | 
  | 
  | 
    | 
| 80 | 
  | 
  | 
   /* lower half */ | 
| 81 | 
  | 
  | 
   newct [0] = cent [0] - newax [0]; | 
| 82 | 
  | 
  | 
   newct [1] = cent [1] - newax [1]; | 
| 83 | 
  | 
  | 
   newct [2] = cent [2] - newax [2]; | 
| 84 | 
  | 
  | 
   npl = flatPhotonPartition2(emap, mp << 1, newct, u, v, du2, dv2); | 
| 85 | 
  | 
  | 
    | 
| 86 | 
  | 
  | 
   /* upper half */ | 
| 87 | 
  | 
  | 
   newct [0] = cent [0] + newax [0]; | 
| 88 | 
  | 
  | 
   newct [1] = cent [1] + newax [1]; | 
| 89 | 
  | 
  | 
   newct [2] = cent [2] + newax [2]; | 
| 90 | 
  | 
  | 
   npu = flatPhotonPartition2(emap, mp << 1, newct, u, v, du2, dv2); | 
| 91 | 
  | 
  | 
    | 
| 92 | 
  | 
  | 
   /* return total */ | 
| 93 | 
  | 
  | 
   return npl + npu; | 
| 94 | 
  | 
  | 
} | 
| 95 | 
  | 
  | 
 | 
| 96 | 
  | 
  | 
 | 
| 97 | 
  | 
  | 
 | 
| 98 | 
  | 
  | 
static void flatPhotonPartition (EmissionMap* emap) | 
| 99 | 
  | 
  | 
/* Partition flat source for photon emission */ | 
| 100 | 
  | 
  | 
{ | 
| 101 | 
  | 
  | 
   RREAL    *vp; | 
| 102 | 
  | 
  | 
   double   du2, dv2; | 
| 103 | 
  | 
  | 
 | 
| 104 | 
greg | 
2.2 | 
   memset(emap -> partitions, 0, emap -> maxPartitions >> 1); | 
| 105 | 
greg | 
2.1 | 
   emap -> partArea = srcsizerat * thescene.cusize; | 
| 106 | 
  | 
  | 
   emap -> partArea *= emap -> partArea; | 
| 107 | 
  | 
  | 
   vp = emap -> src -> ss [SU]; | 
| 108 | 
  | 
  | 
   du2 = DOT(vp, vp) / emap -> partArea; | 
| 109 | 
  | 
  | 
   vp = emap -> src -> ss [SV]; | 
| 110 | 
  | 
  | 
   dv2 = DOT(vp, vp) / emap -> partArea; | 
| 111 | 
  | 
  | 
   emap -> partitionCnt = 0; | 
| 112 | 
  | 
  | 
   emap -> numPartitions = flatPhotonPartition2(emap, 1, emap -> src -> sloc,  | 
| 113 | 
  | 
  | 
                                                emap -> src -> ss [SU],  | 
| 114 | 
  | 
  | 
                                                emap -> src -> ss [SV],  | 
| 115 | 
  | 
  | 
                                                du2, dv2); | 
| 116 | 
  | 
  | 
   emap -> partitionCnt = 0; | 
| 117 | 
  | 
  | 
   emap -> partArea = emap -> src -> ss2 / emap -> numPartitions; | 
| 118 | 
  | 
  | 
} | 
| 119 | 
  | 
  | 
 | 
| 120 | 
  | 
  | 
 | 
| 121 | 
  | 
  | 
 | 
| 122 | 
  | 
  | 
static void sourcePhotonPartition (EmissionMap* emap) | 
| 123 | 
  | 
  | 
/* Partition scene cube faces or photon port for photon emission from  | 
| 124 | 
  | 
  | 
   distant source */ | 
| 125 | 
  | 
  | 
{    | 
| 126 | 
  | 
  | 
   if (emap -> port) { | 
| 127 | 
  | 
  | 
      /* Partition photon port */ | 
| 128 | 
  | 
  | 
      SRCREC *src = emap -> src; | 
| 129 | 
  | 
  | 
      emap -> src = emap -> port; | 
| 130 | 
  | 
  | 
      photonPartition [emap -> src -> so -> otype] (emap); | 
| 131 | 
  | 
  | 
      emap -> src = src; | 
| 132 | 
  | 
  | 
   } | 
| 133 | 
  | 
  | 
    | 
| 134 | 
  | 
  | 
   else { | 
| 135 | 
  | 
  | 
      /* No photon ports defined, so partition scene cube faces */ | 
| 136 | 
greg | 
2.2 | 
      memset(emap -> partitions, 0, emap -> maxPartitions >> 1); | 
| 137 | 
greg | 
2.1 | 
      setpart(emap -> partitions, 0, S0); | 
| 138 | 
  | 
  | 
      emap -> partitionCnt = 0; | 
| 139 | 
  | 
  | 
      emap -> numPartitions = 1 / srcsizerat; | 
| 140 | 
  | 
  | 
      emap -> numPartitions *= emap -> numPartitions; | 
| 141 | 
  | 
  | 
      emap -> partArea = sqr(thescene.cusize) / emap -> numPartitions; | 
| 142 | 
  | 
  | 
      emap -> numPartitions *= 6;   | 
| 143 | 
  | 
  | 
   } | 
| 144 | 
  | 
  | 
} | 
| 145 | 
  | 
  | 
 | 
| 146 | 
  | 
  | 
 | 
| 147 | 
  | 
  | 
 | 
| 148 | 
  | 
  | 
static void spherePhotonPartition (EmissionMap* emap) | 
| 149 | 
  | 
  | 
/* Partition spherical source into equal solid angles using uniform | 
| 150 | 
  | 
  | 
   mapping for photon emission */ | 
| 151 | 
  | 
  | 
{ | 
| 152 | 
  | 
  | 
   unsigned numTheta, numPhi; | 
| 153 | 
  | 
  | 
    | 
| 154 | 
greg | 
2.2 | 
   memset(emap -> partitions, 0, emap -> maxPartitions >> 1); | 
| 155 | 
greg | 
2.1 | 
   setpart(emap -> partitions, 0, S0); | 
| 156 | 
  | 
  | 
   emap -> partArea = 4 * PI * sqr(emap -> src -> srad); | 
| 157 | 
  | 
  | 
   emap -> numPartitions = emap -> partArea /  | 
| 158 | 
  | 
  | 
                           sqr(srcsizerat * thescene.cusize); | 
| 159 | 
  | 
  | 
 | 
| 160 | 
  | 
  | 
   numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); | 
| 161 | 
  | 
  | 
   numPhi = 0.5 * PI * numTheta + 0.5; | 
| 162 | 
  | 
  | 
    | 
| 163 | 
  | 
  | 
   emap -> numPartitions = (unsigned long)numTheta * numPhi; | 
| 164 | 
  | 
  | 
   emap -> partitionCnt = 0; | 
| 165 | 
  | 
  | 
   emap -> partArea /= emap -> numPartitions; | 
| 166 | 
  | 
  | 
} | 
| 167 | 
  | 
  | 
 | 
| 168 | 
  | 
  | 
 | 
| 169 | 
  | 
  | 
 | 
| 170 | 
  | 
  | 
static int cylPhotonPartition2 (EmissionMap* emap, unsigned long mp,  | 
| 171 | 
  | 
  | 
                                FVECT cent, FVECT axis, double d2) | 
| 172 | 
  | 
  | 
/* Recursive part of cyPhotonPartition(..) */ | 
| 173 | 
  | 
  | 
{ | 
| 174 | 
  | 
  | 
   FVECT newct, newax; | 
| 175 | 
  | 
  | 
   unsigned long npl, npu; | 
| 176 | 
  | 
  | 
 | 
| 177 | 
  | 
  | 
   if (mp > emap -> maxPartitions) { | 
| 178 | 
  | 
  | 
      /* Enlarge partition array */ | 
| 179 | 
  | 
  | 
      emap -> maxPartitions <<= 1; | 
| 180 | 
  | 
  | 
      emap -> partitions = (unsigned char*)realloc(emap -> partitions, | 
| 181 | 
  | 
  | 
                                                   emap -> maxPartitions >> 1); | 
| 182 | 
  | 
  | 
      if (!emap -> partitions)  | 
| 183 | 
  | 
  | 
         error(USER, "can't allocate source partitions"); | 
| 184 | 
greg | 
2.2 | 
          | 
| 185 | 
  | 
  | 
      memset(emap -> partitions + (emap -> maxPartitions >> 2), 0, | 
| 186 | 
greg | 
2.1 | 
            emap -> maxPartitions >> 2); | 
| 187 | 
  | 
  | 
   } | 
| 188 | 
  | 
  | 
    | 
| 189 | 
  | 
  | 
   if (d2 <= 1) { | 
| 190 | 
  | 
  | 
      /* hit limit? */ | 
| 191 | 
  | 
  | 
      setpart(emap -> partitions, emap -> partitionCnt, S0); | 
| 192 | 
  | 
  | 
      emap -> partitionCnt++; | 
| 193 | 
  | 
  | 
      return 1; | 
| 194 | 
  | 
  | 
   } | 
| 195 | 
  | 
  | 
    | 
| 196 | 
  | 
  | 
   /* subdivide */ | 
| 197 | 
  | 
  | 
   setpart(emap -> partitions, emap -> partitionCnt, SU); | 
| 198 | 
  | 
  | 
   emap -> partitionCnt++; | 
| 199 | 
  | 
  | 
   newax [0] = 0.5 * axis [0]; | 
| 200 | 
  | 
  | 
   newax [1] = 0.5 * axis [1]; | 
| 201 | 
  | 
  | 
   newax [2] = 0.5 * axis [2]; | 
| 202 | 
  | 
  | 
   d2 *= 0.25; | 
| 203 | 
  | 
  | 
    | 
| 204 | 
  | 
  | 
   /* lower half */ | 
| 205 | 
  | 
  | 
   newct [0] = cent [0] - newax [0]; | 
| 206 | 
  | 
  | 
   newct [1] = cent [1] - newax [1]; | 
| 207 | 
  | 
  | 
   newct [2] = cent [2] - newax [2]; | 
| 208 | 
  | 
  | 
   npl = cylPhotonPartition2(emap, mp << 1, newct, newax, d2); | 
| 209 | 
  | 
  | 
    | 
| 210 | 
  | 
  | 
   /* upper half */ | 
| 211 | 
  | 
  | 
   newct [0] = cent [0] + newax [0]; | 
| 212 | 
  | 
  | 
   newct [1] = cent [1] + newax [1]; | 
| 213 | 
  | 
  | 
   newct [2] = cent [2] + newax [2]; | 
| 214 | 
  | 
  | 
   npu = cylPhotonPartition2(emap, mp << 1, newct, newax, d2); | 
| 215 | 
  | 
  | 
    | 
| 216 | 
  | 
  | 
   /* return total */ | 
| 217 | 
  | 
  | 
   return npl + npu; | 
| 218 | 
  | 
  | 
} | 
| 219 | 
  | 
  | 
 | 
| 220 | 
  | 
  | 
 | 
| 221 | 
  | 
  | 
 | 
| 222 | 
  | 
  | 
static void cylPhotonPartition (EmissionMap* emap) | 
| 223 | 
  | 
  | 
/* Partition cylindrical source for photon emission */ | 
| 224 | 
  | 
  | 
{ | 
| 225 | 
  | 
  | 
   double d2; | 
| 226 | 
  | 
  | 
 | 
| 227 | 
greg | 
2.2 | 
   memset(emap -> partitions, 0, emap -> maxPartitions >> 1); | 
| 228 | 
greg | 
2.1 | 
   d2 = srcsizerat * thescene.cusize; | 
| 229 | 
  | 
  | 
   d2 = PI * emap -> src -> ss2 / (2 * emap -> src -> srad * sqr(d2)); | 
| 230 | 
  | 
  | 
   d2 *= d2 * DOT(emap -> src -> ss [SU], emap -> src -> ss [SU]); | 
| 231 | 
  | 
  | 
 | 
| 232 | 
  | 
  | 
   emap -> partitionCnt = 0; | 
| 233 | 
  | 
  | 
   emap -> numPartitions = cylPhotonPartition2(emap, 1, emap -> src -> sloc,  | 
| 234 | 
  | 
  | 
                                               emap -> src -> ss [SU], d2); | 
| 235 | 
  | 
  | 
   emap -> partitionCnt = 0; | 
| 236 | 
  | 
  | 
   emap -> partArea = PI * emap -> src -> ss2 / emap -> numPartitions; | 
| 237 | 
  | 
  | 
} | 
| 238 | 
  | 
  | 
 | 
| 239 | 
  | 
  | 
 | 
| 240 | 
  | 
  | 
 | 
| 241 | 
  | 
  | 
static void flatPhotonOrigin (EmissionMap* emap) | 
| 242 | 
  | 
  | 
/* Init emission map with photon origin and associated surface axes on  | 
| 243 | 
  | 
  | 
   flat light source surface. Also sets source aperture and sampling | 
| 244 | 
  | 
  | 
   hemisphere axes at origin */ | 
| 245 | 
  | 
  | 
{ | 
| 246 | 
  | 
  | 
   int i, cent[3], size[3], parr[2]; | 
| 247 | 
  | 
  | 
   FVECT vpos; | 
| 248 | 
  | 
  | 
 | 
| 249 | 
  | 
  | 
   cent [0] = cent [1] = cent [2] = 0; | 
| 250 | 
  | 
  | 
   size [0] = size [1] = size [2] = emap -> maxPartitions; | 
| 251 | 
  | 
  | 
   parr [0] = 0;  | 
| 252 | 
  | 
  | 
   parr [1] = emap -> partitionCnt; | 
| 253 | 
  | 
  | 
    | 
| 254 | 
  | 
  | 
   if (!skipparts(cent, size, parr, emap -> partitions)) | 
| 255 | 
  | 
  | 
      error(CONSISTENCY, "bad source partition in flatPhotonOrigin"); | 
| 256 | 
  | 
  | 
       | 
| 257 | 
  | 
  | 
   vpos [0] = (1 - 2 * pmapRandom(partState)) * size [0] /  | 
| 258 | 
  | 
  | 
              emap -> maxPartitions; | 
| 259 | 
  | 
  | 
   vpos [1] = (1 - 2 * pmapRandom(partState)) * size [1] /  | 
| 260 | 
  | 
  | 
              emap -> maxPartitions; | 
| 261 | 
  | 
  | 
   vpos [2] = 0; | 
| 262 | 
  | 
  | 
    | 
| 263 | 
  | 
  | 
   for (i = 0; i < 3; i++)  | 
| 264 | 
  | 
  | 
      vpos [i] += (double)cent [i] / emap -> maxPartitions; | 
| 265 | 
  | 
  | 
       | 
| 266 | 
  | 
  | 
   /* Get origin */ | 
| 267 | 
  | 
  | 
   for (i = 0; i < 3; i++)  | 
| 268 | 
  | 
  | 
      emap -> photonOrg [i] = emap -> src -> sloc [i] +  | 
| 269 | 
  | 
  | 
                              vpos [SU] * emap -> src -> ss [SU][i] +  | 
| 270 | 
  | 
  | 
                              vpos [SV] * emap -> src -> ss [SV][i] +  | 
| 271 | 
  | 
  | 
                              vpos [SW] * emap -> src -> ss [SW][i]; | 
| 272 | 
  | 
  | 
                               | 
| 273 | 
  | 
  | 
   /* Get surface axes */ | 
| 274 | 
  | 
  | 
   VCOPY(emap -> us, emap -> src -> ss [SU]); | 
| 275 | 
  | 
  | 
   normalize(emap -> us); | 
| 276 | 
  | 
  | 
   VCOPY(emap -> ws, emap -> src -> ss [SW]); | 
| 277 | 
  | 
  | 
 | 
| 278 | 
  | 
  | 
   if (emap -> port)  | 
| 279 | 
  | 
  | 
      /* Acts as a photon port; reverse normal as it points INSIDE per | 
| 280 | 
  | 
  | 
       * mkillum convention */ | 
| 281 | 
  | 
  | 
      for (i = 0; i < 3; i++) | 
| 282 | 
  | 
  | 
         emap -> ws [i] = -emap -> ws [i]; | 
| 283 | 
  | 
  | 
          | 
| 284 | 
  | 
  | 
   fcross(emap -> vs, emap -> ws, emap -> us); | 
| 285 | 
  | 
  | 
    | 
| 286 | 
  | 
  | 
   /* Get hemisphere axes & aperture */ | 
| 287 | 
  | 
  | 
   if (emap -> src -> sflags & SSPOT) { | 
| 288 | 
  | 
  | 
      VCOPY(emap -> wh, emap -> src -> sl.s -> aim); | 
| 289 | 
  | 
  | 
      i = 0; | 
| 290 | 
  | 
  | 
       | 
| 291 | 
  | 
  | 
      do { | 
| 292 | 
  | 
  | 
         emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; | 
| 293 | 
  | 
  | 
         emap -> vh [i++] = 1; | 
| 294 | 
  | 
  | 
         fcross(emap -> uh, emap -> vh, emap -> wh); | 
| 295 | 
  | 
  | 
      } while (normalize(emap -> uh) < FTINY); | 
| 296 | 
  | 
  | 
       | 
| 297 | 
  | 
  | 
      fcross(emap -> vh, emap -> wh, emap -> uh); | 
| 298 | 
  | 
  | 
      emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI); | 
| 299 | 
  | 
  | 
   } | 
| 300 | 
  | 
  | 
    | 
| 301 | 
  | 
  | 
   else { | 
| 302 | 
  | 
  | 
      VCOPY(emap -> uh, emap -> us); | 
| 303 | 
  | 
  | 
      VCOPY(emap -> vh, emap -> vs); | 
| 304 | 
  | 
  | 
      VCOPY(emap -> wh, emap -> ws); | 
| 305 | 
  | 
  | 
      emap -> cosThetaMax = 0; | 
| 306 | 
  | 
  | 
   } | 
| 307 | 
  | 
  | 
} | 
| 308 | 
  | 
  | 
 | 
| 309 | 
  | 
  | 
 | 
| 310 | 
  | 
  | 
 | 
| 311 | 
  | 
  | 
static void spherePhotonOrigin (EmissionMap* emap) | 
| 312 | 
  | 
  | 
/* Init emission map with photon origin and associated surface axes on  | 
| 313 | 
  | 
  | 
   spherical light source. Also sets source aperture and sampling | 
| 314 | 
  | 
  | 
   hemisphere axes at origin */ | 
| 315 | 
  | 
  | 
{ | 
| 316 | 
  | 
  | 
   int i = 0; | 
| 317 | 
  | 
  | 
   unsigned numTheta, numPhi, t, p; | 
| 318 | 
  | 
  | 
   RREAL cosTheta, sinTheta, phi; | 
| 319 | 
  | 
  | 
 | 
| 320 | 
  | 
  | 
   /* Get current partition */ | 
| 321 | 
  | 
  | 
   numTheta = max(sqrt(2 * emap -> numPartitions / PI) + 0.5, 1); | 
| 322 | 
  | 
  | 
   numPhi = 0.5 * PI * numTheta + 0.5; | 
| 323 | 
  | 
  | 
 | 
| 324 | 
  | 
  | 
   t = emap -> partitionCnt / numPhi; | 
| 325 | 
  | 
  | 
   p = emap -> partitionCnt - t * numPhi; | 
| 326 | 
  | 
  | 
 | 
| 327 | 
  | 
  | 
   emap -> ws [2] = cosTheta = 1 - 2 * (t + pmapRandom(partState)) / numTheta; | 
| 328 | 
  | 
  | 
   sinTheta = sqrt(1 - sqr(cosTheta)); | 
| 329 | 
  | 
  | 
   phi = 2 * PI * (p + pmapRandom(partState)) / numPhi; | 
| 330 | 
  | 
  | 
   emap -> ws [0] = cos(phi) * sinTheta; | 
| 331 | 
  | 
  | 
   emap -> ws [1] = sin(phi) * sinTheta; | 
| 332 | 
  | 
  | 
 | 
| 333 | 
  | 
  | 
   if (emap -> port)  | 
| 334 | 
  | 
  | 
      /* Acts as a photon port; reverse normal as it points INSIDE per | 
| 335 | 
  | 
  | 
       * mkillum convention */ | 
| 336 | 
  | 
  | 
      for (i = 0; i < 3; i++) | 
| 337 | 
  | 
  | 
         emap -> ws [i] = -emap -> ws [i];    | 
| 338 | 
  | 
  | 
 | 
| 339 | 
  | 
  | 
   /* Get surface axes us & vs perpendicular to ws */ | 
| 340 | 
  | 
  | 
   do { | 
| 341 | 
  | 
  | 
      emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0; | 
| 342 | 
  | 
  | 
      emap -> vs [i++] = 1; | 
| 343 | 
  | 
  | 
      fcross(emap -> us, emap -> vs, emap -> ws); | 
| 344 | 
  | 
  | 
   } while (normalize(emap -> us) < FTINY); | 
| 345 | 
  | 
  | 
 | 
| 346 | 
  | 
  | 
   fcross(emap -> vs, emap -> ws, emap -> us); | 
| 347 | 
  | 
  | 
    | 
| 348 | 
  | 
  | 
   /* Get origin */ | 
| 349 | 
  | 
  | 
   for (i = 0; i < 3; i++) | 
| 350 | 
  | 
  | 
      emap -> photonOrg [i] = emap -> src -> sloc [i] +  | 
| 351 | 
  | 
  | 
                              emap -> src -> srad * emap -> ws [i]; | 
| 352 | 
  | 
  | 
                               | 
| 353 | 
  | 
  | 
   /* Get hemisphere axes & aperture */ | 
| 354 | 
  | 
  | 
   if (emap -> src -> sflags & SSPOT) { | 
| 355 | 
  | 
  | 
      VCOPY(emap -> wh, emap -> src -> sl.s -> aim); | 
| 356 | 
  | 
  | 
      i = 0; | 
| 357 | 
  | 
  | 
 | 
| 358 | 
  | 
  | 
      do { | 
| 359 | 
  | 
  | 
         emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; | 
| 360 | 
  | 
  | 
         emap -> vh [i++] = 1; | 
| 361 | 
  | 
  | 
         fcross(emap -> uh, emap -> vh, emap -> wh); | 
| 362 | 
  | 
  | 
      } while (normalize(emap -> uh) < FTINY); | 
| 363 | 
  | 
  | 
 | 
| 364 | 
  | 
  | 
      fcross(emap -> vh, emap -> wh, emap -> uh); | 
| 365 | 
  | 
  | 
      emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI); | 
| 366 | 
  | 
  | 
   } | 
| 367 | 
  | 
  | 
 | 
| 368 | 
  | 
  | 
   else { | 
| 369 | 
  | 
  | 
      VCOPY(emap -> uh, emap -> us); | 
| 370 | 
  | 
  | 
      VCOPY(emap -> vh, emap -> vs); | 
| 371 | 
  | 
  | 
      VCOPY(emap -> wh, emap -> ws); | 
| 372 | 
  | 
  | 
      emap -> cosThetaMax = 0; | 
| 373 | 
  | 
  | 
   } | 
| 374 | 
  | 
  | 
} | 
| 375 | 
  | 
  | 
 | 
| 376 | 
  | 
  | 
 | 
| 377 | 
  | 
  | 
 | 
| 378 | 
  | 
  | 
static void sourcePhotonOrigin (EmissionMap* emap) | 
| 379 | 
  | 
  | 
/* Init emission map with photon origin and associated surface axes  | 
| 380 | 
  | 
  | 
   on scene cube face for distant light source. Also sets source  | 
| 381 | 
  | 
  | 
   aperture (solid angle) and sampling hemisphere axes at origin */ | 
| 382 | 
  | 
  | 
{   | 
| 383 | 
  | 
  | 
   unsigned long i, partsPerDim, partsPerFace; | 
| 384 | 
  | 
  | 
   unsigned face; | 
| 385 | 
  | 
  | 
   RREAL du, dv;                             | 
| 386 | 
  | 
  | 
       | 
| 387 | 
  | 
  | 
   if (emap -> port) { | 
| 388 | 
  | 
  | 
      /* Get origin on photon port */ | 
| 389 | 
  | 
  | 
      SRCREC *src = emap -> src; | 
| 390 | 
  | 
  | 
      emap -> src = emap -> port; | 
| 391 | 
  | 
  | 
      photonOrigin [emap -> src -> so -> otype] (emap); | 
| 392 | 
  | 
  | 
      emap -> src = src; | 
| 393 | 
  | 
  | 
   } | 
| 394 | 
  | 
  | 
    | 
| 395 | 
  | 
  | 
   else { | 
| 396 | 
  | 
  | 
      /* No ports defined, so get origin on scene cube face and SUFFA! */ | 
| 397 | 
  | 
  | 
      /* Get current face from partition number */ | 
| 398 | 
  | 
  | 
      partsPerDim = 1 / srcsizerat; | 
| 399 | 
  | 
  | 
      partsPerFace = sqr(partsPerDim); | 
| 400 | 
  | 
  | 
      face = emap -> partitionCnt / partsPerFace; | 
| 401 | 
  | 
  | 
 | 
| 402 | 
  | 
  | 
      if (!(emap -> partitionCnt % partsPerFace)) { | 
| 403 | 
  | 
  | 
         /* Skipped to a new face; get its normal */ | 
| 404 | 
  | 
  | 
         emap -> ws [0] = emap -> ws [1] = emap -> ws [2] = 0; | 
| 405 | 
  | 
  | 
         emap -> ws [face >> 1] = face & 1 ? 1 : -1; | 
| 406 | 
  | 
  | 
          | 
| 407 | 
  | 
  | 
         /* Get surface axes us & vs perpendicular to ws */ | 
| 408 | 
  | 
  | 
         face >>= 1; | 
| 409 | 
  | 
  | 
         emap -> vs [0] = emap -> vs [1] = emap -> vs [2] = 0; | 
| 410 | 
  | 
  | 
         emap -> vs [(face + (emap -> ws [face] > 0 ? 2 : 1)) % 3] = 1; | 
| 411 | 
  | 
  | 
         fcross(emap -> us, emap -> vs, emap -> ws); | 
| 412 | 
  | 
  | 
      } | 
| 413 | 
  | 
  | 
       | 
| 414 | 
  | 
  | 
      /* Get jittered offsets within face from partition number  | 
| 415 | 
  | 
  | 
         (in range [-0.5, 0.5]) */ | 
| 416 | 
  | 
  | 
      i = emap -> partitionCnt % partsPerFace; | 
| 417 | 
  | 
  | 
      du = (i / partsPerDim + pmapRandom(partState)) / partsPerDim - 0.5; | 
| 418 | 
  | 
  | 
      dv = (i % partsPerDim + pmapRandom(partState)) / partsPerDim - 0.5; | 
| 419 | 
  | 
  | 
 | 
| 420 | 
  | 
  | 
      /* Jittered destination point within partition */ | 
| 421 | 
  | 
  | 
      for (i = 0; i < 3; i++) | 
| 422 | 
  | 
  | 
         emap -> photonOrg [i] = thescene.cuorg [i] +  | 
| 423 | 
  | 
  | 
                                 thescene.cusize * (0.5 + du * emap -> us [i] + | 
| 424 | 
  | 
  | 
                                                    dv * emap -> vs [i] + | 
| 425 | 
  | 
  | 
                                                    0.5 * emap -> ws [i]); | 
| 426 | 
  | 
  | 
   } | 
| 427 | 
  | 
  | 
    | 
| 428 | 
  | 
  | 
   /* Get hemisphere axes & aperture */ | 
| 429 | 
  | 
  | 
   VCOPY(emap -> wh, emap -> src -> sloc); | 
| 430 | 
  | 
  | 
   i = 0; | 
| 431 | 
  | 
  | 
    | 
| 432 | 
  | 
  | 
   do { | 
| 433 | 
  | 
  | 
      emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; | 
| 434 | 
  | 
  | 
      emap -> vh [i++] = 1; | 
| 435 | 
  | 
  | 
      fcross(emap -> uh, emap -> vh, emap -> wh); | 
| 436 | 
  | 
  | 
   } while (normalize(emap -> uh) < FTINY); | 
| 437 | 
  | 
  | 
    | 
| 438 | 
  | 
  | 
   fcross(emap -> vh, emap -> wh, emap -> uh); | 
| 439 | 
  | 
  | 
    | 
| 440 | 
  | 
  | 
   /* Get aperture */ | 
| 441 | 
  | 
  | 
   emap -> cosThetaMax = 1 - emap -> src -> ss2 / (2 * PI); | 
| 442 | 
  | 
  | 
   emap -> cosThetaMax = min(1, max(-1, emap -> cosThetaMax)); | 
| 443 | 
  | 
  | 
} | 
| 444 | 
  | 
  | 
 | 
| 445 | 
  | 
  | 
 | 
| 446 | 
  | 
  | 
 | 
| 447 | 
  | 
  | 
static void cylPhotonOrigin (EmissionMap* emap) | 
| 448 | 
  | 
  | 
/* Init emission map with photon origin and associated surface axes  | 
| 449 | 
  | 
  | 
   on cylindrical light source surface. Also sets source aperture  | 
| 450 | 
  | 
  | 
   and sampling hemisphere axes at origin */ | 
| 451 | 
  | 
  | 
{ | 
| 452 | 
  | 
  | 
   int i, cent[3], size[3], parr[2]; | 
| 453 | 
  | 
  | 
   FVECT v; | 
| 454 | 
  | 
  | 
 | 
| 455 | 
  | 
  | 
   cent [0] = cent [1] = cent [2] = 0; | 
| 456 | 
  | 
  | 
   size [0] = size [1] = size [2] = emap -> maxPartitions; | 
| 457 | 
  | 
  | 
   parr [0] = 0;  | 
| 458 | 
  | 
  | 
   parr [1] = emap -> partitionCnt; | 
| 459 | 
  | 
  | 
 | 
| 460 | 
  | 
  | 
   if (!skipparts(cent, size, parr, emap -> partitions)) | 
| 461 | 
  | 
  | 
      error(CONSISTENCY, "bad source partition in cylPhotonOrigin"); | 
| 462 | 
  | 
  | 
 | 
| 463 | 
  | 
  | 
   v [SU] = 0; | 
| 464 | 
  | 
  | 
   v [SV] = (1 - 2 * pmapRandom(partState)) * (double)size [1] /  | 
| 465 | 
  | 
  | 
            emap -> maxPartitions; | 
| 466 | 
  | 
  | 
   v [SW] = (1 - 2 * pmapRandom(partState)) * (double)size [2] /  | 
| 467 | 
  | 
  | 
            emap -> maxPartitions; | 
| 468 | 
  | 
  | 
   normalize(v); | 
| 469 | 
  | 
  | 
   v [SU] = (1 - 2 * pmapRandom(partState)) * (double)size [1] /  | 
| 470 | 
  | 
  | 
            emap -> maxPartitions;  | 
| 471 | 
  | 
  | 
 | 
| 472 | 
  | 
  | 
   for (i = 0; i < 3; i++)  | 
| 473 | 
  | 
  | 
      v [i] += (double)cent [i] / emap -> maxPartitions; | 
| 474 | 
  | 
  | 
 | 
| 475 | 
  | 
  | 
   /* Get surface axes */ | 
| 476 | 
  | 
  | 
   for (i = 0; i < 3; i++)  | 
| 477 | 
  | 
  | 
      emap -> photonOrg [i] = emap -> ws [i] =  | 
| 478 | 
  | 
  | 
                              (v [SV] * emap -> src -> ss [SV][i] +  | 
| 479 | 
  | 
  | 
                               v [SW] * emap -> src -> ss [SW][i]) / 0.8559; | 
| 480 | 
  | 
  | 
 | 
| 481 | 
  | 
  | 
   if (emap -> port)  | 
| 482 | 
  | 
  | 
      /* Acts as a photon port; reverse normal as it points INSIDE per | 
| 483 | 
  | 
  | 
       * mkillum convention */ | 
| 484 | 
  | 
  | 
      for (i = 0; i < 3; i++) | 
| 485 | 
  | 
  | 
         emap -> ws [i] = -emap -> ws [i]; | 
| 486 | 
  | 
  | 
 | 
| 487 | 
  | 
  | 
   normalize(emap -> ws); | 
| 488 | 
  | 
  | 
   VCOPY(emap -> us, emap -> src -> ss [SU]); | 
| 489 | 
  | 
  | 
   normalize(emap -> us); | 
| 490 | 
  | 
  | 
   fcross(emap -> vs, emap -> ws, emap -> us); | 
| 491 | 
  | 
  | 
 | 
| 492 | 
  | 
  | 
   /* Get origin */ | 
| 493 | 
  | 
  | 
   for (i = 0; i < 3; i++)  | 
| 494 | 
  | 
  | 
      emap -> photonOrg [i] += v [SU] * emap -> src -> ss [SU][i] +  | 
| 495 | 
  | 
  | 
                               emap -> src -> sloc [i]; | 
| 496 | 
  | 
  | 
 | 
| 497 | 
  | 
  | 
   /* Get hemisphere axes & aperture */ | 
| 498 | 
  | 
  | 
   if (emap -> src -> sflags & SSPOT) { | 
| 499 | 
  | 
  | 
      VCOPY(emap -> wh, emap -> src -> sl.s -> aim); | 
| 500 | 
  | 
  | 
      i = 0; | 
| 501 | 
  | 
  | 
 | 
| 502 | 
  | 
  | 
      do { | 
| 503 | 
  | 
  | 
         emap -> vh [0] = emap -> vh [1] = emap -> vh [2] = 0; | 
| 504 | 
  | 
  | 
         emap -> vh [i++] = 1; | 
| 505 | 
  | 
  | 
         fcross(emap -> uh, emap -> vh, emap -> wh); | 
| 506 | 
  | 
  | 
      } while (normalize(emap -> uh) < FTINY); | 
| 507 | 
  | 
  | 
 | 
| 508 | 
  | 
  | 
      fcross(emap -> vh, emap -> wh, emap -> uh); | 
| 509 | 
  | 
  | 
      emap -> cosThetaMax = 1 - emap -> src -> sl.s -> siz / (2 * PI); | 
| 510 | 
  | 
  | 
   } | 
| 511 | 
  | 
  | 
 | 
| 512 | 
  | 
  | 
   else { | 
| 513 | 
  | 
  | 
      VCOPY(emap -> uh, emap -> us); | 
| 514 | 
  | 
  | 
      VCOPY(emap -> vh, emap -> vs); | 
| 515 | 
  | 
  | 
      VCOPY(emap -> wh, emap -> ws); | 
| 516 | 
  | 
  | 
      emap -> cosThetaMax = 0; | 
| 517 | 
  | 
  | 
   } | 
| 518 | 
  | 
  | 
} | 
| 519 | 
  | 
  | 
 | 
| 520 | 
  | 
  | 
 | 
| 521 | 
  | 
  | 
 | 
| 522 | 
  | 
  | 
void getPhotonPorts () | 
| 523 | 
  | 
  | 
/* Find geometry declared as photon ports */ | 
| 524 | 
  | 
  | 
{ | 
| 525 | 
  | 
  | 
   OBJECT i; | 
| 526 | 
  | 
  | 
   OBJREC* obj; | 
| 527 | 
  | 
  | 
    | 
| 528 | 
  | 
  | 
   /* Check for missing port modifiers */ | 
| 529 | 
  | 
  | 
   if (!ambset [0]) | 
| 530 | 
  | 
  | 
      error(USER, "no photon ports found"); | 
| 531 | 
  | 
  | 
    | 
| 532 | 
  | 
  | 
   for (i = 0; i < nobjects; i++) { | 
| 533 | 
  | 
  | 
      obj = objptr(i); | 
| 534 | 
  | 
  | 
       | 
| 535 | 
  | 
  | 
      if (inset(ambset, obj -> omod)) { | 
| 536 | 
  | 
  | 
         /* Add photon port */ | 
| 537 | 
  | 
  | 
         photonPorts = (SRCREC*)realloc(photonPorts,  | 
| 538 | 
  | 
  | 
                                        (numPhotonPorts + 1) *  | 
| 539 | 
  | 
  | 
                                        sizeof(SRCREC)); | 
| 540 | 
  | 
  | 
         if (!photonPorts)  | 
| 541 | 
  | 
  | 
            error(USER, "can't allocate photon ports"); | 
| 542 | 
  | 
  | 
             | 
| 543 | 
  | 
  | 
         photonPorts [numPhotonPorts].so = obj; | 
| 544 | 
  | 
  | 
         photonPorts [numPhotonPorts].sflags = 0; | 
| 545 | 
  | 
  | 
          | 
| 546 | 
  | 
  | 
         if (!sfun [obj -> otype].of || !sfun[obj -> otype].of -> setsrc) | 
| 547 | 
  | 
  | 
            objerror(obj, USER, "illegal photon port"); | 
| 548 | 
  | 
  | 
             | 
| 549 | 
  | 
  | 
         setsource(photonPorts + numPhotonPorts, obj); | 
| 550 | 
  | 
  | 
         numPhotonPorts++; | 
| 551 | 
  | 
  | 
      } | 
| 552 | 
  | 
  | 
   } | 
| 553 | 
  | 
  | 
} | 
| 554 | 
  | 
  | 
 | 
| 555 | 
  | 
  | 
 | 
| 556 | 
  | 
  | 
 | 
| 557 | 
  | 
  | 
static void defaultEmissionFunc (EmissionMap* emap) | 
| 558 | 
  | 
  | 
/* Default behaviour when no emission funcs defined for this source type */ | 
| 559 | 
  | 
  | 
{ | 
| 560 | 
  | 
  | 
   objerror(emap -> src -> so, INTERNAL,  | 
| 561 | 
  | 
  | 
            "undefined photon emission function"); | 
| 562 | 
  | 
  | 
} | 
| 563 | 
  | 
  | 
 | 
| 564 | 
  | 
  | 
 | 
| 565 | 
  | 
  | 
 | 
| 566 | 
  | 
  | 
void initPhotonEmissionFuncs () | 
| 567 | 
  | 
  | 
/* Init photonPartition[] and photonOrigin[] dispatch tables */ | 
| 568 | 
  | 
  | 
{ | 
| 569 | 
  | 
  | 
   int i; | 
| 570 | 
  | 
  | 
    | 
| 571 | 
  | 
  | 
   for (i = 0; i < NUMOTYPE; i++)  | 
| 572 | 
  | 
  | 
      photonPartition [i] = photonOrigin [i] = defaultEmissionFunc; | 
| 573 | 
  | 
  | 
    | 
| 574 | 
  | 
  | 
   photonPartition [OBJ_FACE] = photonPartition [OBJ_RING] = flatPhotonPartition; | 
| 575 | 
  | 
  | 
   photonPartition [OBJ_SOURCE] = sourcePhotonPartition; | 
| 576 | 
  | 
  | 
   photonPartition [OBJ_SPHERE] = spherePhotonPartition; | 
| 577 | 
  | 
  | 
   photonPartition [OBJ_CYLINDER] = cylPhotonPartition; | 
| 578 | 
  | 
  | 
   photonOrigin [OBJ_FACE] = photonOrigin [OBJ_RING] = flatPhotonOrigin; | 
| 579 | 
  | 
  | 
   photonOrigin [OBJ_SOURCE] = sourcePhotonOrigin; | 
| 580 | 
  | 
  | 
   photonOrigin [OBJ_SPHERE] = spherePhotonOrigin; | 
| 581 | 
  | 
  | 
   photonOrigin [OBJ_CYLINDER] = cylPhotonOrigin; | 
| 582 | 
  | 
  | 
}       | 
| 583 | 
  | 
  | 
 | 
| 584 | 
  | 
  | 
 | 
| 585 | 
  | 
  | 
 | 
| 586 | 
  | 
  | 
void initPhotonEmission (EmissionMap *emap, float numPdfSamples) | 
| 587 | 
  | 
  | 
/* Initialize photon emission from partitioned light source emap -> src; | 
| 588 | 
  | 
  | 
 * this involves integrating the flux emitted from the current photon | 
| 589 | 
  | 
  | 
 * origin emap -> photonOrg and setting up a PDF to sample the emission | 
| 590 | 
  | 
  | 
 * distribution with numPdfSamples samples */ | 
| 591 | 
  | 
  | 
{ | 
| 592 | 
  | 
  | 
   unsigned i, t, p; | 
| 593 | 
  | 
  | 
   double phi, cosTheta, sinTheta, du, dv, dOmega, thetaScale; | 
| 594 | 
  | 
  | 
   EmissionSample* sample; | 
| 595 | 
  | 
  | 
   const OBJREC* mod =  objptr(emap -> src -> so -> omod); | 
| 596 | 
  | 
  | 
   static RAY r; | 
| 597 | 
  | 
  | 
#if 0    | 
| 598 | 
  | 
  | 
   static double lastCosNorm = FHUGE; | 
| 599 | 
  | 
  | 
   static SRCREC *lastSrc = NULL, *lastPort = NULL; | 
| 600 | 
  | 
  | 
#endif    | 
| 601 | 
  | 
  | 
 | 
| 602 | 
  | 
  | 
   photonOrigin [emap -> src -> so -> otype] (emap); | 
| 603 | 
  | 
  | 
   cosTheta = DOT(emap -> ws, emap -> wh); | 
| 604 | 
  | 
  | 
 | 
| 605 | 
  | 
  | 
#if 0    | 
| 606 | 
  | 
  | 
   if (emap -> src == lastSrc && emap -> port == lastPort &&         | 
| 607 | 
  | 
  | 
       (emap -> src -> sflags & SDISTANT || mod -> omod == OVOID) && | 
| 608 | 
  | 
  | 
       cosTheta == lastCosNorm) | 
| 609 | 
  | 
  | 
      /* Same source, port, and aperture-normal angle, and source is  | 
| 610 | 
  | 
  | 
         either distant (and thus translationally invariant) or has | 
| 611 | 
  | 
  | 
         no modifier --> flux unchanged */ | 
| 612 | 
  | 
  | 
      /* BUG: this optimisation ignores partial occlusion of ports and | 
| 613 | 
  | 
  | 
         can lead to erroneous "zero emission" bailouts. | 
| 614 | 
  | 
  | 
         It can also lead to bias with modifiers exhibiting high variance! | 
| 615 | 
  | 
  | 
         Disabled for now -- RS 12/13 */          | 
| 616 | 
  | 
  | 
      return; | 
| 617 | 
  | 
  | 
       | 
| 618 | 
  | 
  | 
   lastSrc = emap -> src; | 
| 619 | 
  | 
  | 
   lastPort = emap -> port; | 
| 620 | 
  | 
  | 
   lastCosNorm = cosTheta;       | 
| 621 | 
  | 
  | 
#endif | 
| 622 | 
  | 
  | 
          | 
| 623 | 
  | 
  | 
   /* Need to recompute flux & PDF */ | 
| 624 | 
  | 
  | 
   setcolor(emap -> partFlux, 0, 0, 0); | 
| 625 | 
  | 
  | 
   emap -> cdf = 0; | 
| 626 | 
  | 
  | 
   emap -> numSamples = 0; | 
| 627 | 
  | 
  | 
    | 
| 628 | 
  | 
  | 
   if (cosTheta <= 0 &&  | 
| 629 | 
  | 
  | 
       sqrt(1 - sqr(cosTheta)) <= emap -> cosThetaMax + FTINY) | 
| 630 | 
  | 
  | 
      /* Aperture below surface; no emission from current origin */ | 
| 631 | 
  | 
  | 
      return; | 
| 632 | 
  | 
  | 
    | 
| 633 | 
  | 
  | 
   if (mod -> omod == OVOID && !emap -> port && | 
| 634 | 
  | 
  | 
       (cosTheta >= 1 - FTINY || (emap -> src -> sflags & SDISTANT &&  | 
| 635 | 
  | 
  | 
        acos(cosTheta) + acos(emap -> cosThetaMax) <= 0.5 * PI))) { | 
| 636 | 
  | 
  | 
      /* Source is unmodified and has no port (which requires testing for  | 
| 637 | 
  | 
  | 
         occlusion), and is either local with normal aligned aperture or  | 
| 638 | 
  | 
  | 
         distant with aperture above surface; analytical flux & PDF */ | 
| 639 | 
  | 
  | 
      setcolor(emap -> partFlux, mod -> oargs.farg [0],  | 
| 640 | 
  | 
  | 
               mod -> oargs.farg [1], mod -> oargs.farg [2]); | 
| 641 | 
  | 
  | 
 | 
| 642 | 
  | 
  | 
      /* Multiply radiance by Omega * dA to get flux */ | 
| 643 | 
  | 
  | 
      scalecolor(emap -> partFlux,  | 
| 644 | 
  | 
  | 
                 PI * cosTheta * (1 - sqr(max(emap -> cosThetaMax, 0))) * | 
| 645 | 
  | 
  | 
                 emap -> partArea); | 
| 646 | 
  | 
  | 
   } | 
| 647 | 
  | 
  | 
    | 
| 648 | 
  | 
  | 
   else { | 
| 649 | 
  | 
  | 
      /* Source is either modified, has a port, is local with off-normal  | 
| 650 | 
  | 
  | 
         aperture, or distant with aperture partly below surface; get flux | 
| 651 | 
  | 
  | 
         via numerical integration */ | 
| 652 | 
  | 
  | 
      thetaScale = (1 - emap -> cosThetaMax); | 
| 653 | 
  | 
  | 
       | 
| 654 | 
  | 
  | 
      /* Figga out numba of aperture samples for integration; | 
| 655 | 
  | 
  | 
         numTheta / numPhi ratio is 1 / PI */ | 
| 656 | 
  | 
  | 
      du = sqrt(pdfSamples * 2 * thetaScale); | 
| 657 | 
  | 
  | 
      emap -> numTheta = max(du + 0.5, 1); | 
| 658 | 
  | 
  | 
      emap -> numPhi = max(PI * du + 0.5, 1); | 
| 659 | 
  | 
  | 
 | 
| 660 | 
  | 
  | 
      dOmega = 2 * PI * thetaScale / (emap -> numTheta * emap -> numPhi); | 
| 661 | 
  | 
  | 
      thetaScale /= emap -> numTheta; | 
| 662 | 
  | 
  | 
       | 
| 663 | 
  | 
  | 
      /* Allocate PDF, baby */ | 
| 664 | 
  | 
  | 
      sample = emap -> samples = (EmissionSample*) | 
| 665 | 
  | 
  | 
                                 realloc(emap -> samples,  | 
| 666 | 
  | 
  | 
                                         sizeof(EmissionSample) *  | 
| 667 | 
  | 
  | 
                                         emap -> numTheta * emap -> numPhi); | 
| 668 | 
  | 
  | 
      if (!emap -> samples)  | 
| 669 | 
  | 
  | 
         error(USER, "can't allocate emission PDF");      | 
| 670 | 
  | 
  | 
          | 
| 671 | 
  | 
  | 
      VCOPY(r.rorg, emap -> photonOrg); | 
| 672 | 
  | 
  | 
      VCOPY(r.rop, emap -> photonOrg); | 
| 673 | 
  | 
  | 
      r.rmax = FHUGE; | 
| 674 | 
  | 
  | 
       | 
| 675 | 
  | 
  | 
      for (t = 0; t < emap -> numTheta; t++) { | 
| 676 | 
  | 
  | 
         for (p = 0; p < emap -> numPhi; p++) { | 
| 677 | 
  | 
  | 
            /* This uniform mapping handles 0 <= thetaMax <= PI */ | 
| 678 | 
  | 
  | 
            cosTheta = 1 - (t + pmapRandom(emitState)) * thetaScale; | 
| 679 | 
  | 
  | 
            sinTheta = sqrt(1 - sqr(cosTheta)); | 
| 680 | 
  | 
  | 
            phi = 2 * PI * (p + pmapRandom(emitState)) / emap -> numPhi; | 
| 681 | 
  | 
  | 
            du = cos(phi) * sinTheta; | 
| 682 | 
  | 
  | 
            dv = sin(phi) * sinTheta; | 
| 683 | 
  | 
  | 
            rayorigin(&r, PRIMARY, NULL, NULL); | 
| 684 | 
  | 
  | 
             | 
| 685 | 
  | 
  | 
            for (i = 0; i < 3; i++) | 
| 686 | 
  | 
  | 
               r.rdir [i] = du * emap -> uh [i] + dv * emap -> vh [i] + | 
| 687 | 
  | 
  | 
                            cosTheta * emap -> wh [i];             | 
| 688 | 
  | 
  | 
                             | 
| 689 | 
  | 
  | 
            /* Sample behind surface? */ | 
| 690 | 
  | 
  | 
            VCOPY(r.ron, emap -> ws); | 
| 691 | 
  | 
  | 
            if ((r.rod = DOT(r.rdir, r.ron)) <= 0)  | 
| 692 | 
  | 
  | 
               continue; | 
| 693 | 
  | 
  | 
                | 
| 694 | 
  | 
  | 
            /* Get radiance emitted in this direction; to get flux we  | 
| 695 | 
  | 
  | 
               multiply by cos(theta_surface), dOmega, and dA. Ray  | 
| 696 | 
  | 
  | 
               is directed towards light source for raytexture(). */ | 
| 697 | 
  | 
  | 
            if (!(emap -> src -> sflags & SDISTANT))  | 
| 698 | 
  | 
  | 
               for (i = 0; i < 3; i++)  | 
| 699 | 
  | 
  | 
                  r.rdir [i] = -r.rdir [i]; | 
| 700 | 
  | 
  | 
                   | 
| 701 | 
  | 
  | 
            /* Port occluded in this direction? */ | 
| 702 | 
  | 
  | 
            if (emap -> port && localhit(&r, &thescene))  | 
| 703 | 
  | 
  | 
               continue;  | 
| 704 | 
  | 
  | 
                | 
| 705 | 
  | 
  | 
            raytexture(&r, mod -> omod); | 
| 706 | 
  | 
  | 
            setcolor(r.rcol, mod -> oargs.farg [0], mod -> oargs.farg [1],  | 
| 707 | 
  | 
  | 
                     mod -> oargs.farg [2]); | 
| 708 | 
  | 
  | 
            multcolor(r.rcol, r.pcol); | 
| 709 | 
  | 
  | 
             | 
| 710 | 
  | 
  | 
            /* Multiply by cos(theta_surface) */ | 
| 711 | 
  | 
  | 
            scalecolor(r.rcol, r.rod); | 
| 712 | 
  | 
  | 
             | 
| 713 | 
  | 
  | 
            /* Add PDF sample if nonzero; importance info for photon emission | 
| 714 | 
  | 
  | 
             * could go here... */ | 
| 715 | 
  | 
  | 
            if (colorAvg(r.rcol)) { | 
| 716 | 
  | 
  | 
               copycolor(sample -> pdf, r.rcol); | 
| 717 | 
  | 
  | 
               sample -> cdf = emap -> cdf += colorAvg(sample -> pdf); | 
| 718 | 
  | 
  | 
               sample -> theta = t; | 
| 719 | 
  | 
  | 
               sample++ -> phi = p; | 
| 720 | 
  | 
  | 
               emap -> numSamples++; | 
| 721 | 
  | 
  | 
               addcolor(emap -> partFlux, r.rcol); | 
| 722 | 
  | 
  | 
            } | 
| 723 | 
  | 
  | 
         } | 
| 724 | 
  | 
  | 
      } | 
| 725 | 
  | 
  | 
       | 
| 726 | 
  | 
  | 
      /* Multiply by dOmega * dA */ | 
| 727 | 
  | 
  | 
      scalecolor(emap -> partFlux, dOmega * emap -> partArea); | 
| 728 | 
  | 
  | 
   } | 
| 729 | 
  | 
  | 
} | 
| 730 | 
  | 
  | 
 | 
| 731 | 
  | 
  | 
 | 
| 732 | 
  | 
  | 
 | 
| 733 | 
  | 
  | 
#define vomitPhoton     emitPhoton | 
| 734 | 
  | 
  | 
#define bluarrrghPhoton vomitPhoton | 
| 735 | 
  | 
  | 
 | 
| 736 | 
  | 
  | 
void emitPhoton (const EmissionMap* emap, RAY* ray) | 
| 737 | 
  | 
  | 
/* Emit photon from current partition emap -> partitionCnt based on | 
| 738 | 
  | 
  | 
   emission distribution. Returns new photon ray. */ | 
| 739 | 
  | 
  | 
{ | 
| 740 | 
  | 
  | 
   unsigned long i, lo, hi; | 
| 741 | 
  | 
  | 
   const EmissionSample* sample = emap -> samples; | 
| 742 | 
  | 
  | 
   RREAL du, dv, cosTheta, cosThetaSqr, sinTheta, phi;   | 
| 743 | 
  | 
  | 
   const OBJREC* mod = objptr(emap -> src -> so -> omod); | 
| 744 | 
  | 
  | 
    | 
| 745 | 
  | 
  | 
   /* Choose a new origin within current partition for every  | 
| 746 | 
  | 
  | 
      emitted photon to break up clustering artifacts */ | 
| 747 | 
  | 
  | 
   photonOrigin [emap -> src -> so -> otype] ((EmissionMap*)emap); | 
| 748 | 
  | 
  | 
   rayorigin(ray, PRIMARY, NULL, NULL); | 
| 749 | 
  | 
  | 
   ray -> rmax = FHUGE; | 
| 750 | 
  | 
  | 
    | 
| 751 | 
  | 
  | 
   if (!emap -> numSamples) { | 
| 752 | 
  | 
  | 
      /* Source is unmodified and has no port, and either local with  | 
| 753 | 
  | 
  | 
         normal aligned aperture, or distant with aperture above surface;  | 
| 754 | 
  | 
  | 
         use cosine weighted distribution */ | 
| 755 | 
  | 
  | 
      cosThetaSqr = 1 - pmapRandom(emitState) *  | 
| 756 | 
  | 
  | 
                        (1 - sqr(max(emap -> cosThetaMax, 0))); | 
| 757 | 
  | 
  | 
      cosTheta = sqrt(cosThetaSqr); | 
| 758 | 
  | 
  | 
      sinTheta = sqrt(1 - cosThetaSqr); | 
| 759 | 
  | 
  | 
      phi = 2 * PI * pmapRandom(emitState); | 
| 760 | 
  | 
  | 
      setcolor(ray -> rcol, mod -> oargs.farg [0], mod -> oargs.farg [1],  | 
| 761 | 
  | 
  | 
               mod -> oargs.farg [2]); | 
| 762 | 
  | 
  | 
   } | 
| 763 | 
  | 
  | 
    | 
| 764 | 
  | 
  | 
   else { | 
| 765 | 
  | 
  | 
      /* Source is either modified, has a port, is local with off-normal  | 
| 766 | 
  | 
  | 
         aperture, or distant with aperture partly below surface; choose  | 
| 767 | 
  | 
  | 
         direction from constructed cumulative distribution function with | 
| 768 | 
  | 
  | 
         Monte Carlo inversion using binary search. */ | 
| 769 | 
  | 
  | 
      du = pmapRandom(emitState) * emap -> cdf; | 
| 770 | 
  | 
  | 
      lo = 1; | 
| 771 | 
  | 
  | 
      hi = emap -> numSamples; | 
| 772 | 
  | 
  | 
       | 
| 773 | 
  | 
  | 
      while (hi > lo) { | 
| 774 | 
  | 
  | 
         i = (lo + hi) >> 1; | 
| 775 | 
  | 
  | 
         sample = emap -> samples + i - 1; | 
| 776 | 
  | 
  | 
          | 
| 777 | 
  | 
  | 
         if (sample -> cdf >= du)  | 
| 778 | 
  | 
  | 
            hi = i; | 
| 779 | 
  | 
  | 
         if (sample -> cdf < du)  | 
| 780 | 
  | 
  | 
            lo = i + 1; | 
| 781 | 
  | 
  | 
      } | 
| 782 | 
  | 
  | 
       | 
| 783 | 
  | 
  | 
      /* This is a uniform mapping, mon */ | 
| 784 | 
  | 
  | 
      cosTheta = 1 - (sample -> theta + pmapRandom(emitState)) * | 
| 785 | 
  | 
  | 
                     (1 - emap -> cosThetaMax) / emap -> numTheta; | 
| 786 | 
  | 
  | 
      sinTheta = sqrt(1 - sqr(cosTheta)); | 
| 787 | 
  | 
  | 
      phi = 2 * PI * (sample -> phi + pmapRandom(emitState)) / emap -> numPhi; | 
| 788 | 
  | 
  | 
      copycolor(ray -> rcol, sample -> pdf); | 
| 789 | 
  | 
  | 
   } | 
| 790 | 
  | 
  | 
 | 
| 791 | 
  | 
  | 
   /* Normalize photon flux so that average over RGB is 1 */ | 
| 792 | 
  | 
  | 
   colorNorm(ray -> rcol);    | 
| 793 | 
  | 
  | 
    | 
| 794 | 
  | 
  | 
   VCOPY(ray -> rorg, emap -> photonOrg);    | 
| 795 | 
  | 
  | 
   du = cos(phi) * sinTheta; | 
| 796 | 
  | 
  | 
   dv = sin(phi) * sinTheta; | 
| 797 | 
  | 
  | 
    | 
| 798 | 
  | 
  | 
   for (i = 0; i < 3; i++) | 
| 799 | 
  | 
  | 
      ray -> rdir [i] = du * emap -> uh [i] + dv * emap -> vh [i] +  | 
| 800 | 
  | 
  | 
                        cosTheta * emap -> wh [i]; | 
| 801 | 
  | 
  | 
                         | 
| 802 | 
  | 
  | 
   if (emap -> src -> sflags & SDISTANT) | 
| 803 | 
  | 
  | 
      /* Distant source; reverse ray direction to point into the scene. */      | 
| 804 | 
  | 
  | 
      for (i = 0; i < 3; i++)  | 
| 805 | 
  | 
  | 
         ray -> rdir [i] = -ray -> rdir [i]; | 
| 806 | 
  | 
  | 
       | 
| 807 | 
  | 
  | 
   if (emap -> port) | 
| 808 | 
  | 
  | 
      /* Photon emitted from port; move origin just behind port so it  | 
| 809 | 
  | 
  | 
         will be scattered */ | 
| 810 | 
  | 
  | 
      for (i = 0; i < 3; i++)  | 
| 811 | 
  | 
  | 
         ray -> rorg [i] -= 2 * FTINY * ray -> rdir [i];     | 
| 812 | 
  | 
  | 
    | 
| 813 | 
  | 
  | 
   /* Assign emitting light source index */ | 
| 814 | 
  | 
  | 
   ray -> rsrc = emap -> src - source; | 
| 815 | 
  | 
  | 
} | 
| 816 | 
  | 
  | 
 | 
| 817 | 
  | 
  | 
 | 
| 818 | 
  | 
  | 
 | 
| 819 | 
  | 
  | 
void multDirectPmap (RAY *r) | 
| 820 | 
  | 
  | 
/* Factor irradiance from direct photons into r -> rcol; interface to | 
| 821 | 
  | 
  | 
 * direct() */ | 
| 822 | 
  | 
  | 
{ | 
| 823 | 
  | 
  | 
   COLOR photonIrrad; | 
| 824 | 
  | 
  | 
    | 
| 825 | 
  | 
  | 
   /* Lookup direct photon irradiance */ | 
| 826 | 
  | 
  | 
   (directPmap -> lookup)(directPmap, r, photonIrrad); | 
| 827 | 
  | 
  | 
    | 
| 828 | 
  | 
  | 
   /* Multiply with coefficient in ray */ | 
| 829 | 
  | 
  | 
   multcolor(r -> rcol, photonIrrad); | 
| 830 | 
  | 
  | 
    | 
| 831 | 
  | 
  | 
   return; | 
| 832 | 
  | 
  | 
} | 
| 833 | 
  | 
  | 
 | 
| 834 | 
  | 
  | 
 | 
| 835 | 
  | 
  | 
 | 
| 836 | 
  | 
  | 
void inscatterVolumePmap (RAY *r, COLOR inscatter) | 
| 837 | 
  | 
  | 
/* Add inscattering from volume photon map; interface to srcscatter() */ | 
| 838 | 
  | 
  | 
{ | 
| 839 | 
  | 
  | 
   /* Add ambient in-scattering via lookup callback */ | 
| 840 | 
  | 
  | 
   (volumePmap -> lookup)(volumePmap, r, inscatter); | 
| 841 | 
  | 
  | 
} |