1 |
greg |
2.1 |
#ifndef PMAPRAND_H |
2 |
|
|
#define PMAPRAND_H |
3 |
|
|
|
4 |
|
|
/* |
5 |
|
|
================================================================== |
6 |
|
|
Random number generators for photon distribution |
7 |
|
|
|
8 |
|
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
9 |
|
|
(c) Fraunhofer Institute for Solar Energy Systems, |
10 |
|
|
Lucerne University of Applied Sciences & Arts |
11 |
|
|
================================================================== |
12 |
|
|
|
13 |
greg |
2.2 |
$Id: pmaprand.h,v 2.1 2015/02/24 19:39:27 greg Exp $ |
14 |
greg |
2.1 |
*/ |
15 |
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
/* According to the analytical validation, skipping numbers in the sequence |
19 |
|
|
introduces bias in scenes with high reflectance. We therefore use |
20 |
|
|
erand48() with separate states for photon emission, scattering, and |
21 |
|
|
russian roulette. The pmapSeed() and pmapRandom() macros can be adapted |
22 |
|
|
to other (better?) RNGs. */ |
23 |
greg |
2.2 |
|
24 |
|
|
#if defined(_WIN32) || defined(BSD) |
25 |
|
|
/* Assume no erand48(), so use standard RNG without explicit multistate |
26 |
|
|
control; the resulting sequences will be suboptimal */ |
27 |
|
|
#include "random.h" |
28 |
greg |
2.1 |
|
29 |
greg |
2.2 |
#define pmapSeed(seed, state) (srandom(seed)) |
30 |
|
|
#define pmapRandom(state) (frandom()) |
31 |
|
|
#else |
32 |
|
|
#define pmapSeed(seed, state) (state [0] += seed, state [1] += seed, \ |
33 |
|
|
state [2] += seed) |
34 |
|
|
#define pmapRandom(state) erand48(state) |
35 |
|
|
#endif |
36 |
greg |
2.1 |
|
37 |
|
|
|
38 |
|
|
extern unsigned short partState [3], emitState [3], cntState [3], |
39 |
|
|
mediumState [3], scatterState [3], rouletteState [3], |
40 |
|
|
randSeed; |
41 |
|
|
|
42 |
|
|
#endif |
43 |
greg |
2.2 |
|