ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/pmapmat.c
Revision: 2.20
Committed: Thu Dec 6 12:21:38 2018 UTC (5 years, 5 months ago) by rschregle
Content type: text/plain
Branch: MAIN
Changes since 2.19: +138 -114 lines
Log Message:
Added rudimentary (diffuse only) photon scattering for *data and *func

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: pmapmat.c,v 2.19 2018/12/04 21:58:46 rschregle Exp $";
3 #endif
4 /*
5 ==================================================================
6 Photon map support routines for scattering by materials.
7
8 Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
9 (c) Fraunhofer Institute for Solar Energy Systems,
10 (c) Lucerne University of Applied Sciences and Arts,
11 supported by the Swiss National Science Foundation (SNSF, #147053)
12 ==================================================================
13
14 */
15
16
17
18 #include "pmapmat.h"
19 #include "pmapdata.h"
20 #include "pmaprand.h"
21 #include "otypes.h"
22 #include "data.h"
23 #include "func.h"
24 #include "bsdf.h"
25 #include <math.h>
26
27
28
29 /* Stuff ripped off from material modules */
30 #define MAXITER 10
31 #define SP_REFL 01
32 #define SP_TRAN 02
33 #define SP_PURE 04
34 #define SP_FLAT 010
35 #define SP_BADU 040
36 #define MLAMBDA 500
37 #define RINDEX 1.52
38 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
39
40
41
42 typedef struct {
43 OBJREC *mp;
44 RAY *rp;
45 short specfl;
46 COLOR mcolor, scolor;
47 FVECT vrefl, prdir, pnorm;
48 double alpha2, rdiff, rspec, trans, tdiff, tspec, pdot;
49 } NORMDAT;
50
51 typedef struct {
52 OBJREC *mp;
53 RAY *rp;
54 short specfl;
55 COLOR mcolor, scolor;
56 FVECT vrefl, prdir, u, v, pnorm;
57 double u_alpha, v_alpha, rdiff, rspec, trans, tdiff, tspec, pdot;
58 } ANISODAT;
59
60 typedef struct {
61 OBJREC *mp;
62 RAY *pr;
63 DATARRAY *dp;
64 COLOR mcolor;
65 COLOR rdiff;
66 COLOR tdiff;
67 double rspec;
68 double trans;
69 double tspec;
70 FVECT pnorm;
71 double pdot;
72 } BRDFDAT;
73
74 typedef struct {
75 OBJREC *mp;
76 RAY *pr;
77 FVECT pnorm;
78 FVECT vray;
79 double sr_vpsa [2];
80 RREAL toloc [3][3];
81 RREAL fromloc [3][3];
82 double thick;
83 SDData *sd;
84 COLOR runsamp;
85 COLOR rdiff;
86 COLOR tunsamp;
87 COLOR tdiff;
88 } BSDFDAT;
89
90
91
92 extern const SDCDst SDemptyCD;
93
94 /* Per-material scattering function dispatch table; return value is usually
95 * zero, indicating photon termination */
96 int (*photonScatter [NUMOTYPE]) (OBJREC*, RAY*);
97
98 /* List of antimatter sensor modifier names and associated object set */
99 char *photonSensorList [MAXSET + 1] = {NULL};
100 static OBJECT photonSensorSet [MAXSET + 1] = {0};
101
102
103
104 /* ================ General support routines ================ */
105
106
107 void photonRay (const RAY *rayIn, RAY *rayOut,
108 int rayOutType, COLOR fluxAtten)
109 /* Spawn a new photon ray from a previous one; this is effectively a
110 * customised rayorigin().
111 * A SPECULAR rayOutType flags this photon as _caustic_ for subsequent hits.
112 * It is preserved for transferred rays (of type PMAP_XFER).
113 * fluxAtten specifies the RGB attenuation of the photon flux effected by
114 * the scattering material. The outgoing flux is then normalised to maintain
115 * a uniform average of 1 over RGB. If fluxAtten == NULL, the flux remains
116 * unchanged for the outgoing photon. fluxAtten is ignored for transferred
117 * rays.
118 * The ray direction is preserved for transferred rays, and undefined for
119 * scattered rays and must be subsequently set by the caller. */
120 {
121 rayorigin(rayOut, rayOutType, rayIn, NULL);
122
123 if (rayIn) {
124 /* Transfer flux */
125 copycolor(rayOut -> rcol, rayIn -> rcol);
126
127 /* Copy caustic flag & direction for transferred rays */
128 if (rayOutType == PMAP_XFER) {
129 /* rayOut -> rtype |= rayIn -> rtype & SPECULAR; */
130 rayOut -> rtype |= rayIn -> rtype;
131 VCOPY(rayOut -> rdir, rayIn -> rdir);
132 }
133 else if (fluxAtten) {
134 /* Attenuate and normalise flux for scattered rays */
135 multcolor(rayOut -> rcol, fluxAtten);
136 colorNorm(rayOut -> rcol);
137 }
138
139 /* Propagate index of emitting light source */
140 rayOut -> rsrc = rayIn -> rsrc;
141
142 /* Update maximum photon path distance */
143 rayOut -> rmax = rayIn -> rmax - rayIn -> rot;
144 }
145 }
146
147
148
149 static void addPhotons (const RAY *r)
150 /* Insert photon hits, where applicable */
151 {
152 if (!r -> rlvl)
153 /* Add direct photon map at primary hitpoint */
154 newPhoton(directPmap, r);
155 else {
156 /* Add global or precomputed photon map at indirect hitpoint */
157 newPhoton(preCompPmap ? preCompPmap : globalPmap, r);
158
159 /* Store caustic photon if specular flag set */
160 if (PMAP_CAUSTICRAY(r))
161 newPhoton(causticPmap, r);
162
163 /* Store in contribution photon map */
164 newPhoton(contribPmap, r);
165 }
166 }
167
168
169
170 void getPhotonSensors (char **sensorList)
171 /* Find antimatter geometry declared as photon sensors */
172 {
173 OBJECT i;
174 OBJREC *obj;
175 char **lp;
176
177 /* Init sensor set */
178 photonSensorSet [0] = 0;
179
180 if (!sensorList [0])
181 return;
182
183 for (i = 0; i < nobjects; i++) {
184 obj = objptr(i);
185
186 /* Insert object in sensor set if it's in the specified sensor list
187 * and of type antimatter */
188 for (lp = sensorList; *lp; lp++) {
189 if (!strcmp(obj -> oname, *lp)) {
190 if (obj -> otype != MAT_CLIP) {
191 sprintf(errmsg, "photon sensor modifier %s is not antimatter",
192 obj -> oname);
193 error(USER, errmsg);
194 }
195
196 if (photonSensorSet [0] >= AMBLLEN)
197 error(USER, "too many photon sensor modifiers");
198
199 insertelem(photonSensorSet, i);
200 }
201 }
202 }
203
204 if (!photonSensorSet [0])
205 error(USER, "no photon sensors found");
206 }
207
208
209
210 /* ================ Material specific scattering routines ================ */
211
212
213 static int isoSpecPhotonScatter (NORMDAT *nd, RAY *rayOut)
214 /* Generate direction for isotropically specularly reflected
215 or transmitted ray. Returns 1 if successful. */
216 {
217 FVECT u, v, h;
218 RAY *rayIn = nd -> rp;
219 double d, d2, sinp, cosp;
220 int niter, i = 0;
221
222 /* Set up sample coordinates */
223 getperpendicular(u, nd -> pnorm, 1);
224 fcross(v, nd -> pnorm, u);
225
226 if (nd -> specfl & SP_REFL) {
227 /* Specular reflection; make MAXITER attempts at getting a ray */
228
229 for (niter = 0; niter < MAXITER; niter++) {
230 d = 2 * PI * pmapRandom(scatterState);
231 cosp = cos(d);
232 sinp = sin(d);
233 d2 = pmapRandom(scatterState);
234 d = d2 <= FTINY ? 1 : sqrt(nd -> alpha2 * -log(d2));
235
236 for (i = 0; i < 3; i++)
237 h [i] = nd -> pnorm [i] + d * (cosp * u [i] + sinp * v [i]);
238
239 d = -2 * DOT(h, rayIn -> rdir) / (1 + d * d);
240 VSUM(rayOut -> rdir, rayIn -> rdir, h, d);
241
242 if (DOT(rayOut -> rdir, rayIn -> ron) > FTINY)
243 return 1;
244 }
245
246 return 0;
247 }
248
249 else {
250 /* Specular transmission; make MAXITER attempts at getting a ray */
251
252 for (niter = 0; niter < MAXITER; niter++) {
253 d = 2 * PI * pmapRandom(scatterState);
254 cosp = cos(d);
255 sinp = sin(d);
256 d2 = pmapRandom(scatterState);
257 d = d2 <= FTINY ? 1 : sqrt(-log(d2) * nd -> alpha2);
258
259 for (i = 0; i < 3; i++)
260 rayOut -> rdir [i] = nd -> prdir [i] +
261 d * (cosp * u [i] + sinp * v [i]);
262
263 if (DOT(rayOut -> rdir, rayIn -> ron) < -FTINY) {
264 normalize(rayOut -> rdir);
265 return 1;
266 }
267 }
268
269 return 0;
270 }
271 }
272
273
274
275 static void diffPhotonScatter (FVECT normal, RAY* rayOut)
276 /* Generate cosine-weighted direction for diffuse ray */
277 {
278 const RREAL cosThetaSqr = pmapRandom(scatterState),
279 cosTheta = sqrt(cosThetaSqr),
280 sinTheta = sqrt(1 - cosThetaSqr),
281 phi = 2 * PI * pmapRandom(scatterState),
282 du = cos(phi) * sinTheta, dv = sin(phi) * sinTheta;
283 FVECT u, v;
284 int i = 0;
285
286 /* Set up sample coordinates */
287 getperpendicular(u, normal, 1);
288 fcross(v, normal, u);
289
290 /* Convert theta & phi to cartesian */
291 for (i = 0; i < 3; i++)
292 rayOut -> rdir [i] = du * u [i] + dv * v [i] + cosTheta * normal [i];
293
294 normalize(rayOut -> rdir);
295 }
296
297
298
299 static int normalPhotonScatter (OBJREC *mat, RAY *rayIn)
300 /* Generate new photon ray for isotropic material and recurse */
301 {
302 NORMDAT nd;
303 int i, hastexture;
304 float xi, albedo, prdiff, ptdiff, prspec, ptspec;
305 double d, fresnel;
306 RAY rayOut;
307
308 if (mat -> oargs.nfargs != (mat -> otype == MAT_TRANS ? 7 : 5))
309 objerror(mat, USER, "bad number of arguments");
310
311 /* Check for back side; reorient if back is visible */
312 if (rayIn -> rod < 0)
313 if (!backvis && mat -> otype != MAT_TRANS)
314 return 0;
315 else {
316 /* Get modifiers */
317 raytexture(rayIn, mat -> omod);
318 flipsurface(rayIn);
319 }
320 else raytexture(rayIn, mat -> omod);
321
322 nd.rp = rayIn;
323
324 /* Get material color */
325 copycolor(nd.mcolor, mat -> oargs.farg);
326
327 /* Get roughness */
328 nd.specfl = 0;
329 nd.alpha2 = mat -> oargs.farg [4];
330
331 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
332 nd.specfl |= SP_PURE;
333
334 if (rayIn -> ro != NULL && isflat(rayIn -> ro -> otype))
335 nd.specfl |= SP_FLAT;
336
337 /* Perturb normal */
338 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY)) ))
339 nd.pdot = raynormal(nd.pnorm, rayIn);
340 else {
341 VCOPY(nd.pnorm, rayIn -> ron);
342 nd.pdot = rayIn -> rod;
343 }
344
345 nd.pdot = max(nd.pdot, .001);
346
347 /* Modify material color */
348 multcolor(nd.mcolor, rayIn -> pcol);
349 nd.rspec = mat -> oargs.farg [3];
350
351 /* Approximate Fresnel term */
352 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
353 fresnel = FRESNE(rayIn -> rod);
354 nd.rspec += fresnel * (1 - nd.rspec);
355 }
356 else fresnel = 0;
357
358 /* Transmission params */
359 if (mat -> otype == MAT_TRANS) {
360 nd.trans = mat -> oargs.farg [5] * (1 - nd.rspec);
361 nd.tspec = nd.trans * mat -> oargs.farg [6];
362 nd.tdiff = nd.trans - nd.tspec;
363 }
364 else nd.tdiff = nd.tspec = nd.trans = 0;
365
366 /* Specular reflection params */
367 if (nd.rspec > FTINY) {
368 /* Specular color */
369 if (mat -> otype != MAT_METAL)
370 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
371 else if (fresnel > FTINY) {
372 d = nd.rspec * (1 - fresnel);
373 for (i = 0; i < 3; i++)
374 nd.scolor [i] = fresnel + nd.mcolor [i] * d;
375 }
376 else {
377 copycolor(nd.scolor, nd.mcolor);
378 scalecolor(nd.scolor, nd.rspec);
379 }
380 }
381 else setcolor(nd.scolor, 0, 0, 0);
382
383 /* Diffuse reflection params */
384 nd.rdiff = 1 - nd.trans - nd.rspec;
385
386 /* Set up probabilities */
387 prdiff = ptdiff = ptspec = colorAvg(nd.mcolor);
388 prdiff *= nd.rdiff;
389 ptdiff *= nd.tdiff;
390 prspec = colorAvg(nd.scolor);
391 ptspec *= nd.tspec;
392 albedo = prdiff + ptdiff + prspec + ptspec;
393
394 /* Insert direct and indirect photon hits if diffuse component */
395 if (prdiff > FTINY || ptdiff > FTINY)
396 addPhotons(rayIn);
397
398 xi = pmapRandom(rouletteState);
399
400 if (xi > albedo)
401 /* Absorbed */
402 return 0;
403
404 if (xi > (albedo -= prspec)) {
405 /* Specular reflection */
406 nd.specfl |= SP_REFL;
407
408 if (nd.specfl & SP_PURE) {
409 /* Perfect specular reflection */
410 for (i = 0; i < 3; i++) {
411 /* Reflected ray */
412 nd.vrefl [i] = rayIn -> rdir [i] + 2 * nd.pdot * nd.pnorm [i];
413 }
414
415 /* Penetration? */
416 if (hastexture && DOT(nd.vrefl, rayIn -> ron) <= FTINY)
417 for (i = 0; i < 3; i++) {
418 /* Safety measure */
419 nd.vrefl [i] = rayIn -> rdir [i] +
420 2 * rayIn -> rod * rayIn -> ron [i];
421 }
422
423 VCOPY(rayOut.rdir, nd.vrefl);
424 }
425
426 else if (!isoSpecPhotonScatter(&nd, &rayOut))
427 return 0;
428
429 photonRay(rayIn, &rayOut, PMAP_SPECREFL, nd.scolor);
430 }
431
432 else if (xi > (albedo -= ptspec)) {
433 /* Specular transmission */
434 nd.specfl |= SP_TRAN;
435
436 if (hastexture) {
437 /* Perturb */
438 for (i = 0; i < 3; i++)
439 nd.prdir [i] = rayIn -> rdir [i] - rayIn -> pert [i];
440
441 if (DOT(nd.prdir, rayIn -> ron) < -FTINY)
442 normalize(nd.prdir);
443 else VCOPY(nd.prdir, rayIn -> rdir);
444 }
445 else VCOPY(nd.prdir, rayIn -> rdir);
446
447 if ((nd.specfl & (SP_TRAN | SP_PURE)) == (SP_TRAN | SP_PURE))
448 /* Perfect specular transmission */
449 VCOPY(rayOut.rdir, nd.prdir);
450 else if (!isoSpecPhotonScatter(&nd, &rayOut))
451 return 0;
452
453 photonRay(rayIn, &rayOut, PMAP_SPECTRANS, nd.mcolor);
454 }
455
456 else if (xi > (albedo -= prdiff)) {
457 /* Diffuse reflection */
458 photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
459 diffPhotonScatter(hastexture ? nd.pnorm : rayIn -> ron, &rayOut);
460 }
461
462 else {
463 /* Diffuse transmission */
464 flipsurface(rayIn);
465 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
466
467 if (hastexture) {
468 FVECT bnorm;
469 bnorm [0] = -nd.pnorm [0];
470 bnorm [1] = -nd.pnorm [1];
471 bnorm [2] = -nd.pnorm [2];
472 diffPhotonScatter(bnorm, &rayOut);
473 }
474 else diffPhotonScatter(rayIn -> ron, &rayOut);
475 }
476
477 tracePhoton(&rayOut);
478 return 0;
479 }
480
481
482
483 static void getacoords (ANISODAT *np)
484 /* Set up coordinate system for anisotropic sampling; cloned from aniso.c */
485 {
486 MFUNC *mf;
487 int i;
488
489 mf = getfunc(np->mp, 3, 0x7, 1);
490 setfunc(np->mp, np->rp);
491 errno = 0;
492
493 for (i = 0; i < 3; i++)
494 np->u[i] = evalue(mf->ep[i]);
495
496 if ((errno == EDOM) | (errno == ERANGE)) {
497 objerror(np->mp, WARNING, "compute error");
498 np->specfl |= SP_BADU;
499 return;
500 }
501
502 if (mf->fxp != &unitxf)
503 multv3(np->u, np->u, mf->fxp->xfm);
504
505 fcross(np->v, np->pnorm, np->u);
506
507 if (normalize(np->v) == 0.0) {
508 objerror(np->mp, WARNING, "illegal orientation vector");
509 np->specfl |= SP_BADU;
510 return;
511 }
512
513 fcross(np->u, np->v, np->pnorm);
514 }
515
516
517
518 static int anisoSpecPhotonScatter (ANISODAT *nd, RAY *rayOut)
519 /* Generate direction for anisotropically specularly reflected
520 or transmitted ray. Returns 1 if successful. */
521 {
522 FVECT h;
523 double d, d2, sinp, cosp;
524 int niter, i;
525 RAY *rayIn = nd -> rp;
526
527 if (rayIn -> ro != NULL && isflat(rayIn -> ro -> otype))
528 nd -> specfl |= SP_FLAT;
529
530 /* set up coordinates */
531 getacoords(nd);
532
533 if (rayOut -> rtype & TRANS) {
534 /* Specular transmission */
535
536 if (DOT(rayIn -> pert, rayIn -> pert) <= sqr(FTINY))
537 VCOPY(nd -> prdir, rayIn -> rdir);
538 else {
539 /* perturb */
540 for (i = 0; i < 3; i++)
541 nd -> prdir [i] = rayIn -> rdir [i] - rayIn -> pert [i];
542
543 if (DOT(nd -> prdir, rayIn -> ron) < -FTINY)
544 normalize(nd -> prdir);
545 else VCOPY(nd -> prdir, rayIn -> rdir);
546 }
547
548 /* Make MAXITER attempts at getting a ray */
549 for (niter = 0; niter < MAXITER; niter++) {
550 d = 2 * PI * pmapRandom(scatterState);
551 cosp = cos(d) * nd -> u_alpha;
552 sinp = sin(d) * nd -> v_alpha;
553 d = sqrt(sqr(cosp) + sqr(sinp));
554 cosp /= d;
555 sinp /= d;
556 d2 = pmapRandom(scatterState);
557 d = d2 <= FTINY ? 1
558 : sqrt(-log(d2) /
559 (sqr(cosp) / sqr(nd -> u_alpha) +
560 sqr(sinp) / (nd -> v_alpha * nd -> u_alpha)));
561
562 for (i = 0; i < 3; i++)
563 rayOut -> rdir [i] = nd -> prdir [i] + d *
564 (cosp * nd -> u [i] + sinp * nd -> v [i]);
565
566 if (DOT(rayOut -> rdir, rayIn -> ron) < -FTINY) {
567 normalize(rayOut -> rdir);
568 return 1;
569 }
570 }
571
572 return 0;
573 }
574
575 else {
576 /* Specular reflection */
577
578 /* Make MAXITER attempts at getting a ray */
579 for (niter = 0; niter < MAXITER; niter++) {
580 d = 2 * PI * pmapRandom(scatterState);
581 cosp = cos(d) * nd -> u_alpha;
582 sinp = sin(d) * nd -> v_alpha;
583 d = sqrt(sqr(cosp) + sqr(sinp));
584 cosp /= d;
585 sinp /= d;
586 d2 = pmapRandom(scatterState);
587 d = d2 <= FTINY ? 1
588 : sqrt(-log(d2) /
589 (sqr(cosp) / sqr(nd -> u_alpha) +
590 sqr(sinp) / (nd->v_alpha * nd->v_alpha)));
591
592 for (i = 0; i < 3; i++)
593 h [i] = nd -> pnorm [i] +
594 d * (cosp * nd -> u [i] + sinp * nd -> v [i]);
595
596 d = -2 * DOT(h, rayIn -> rdir) / (1 + d * d);
597 VSUM(rayOut -> rdir, rayIn -> rdir, h, d);
598
599 if (DOT(rayOut -> rdir, rayIn -> ron) > FTINY)
600 return 1;
601 }
602
603 return 0;
604 }
605 }
606
607
608
609 static int anisoPhotonScatter (OBJREC *mat, RAY *rayIn)
610 /* Generate new photon ray for anisotropic material and recurse */
611 {
612 ANISODAT nd;
613 float xi, albedo, prdiff, ptdiff, prspec, ptspec;
614 RAY rayOut;
615
616 if (mat -> oargs.nfargs != (mat -> otype == MAT_TRANS2 ? 8 : 6))
617 objerror(mat, USER, "bad number of real arguments");
618
619 nd.rp = rayIn;
620 nd.mp = objptr(rayIn -> ro -> omod);
621
622 /* get material color */
623 copycolor(nd.mcolor, mat -> oargs.farg);
624
625 /* get roughness */
626 nd.specfl = 0;
627 nd.u_alpha = mat -> oargs.farg [4];
628 nd.v_alpha = mat -> oargs.farg [5];
629 if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
630 objerror(mat, USER, "roughness too small");
631
632 /* check for back side; reorient if back is visible */
633 if (rayIn -> rod < 0)
634 if (!backvis && mat -> otype != MAT_TRANS2)
635 return 0;
636 else {
637 /* get modifiers */
638 raytexture(rayIn, mat -> omod);
639 flipsurface(rayIn);
640 }
641 else raytexture(rayIn, mat -> omod);
642
643 /* perturb normal */
644 nd.pdot = max(raynormal(nd.pnorm, rayIn), .001);
645
646 /* modify material color */
647 multcolor(nd.mcolor, rayIn -> pcol);
648 nd.rspec = mat -> oargs.farg [3];
649
650 /* transmission params */
651 if (mat -> otype == MAT_TRANS2) {
652 nd.trans = mat -> oargs.farg [6] * (1 - nd.rspec);
653 nd.tspec = nd.trans * mat -> oargs.farg [7];
654 nd.tdiff = nd.trans - nd.tspec;
655 if (nd.tspec > FTINY)
656 nd.specfl |= SP_TRAN;
657 }
658 else nd.tdiff = nd.tspec = nd.trans = 0;
659
660 /* specular reflection params */
661 if (nd.rspec > FTINY) {
662 nd.specfl |= SP_REFL;
663
664 /* comput e specular color */
665 if (mat -> otype == MAT_METAL2)
666 copycolor(nd.scolor, nd.mcolor);
667 else setcolor(nd.scolor, 1, 1, 1);
668
669 scalecolor(nd.scolor, nd.rspec);
670 }
671 else setcolor(nd.scolor, 0, 0, 0);
672
673 /* diffuse reflection params */
674 nd.rdiff = 1 - nd.trans - nd.rspec;
675
676 /* Set up probabilities */
677 prdiff = ptdiff = ptspec = colorAvg(nd.mcolor);
678 prdiff *= nd.rdiff;
679 ptdiff *= nd.tdiff;
680 prspec = colorAvg(nd.scolor);
681 ptspec *= nd.tspec;
682 albedo = prdiff + ptdiff + prspec + ptspec;
683
684 /* Insert direct and indirect photon hits if diffuse component */
685 if (prdiff > FTINY || ptdiff > FTINY)
686 addPhotons(rayIn);
687
688 xi = pmapRandom(rouletteState);
689
690 if (xi > albedo)
691 /* Absorbed */
692 return 0;
693
694 if (xi > (albedo -= prspec))
695 /* Specular reflection */
696 if (!(nd.specfl & SP_BADU)) {
697 photonRay(rayIn, &rayOut, PMAP_SPECREFL, nd.scolor);
698
699 if (!anisoSpecPhotonScatter(&nd, &rayOut))
700 return 0;
701 }
702 else return 0;
703
704 else if (xi > (albedo -= ptspec))
705 /* Specular transmission */
706
707 if (!(nd.specfl & SP_BADU)) {
708 /* Specular transmission */
709 photonRay(rayIn, &rayOut, PMAP_SPECTRANS, nd.mcolor);
710
711 if (!anisoSpecPhotonScatter(&nd, &rayOut))
712 return 0;
713 }
714 else return 0;
715
716 else if (xi > (albedo -= prdiff)) {
717 /* Diffuse reflection */
718 photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
719 diffPhotonScatter(nd.pnorm, &rayOut);
720 }
721
722 else {
723 /* Diffuse transmission */
724 FVECT bnorm;
725 flipsurface(rayIn);
726 bnorm [0] = -nd.pnorm [0];
727 bnorm [1] = -nd.pnorm [1];
728 bnorm [2] = -nd.pnorm [2];
729
730 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
731 diffPhotonScatter(bnorm, &rayOut);
732 }
733
734 tracePhoton(&rayOut);
735 return 0;
736 }
737
738
739 static double mylog (double x)
740 /* special log for extinction coefficients; cloned from dielectric.c */
741 {
742 if (x < 1e-40)
743 return(-100.);
744
745 if (x >= 1.)
746 return(0.);
747
748 return(log(x));
749 }
750
751
752 static int dielectricPhotonScatter (OBJREC *mat, RAY *rayIn)
753 /* Generate new photon ray for dielectric material and recurse */
754 {
755 double cos1, cos2, nratio, d1, d2, refl;
756 COLOR ctrans, talb;
757 FVECT dnorm;
758 int hastexture, i;
759 RAY rayOut;
760
761 if (mat -> oargs.nfargs != (mat -> otype == MAT_DIELECTRIC ? 5 : 8))
762 objerror(mat, USER, "bad arguments");
763
764 /* get modifiers */
765 raytexture(rayIn, mat -> omod);
766
767 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY))))
768 /* Perturb normal */
769 cos1 = raynormal(dnorm, rayIn);
770 else {
771 VCOPY(dnorm, rayIn -> ron);
772 cos1 = rayIn -> rod;
773 }
774
775 /* index of refraction */
776 nratio = mat -> otype ==
777 MAT_DIELECTRIC ? mat->oargs.farg[3] + mat->oargs.farg[4] / MLAMBDA
778 : mat->oargs.farg[3] / mat->oargs.farg[7];
779
780 if (cos1 < 0) {
781 /* inside */
782 hastexture = -hastexture;
783 cos1 = -cos1;
784 dnorm [0] = -dnorm [0];
785 dnorm [1] = -dnorm [1];
786 dnorm [2] = -dnorm [2];
787 setcolor(rayIn -> cext,
788 -mylog(mat -> oargs.farg [0] * rayIn -> pcol [0]),
789 -mylog(mat -> oargs.farg [1] * rayIn -> pcol [1]),
790 -mylog(mat -> oargs.farg [2] * rayIn -> pcol [2]));
791 setcolor(rayIn -> albedo, 0, 0, 0);
792 rayIn -> gecc = 0;
793
794 if (mat -> otype == MAT_INTERFACE) {
795 setcolor(ctrans,
796 -mylog(mat -> oargs.farg [4] * rayIn -> pcol [0]),
797 -mylog(mat -> oargs.farg [5] * rayIn -> pcol [1]),
798 -mylog(mat -> oargs.farg [6] * rayIn -> pcol [2]));
799 setcolor(talb, 0, 0, 0);
800 }
801 else {
802 copycolor(ctrans, cextinction);
803 copycolor(talb, salbedo);
804 }
805 }
806
807 else {
808 /* outside */
809 nratio = 1.0 / nratio;
810 setcolor(ctrans,
811 -mylog(mat -> oargs.farg [0] * rayIn -> pcol [0]),
812 -mylog(mat -> oargs.farg [1] * rayIn -> pcol [1]),
813 -mylog(mat -> oargs.farg [2] * rayIn -> pcol [2]));
814 setcolor(talb, 0, 0, 0);
815
816 if (mat -> otype == MAT_INTERFACE) {
817 setcolor(rayIn -> cext,
818 -mylog(mat -> oargs.farg [4] * rayIn -> pcol [0]),
819 -mylog(mat -> oargs.farg [5] * rayIn -> pcol [1]),
820 -mylog(mat -> oargs.farg [6] * rayIn -> pcol [2]));
821 setcolor(rayIn -> albedo, 0, 0, 0);
822 rayIn -> gecc = 0;
823 }
824 }
825
826 /* compute cos theta2 */
827 d2 = 1 - sqr(nratio) * (1 - sqr(cos1));
828
829 if (d2 < FTINY) {
830 /* Total reflection */
831 refl = cos2 = 1.0;
832 }
833 else {
834 /* Refraction, compute Fresnel's equations */
835 cos2 = sqrt(d2);
836 d1 = cos1;
837 d2 = nratio * cos2;
838 d1 = (d1 - d2) / (d1 + d2);
839 refl = sqr(d1);
840 d1 = 1 / cos1;
841 d2 = nratio / cos2;
842 d1 = (d1 - d2) / (d1 + d2);
843 refl += sqr(d1);
844 refl *= 0.5;
845 }
846
847 if (pmapRandom(rouletteState) > refl) {
848 /* Refraction */
849 photonRay(rayIn, &rayOut, PMAP_REFRACT, NULL);
850 d1 = nratio * cos1 - cos2;
851
852 for (i = 0; i < 3; i++)
853 rayOut.rdir [i] = nratio * rayIn -> rdir [i] + d1 * dnorm [i];
854
855 if (hastexture && DOT(rayOut.rdir, rayIn->ron)*hastexture >= -FTINY) {
856 d1 *= hastexture;
857
858 for (i = 0; i < 3; i++)
859 rayOut.rdir [i] = nratio * rayIn -> rdir [i] +
860 d1 * rayIn -> ron [i];
861
862 normalize(rayOut.rdir);
863 }
864
865 copycolor(rayOut.cext, ctrans);
866 copycolor(rayOut.albedo, talb);
867 }
868
869 else {
870 /* Reflection */
871 photonRay(rayIn, &rayOut, PMAP_SPECREFL, NULL);
872 VSUM(rayOut.rdir, rayIn -> rdir, dnorm, 2 * cos1);
873
874 if (hastexture && DOT(rayOut.rdir, rayIn->ron) * hastexture <= FTINY)
875 for (i = 0; i < 3; i++)
876 rayOut.rdir [i] = rayIn -> rdir [i] +
877 2 * rayIn -> rod * rayIn -> ron [i];
878 }
879
880 /* Ray is modified by medium defined by cext and albedo in
881 * photonParticipate() */
882 tracePhoton(&rayOut);
883
884 return 0;
885 }
886
887
888
889 static int glassPhotonScatter (OBJREC *mat, RAY *rayIn)
890 /* Generate new photon ray for glass material and recurse */
891 {
892 float albedo, xi, ptrans;
893 COLOR mcolor, refl, trans;
894 double pdot, cos2, d, r1e, r1m, rindex = 0.0;
895 FVECT pnorm, pdir;
896 int hastexture, i;
897 RAY rayOut;
898
899 /* check arguments */
900 if (mat -> oargs.nfargs == 3)
901 rindex = RINDEX;
902 else if (mat -> oargs.nfargs == 4)
903 rindex = mat -> oargs.farg [3];
904 else objerror(mat, USER, "bad arguments");
905
906 copycolor(mcolor, mat -> oargs.farg);
907
908 /* get modifiers */
909 raytexture(rayIn, mat -> omod);
910
911 /* reorient if necessary */
912 if (rayIn -> rod < 0)
913 flipsurface(rayIn);
914 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY))))
915 pdot = raynormal(pnorm, rayIn);
916 else {
917 VCOPY(pnorm, rayIn -> ron);
918 pdot = rayIn -> rod;
919 }
920
921 /* Modify material color */
922 multcolor(mcolor, rayIn -> pcol);
923
924 /* angular transmission */
925 cos2 = sqrt((1 - 1 / sqr(rindex)) + sqr(pdot / rindex));
926 setcolor(mcolor, pow(mcolor [0], 1 / cos2), pow(mcolor [1], 1 / cos2),
927 pow(mcolor [2], 1 / cos2));
928
929 /* compute reflection */
930 r1e = (pdot - rindex * cos2) / (pdot + rindex * cos2);
931 r1e *= r1e;
932 r1m = (1 / pdot - rindex / cos2) / (1 / pdot + rindex / cos2);
933 r1m *= r1m;
934
935 for (i = 0; i < 3; i++) {
936 double r1ed2, r1md2, d2;
937
938 d = mcolor [i];
939 d2 = sqr(d);
940 r1ed2 = sqr(r1e) * d2;
941 r1md2 = sqr(r1m) * d2;
942
943 /* compute transmittance */
944 trans [i] = 0.5 * d *
945 (sqr(1 - r1e) / (1 - r1ed2) + sqr(1 - r1m) / (1 - r1md2));
946
947 /* compute reflectance */
948 refl [i] = 0.5 * (r1e * (1 + (1 - 2 * r1e) * d2) / (1 - r1ed2) +
949 r1m * (1 + (1 - 2 * r1m) * d2) / (1 - r1md2));
950 }
951
952 /* Set up probabilities */
953 ptrans = colorAvg(trans);
954 albedo = colorAvg(refl) + ptrans;
955 xi = pmapRandom(rouletteState);
956
957
958 if (xi > albedo)
959 /* Absorbed */
960 return 0;
961
962 if (xi > (albedo -= ptrans)) {
963 /* Transmitted */
964
965 if (hastexture) {
966 /* perturb direction */
967 VSUM(pdir, rayIn -> rdir, rayIn -> pert, 2 * (1 - rindex));
968
969 if (normalize(pdir) == 0) {
970 objerror(mat, WARNING, "bad perturbation");
971 VCOPY(pdir, rayIn -> rdir);
972 }
973 }
974 else VCOPY(pdir, rayIn -> rdir);
975
976 VCOPY(rayOut.rdir, pdir);
977 photonRay(rayIn, &rayOut, PMAP_SPECTRANS, mcolor);
978 }
979
980 else {
981 /* reflected ray */
982 VSUM(rayOut.rdir, rayIn -> rdir, pnorm, 2 * pdot);
983 photonRay(rayIn, &rayOut, PMAP_SPECREFL, mcolor);
984 }
985
986 tracePhoton(&rayOut);
987 return 0;
988 }
989
990
991
992 static int aliasPhotonScatter (OBJREC *mat, RAY *rayIn)
993 /* Transfer photon scattering to alias target */
994 {
995 OBJECT aliasObj;
996 OBJREC aliasRec, *aliasPtr;
997
998 /* Straight replacement? */
999 if (!mat -> oargs.nsargs) {
1000 /* Skip void modifier! */
1001 if (mat -> omod != OVOID) {
1002 mat = objptr(mat -> omod);
1003 photonScatter [mat -> otype] (mat, rayIn);
1004 }
1005
1006 return 0;
1007 }
1008
1009 /* Else replace alias */
1010 if (mat -> oargs.nsargs != 1)
1011 objerror(mat, INTERNAL, "bad # string arguments");
1012
1013 aliasPtr = mat;
1014 aliasObj = objndx(aliasPtr);
1015
1016 /* Follow alias trail */
1017 do {
1018 aliasObj = aliasPtr -> oargs.nsargs == 1
1019 ? lastmod(aliasObj, aliasPtr -> oargs.sarg [0])
1020 : aliasPtr -> omod;
1021 if (aliasObj < 0)
1022 objerror(aliasPtr, USER, "bad reference");
1023
1024 aliasPtr = objptr(aliasObj);
1025 } while (aliasPtr -> otype == MOD_ALIAS);
1026
1027 /* Copy alias object */
1028 aliasRec = *aliasPtr;
1029
1030 /* Substitute modifier */
1031 aliasRec.omod = mat -> omod;
1032
1033 /* Replacement scattering routine */
1034 photonScatter [aliasRec.otype] (&aliasRec, rayIn);
1035
1036 #if 0
1037 /* Avoid potential memory leak? */
1038 if (aliasRec.os != aliasPtr -> os) {
1039 if (aliasObj -> os)
1040 free_os(aliasObj);
1041 aliasPtr -> os = aliasRec.os;
1042 }
1043 #endif
1044
1045 return 0;
1046 }
1047
1048
1049
1050 static int clipPhotonScatter (OBJREC *mat, RAY *rayIn)
1051 /* Generate new photon ray for antimatter material and recurse */
1052 {
1053 OBJECT obj = objndx(mat), mod, cset [MAXSET + 1], *modset;
1054 int entering, inside = 0, i;
1055 const RAY *rp;
1056 RAY rayOut;
1057
1058 if ((modset = (OBJECT*)mat -> os) == NULL) {
1059 if (mat -> oargs.nsargs < 1 || mat -> oargs.nsargs > MAXSET)
1060 objerror(mat, USER, "bad # arguments");
1061
1062 modset = (OBJECT*)malloc((mat -> oargs.nsargs + 1) * sizeof(OBJECT));
1063
1064 if (modset == NULL)
1065 error(SYSTEM, "out of memory in clipPhotonScatter");
1066 modset [0] = 0;
1067
1068 for (i = 0; i < mat -> oargs.nsargs; i++) {
1069 if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1070 continue;
1071
1072 if ((mod = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1073 sprintf(errmsg, "unknown modifier \"%s\"", mat->oargs.sarg[i]);
1074 objerror(mat, WARNING, errmsg);
1075 continue;
1076 }
1077
1078 if (inset(modset, mod)) {
1079 objerror(mat, WARNING, "duplicate modifier");
1080 continue;
1081 }
1082
1083 insertelem(modset, mod);
1084 }
1085
1086 mat -> os = (char*)modset;
1087 }
1088
1089 if (rayIn -> clipset != NULL)
1090 setcopy(cset, rayIn -> clipset);
1091 else cset [0] = 0;
1092
1093 entering = rayIn -> rod > 0;
1094
1095 /* Store photon incident from front if material defined as sensor */
1096 if (entering && inset(photonSensorSet, obj))
1097 addPhotons(rayIn);
1098
1099 for (i = modset [0]; i > 0; i--) {
1100 if (entering) {
1101 if (!inset(cset, modset [i])) {
1102 if (cset [0] >= MAXSET)
1103 error(INTERNAL, "set overflow in clipPhotonScatter");
1104 insertelem(cset, modset [i]);
1105 }
1106 }
1107 else if (inset(cset, modset [i]))
1108 deletelem(cset, modset [i]);
1109 }
1110
1111 rayIn -> newcset = cset;
1112
1113 if (strcmp(mat -> oargs.sarg [0], VOIDID)) {
1114 for (rp = rayIn; rp -> parent != NULL; rp = rp -> parent) {
1115 if ( !(rp -> rtype & RAYREFL) && rp->parent->ro != NULL &&
1116 inset(modset, rp -> parent -> ro -> omod)) {
1117
1118 if (rp -> parent -> rod > 0)
1119 inside++;
1120 else inside--;
1121 }
1122 }
1123
1124 if (inside > 0) {
1125 flipsurface(rayIn);
1126 mat = objptr(lastmod(obj, mat -> oargs.sarg [0]));
1127 photonScatter [mat -> otype] (mat, rayIn);
1128 return 0;
1129 }
1130 }
1131
1132 /* Else transfer ray */
1133 photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1134 tracePhoton(&rayOut);
1135
1136 return 0;
1137 }
1138
1139
1140
1141 static int mirrorPhotonScatter (OBJREC *mat, RAY *rayIn)
1142 /* Generate new photon ray for mirror material and recurse */
1143 {
1144 RAY rayOut;
1145 int rpure = 1, i;
1146 FVECT pnorm;
1147 double pdot;
1148 float albedo;
1149 COLOR mcolor;
1150
1151 /* check arguments */
1152 if (mat -> oargs.nfargs != 3 || mat -> oargs.nsargs > 1)
1153 objerror(mat, USER, "bad number of arguments");
1154
1155 /* back is black */
1156 if (rayIn -> rod < 0)
1157 return 0;
1158
1159 /* get modifiers */
1160 raytexture(rayIn, mat -> omod);
1161
1162 /* assign material color */
1163 copycolor(mcolor, mat -> oargs.farg);
1164 multcolor(mcolor, rayIn -> pcol);
1165
1166 /* Set up probabilities */
1167 albedo = colorAvg(mcolor);
1168
1169 if (pmapRandom(rouletteState) > albedo)
1170 /* Absorbed */
1171 return 0;
1172
1173 /* compute reflected ray */
1174 photonRay(rayIn, &rayOut, PMAP_SPECREFL, mcolor);
1175
1176 if (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY)) {
1177 /* use textures */
1178 pdot = raynormal(pnorm, rayIn);
1179
1180 for (i = 0; i < 3; i++)
1181 rayOut.rdir [i] = rayIn -> rdir [i] + 2 * pdot * pnorm [i];
1182
1183 rpure = 0;
1184 }
1185
1186 /* Check for penetration */
1187 if (rpure || DOT(rayOut.rdir, rayIn -> ron) <= FTINY)
1188 for (i = 0; i < 3; i++)
1189 rayOut.rdir [i] = rayIn -> rdir [i] +
1190 2 * rayIn -> rod * rayIn -> ron [i];
1191
1192 tracePhoton(&rayOut);
1193 return 0;
1194 }
1195
1196
1197
1198 static int mistPhotonScatter (OBJREC *mat, RAY *rayIn)
1199 /* Generate new photon ray within mist and recurse */
1200 {
1201 COLOR mext;
1202 RREAL re, ge, be;
1203 RAY rayOut;
1204
1205 /* check arguments */
1206 if (mat -> oargs.nfargs > 7)
1207 objerror(mat, USER, "bad arguments");
1208
1209 if (mat -> oargs.nfargs > 2) {
1210 /* compute extinction */
1211 copycolor(mext, mat -> oargs.farg);
1212 /* get modifiers */
1213 raytexture(rayIn, mat -> omod);
1214 multcolor(mext, rayIn -> pcol);
1215 }
1216 else setcolor(mext, 0, 0, 0);
1217
1218 photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1219
1220 if (rayIn -> rod > 0) {
1221 /* entering ray */
1222 addcolor(rayOut.cext, mext);
1223
1224 if (mat -> oargs.nfargs > 5)
1225 copycolor(rayOut.albedo, mat -> oargs.farg + 3);
1226 if (mat -> oargs.nfargs > 6)
1227 rayOut.gecc = mat -> oargs.farg [6];
1228 }
1229
1230 else {
1231 /* leaving ray */
1232 re = max(rayIn -> cext [0] - mext [0], cextinction [0]);
1233 ge = max(rayIn -> cext [1] - mext [1], cextinction [1]);
1234 be = max(rayIn -> cext [2] - mext [2], cextinction [2]);
1235 setcolor(rayOut.cext, re, ge, be);
1236
1237 if (mat -> oargs.nfargs > 5)
1238 copycolor(rayOut.albedo, salbedo);
1239 if (mat -> oargs.nfargs > 6)
1240 rayOut.gecc = seccg;
1241 }
1242
1243 tracePhoton(&rayOut);
1244
1245 return 0;
1246 }
1247
1248
1249
1250 static int mx_dataPhotonScatter (OBJREC *mat, RAY *rayIn)
1251 /* Pass photon on to materials selected by mixture data */
1252 {
1253 OBJECT obj;
1254 double coef, pt [MAXDIM];
1255 DATARRAY *dp;
1256 OBJECT mod [2];
1257 MFUNC *mf;
1258 int i;
1259
1260 if (mat -> oargs.nsargs < 6)
1261 objerror(mat, USER, "bad # arguments");
1262
1263 obj = objndx(mat);
1264
1265 for (i = 0; i < 2; i++)
1266 if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1267 mod [i] = OVOID;
1268 else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1269 sprintf(errmsg, "undefined modifier \"%s\"", mat->oargs.sarg[i]);
1270 objerror(mat, USER, errmsg);
1271 }
1272
1273 dp = getdata(mat -> oargs.sarg [3]);
1274 i = (1 << dp -> nd) - 1;
1275 mf = getfunc(mat, 4, i << 5, 0);
1276 setfunc(mat, rayIn);
1277 errno = 0;
1278
1279 for (i = 0; i < dp -> nd; i++) {
1280 pt [i] = evalue(mf -> ep [i]);
1281
1282 if (errno) {
1283 objerror(mat, WARNING, "compute error");
1284 return 0;
1285 }
1286 }
1287
1288 coef = datavalue(dp, pt);
1289 errno = 0;
1290 coef = funvalue(mat -> oargs.sarg [2], 1, &coef);
1291
1292 if (errno)
1293 objerror(mat, WARNING, "compute error");
1294 else {
1295 OBJECT mxMod = mod [pmapRandom(rouletteState) < coef ? 0 : 1];
1296
1297 if (mxMod != OVOID) {
1298 mat = objptr(mxMod);
1299 photonScatter [mat -> otype] (mat, rayIn);
1300 }
1301 else {
1302 /* Transfer ray if no modifier */
1303 RAY rayOut;
1304
1305 photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1306 tracePhoton(&rayOut);
1307 }
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314
1315 static int mx_pdataPhotonScatter (OBJREC *mat, RAY *rayIn)
1316 /* Pass photon on to materials selected by mixture picture */
1317 {
1318 OBJECT obj;
1319 double col [3], coef, pt [MAXDIM];
1320 DATARRAY *dp;
1321 OBJECT mod [2];
1322 MFUNC *mf;
1323 int i;
1324
1325 if (mat -> oargs.nsargs < 7)
1326 objerror(mat, USER, "bad # arguments");
1327
1328 obj = objndx(mat);
1329
1330 for (i = 0; i < 2; i++)
1331 if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1332 mod [i] = OVOID;
1333 else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1334 sprintf(errmsg, "undefined modifier \"%s\"", mat->oargs.sarg[i]);
1335 objerror(mat, USER, errmsg);
1336 }
1337
1338 dp = getpict(mat -> oargs.sarg [3]);
1339 mf = getfunc(mat, 4, 0x3 << 5, 0);
1340 setfunc(mat, rayIn);
1341 errno = 0;
1342 pt [1] = evalue(mf -> ep [0]);
1343 pt [0] = evalue(mf -> ep [1]);
1344
1345 if (errno) {
1346 objerror(mat, WARNING, "compute error");
1347 return 0;
1348 }
1349
1350 for (i = 0; i < 3; i++)
1351 col [i] = datavalue(dp + i, pt);
1352
1353 errno = 0;
1354 coef = funvalue(mat -> oargs.sarg [2], 3, col);
1355
1356 if (errno)
1357 objerror(mat, WARNING, "compute error");
1358 else {
1359 OBJECT mxMod = mod [pmapRandom(rouletteState) < coef ? 0 : 1];
1360
1361 if (mxMod != OVOID) {
1362 mat = objptr(mxMod);
1363 photonScatter [mat -> otype] (mat, rayIn);
1364 }
1365 else {
1366 /* Transfer ray if no modifier */
1367 RAY rayOut;
1368
1369 photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1370 tracePhoton(&rayOut);
1371 }
1372 }
1373
1374 return 0;
1375 }
1376
1377
1378
1379 static int mx_funcPhotonScatter (OBJREC *mat, RAY *rayIn)
1380 /* Pass photon on to materials selected by mixture function */
1381 {
1382 OBJECT obj, mod [2];
1383 int i;
1384 double coef;
1385 MFUNC *mf;
1386
1387 if (mat -> oargs.nsargs < 4)
1388 objerror(mat, USER, "bad # arguments");
1389
1390 obj = objndx(mat);
1391
1392 for (i = 0; i < 2; i++)
1393 if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1394 mod [i] = OVOID;
1395 else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1396 sprintf(errmsg, "undefined modifier \"%s\"", mat->oargs.sarg[i]);
1397 objerror(mat, USER, errmsg);
1398 }
1399
1400 mf = getfunc(mat, 3, 0x4, 0);
1401 setfunc(mat, rayIn);
1402 errno = 0;
1403
1404 /* bound coefficient */
1405 coef = min(1, max(0, evalue(mf -> ep [0])));
1406
1407 if (errno)
1408 objerror(mat, WARNING, "compute error");
1409 else {
1410 OBJECT mxMod = mod [pmapRandom(rouletteState) < coef ? 0 : 1];
1411
1412 if (mxMod != OVOID) {
1413 mat = objptr(mxMod);
1414 photonScatter [mat -> otype] (mat, rayIn);
1415 }
1416 else {
1417 /* Transfer ray if no modifier */
1418 RAY rayOut;
1419
1420 photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1421 tracePhoton(&rayOut);
1422 }
1423 }
1424
1425 return 0;
1426 }
1427
1428
1429
1430 static int pattexPhotonScatter (OBJREC *mat, RAY *rayIn)
1431 /* Generate new photon ray for pattern or texture modifier and recurse.
1432 This code is brought to you by Henkel! :^) */
1433 {
1434 RAY rayOut;
1435
1436 /* Get pattern */
1437 ofun [mat -> otype].funp(mat, rayIn);
1438 if (mat -> omod != OVOID) {
1439 /* Scatter using modifier (if any) */
1440 mat = objptr(mat -> omod);
1441 photonScatter [mat -> otype] (mat, rayIn);
1442 }
1443 else {
1444 /* Transfer ray if no modifier */
1445 photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1446 tracePhoton(&rayOut);
1447 }
1448
1449 return 0;
1450 }
1451
1452
1453
1454 static int setbrdfunc(BRDFDAT *bd)
1455 /* Set up brdf function and variables; ripped off from m_brdf.c */
1456 {
1457 FVECT v;
1458
1459 if (setfunc(bd -> mp, bd -> pr) == 0)
1460 return 0;
1461
1462 /* (Re)Assign func variables */
1463 multv3(v, bd -> pnorm, funcxf.xfm);
1464 varset("NxP", '=', v [0] / funcxf.sca);
1465 varset("NyP", '=', v [1] / funcxf.sca);
1466 varset("NzP", '=', v [2] / funcxf.sca);
1467 varset("RdotP", '=',
1468 bd -> pdot <= -1. ? -1. : bd -> pdot >= 1. ? 1. : bd -> pdot);
1469 varset("CrP", '=', colval(bd -> mcolor, RED));
1470 varset("CgP", '=', colval(bd -> mcolor, GRN));
1471 varset("CbP", '=', colval(bd -> mcolor, BLU));
1472
1473 return 1;
1474 }
1475
1476
1477
1478 static int brdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1479 /* Generate new photon ray for BRTDfunc material and recurse. Only ideal
1480 reflection and transmission are sampled for the specular componentent. */
1481 {
1482 int hitfront = 1, hastexture, i;
1483 BRDFDAT nd;
1484 RAY rayOut;
1485 COLOR rspecCol, tspecCol;
1486 double prDiff, ptDiff, prSpec, ptSpec, albedo, xi;
1487 MFUNC *mf;
1488 FVECT bnorm;
1489
1490 /* Check argz */
1491 if (mat -> oargs.nsargs < 10 || mat -> oargs.nfargs < 9)
1492 objerror(mat, USER, "bad # arguments");
1493 nd.mp = mat;
1494 nd.pr = rayIn;
1495 /* Dummiez */
1496 nd.rspec = nd.tspec = 1.0;
1497 nd.trans = 0.5;
1498
1499 /* Diffuz reflektanz */
1500 if (rayIn -> rod > 0.0)
1501 setcolor(nd.rdiff, mat -> oargs.farg[0], mat -> oargs.farg [1],
1502 mat -> oargs.farg [2]);
1503 else
1504 setcolor(nd.rdiff, mat-> oargs.farg [3], mat -> oargs.farg [4],
1505 mat -> oargs.farg [5]);
1506 /* Diffuz tranzmittanz */
1507 setcolor(nd.tdiff, mat -> oargs.farg [6], mat -> oargs.farg [7],
1508 mat -> oargs.farg [8]);
1509
1510 /* Get modz */
1511 raytexture(rayIn, mat -> omod);
1512 hastexture = (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY));
1513 if (hastexture) {
1514 /* Perturb normal */
1515 nd.pdot = raynormal(nd.pnorm, rayIn);
1516 }
1517 else {
1518 VCOPY(nd.pnorm, rayIn -> ron);
1519 nd.pdot = rayIn -> rod;
1520 }
1521
1522 if (rayIn -> rod < 0.0) {
1523 /* Orient perturbed valuz */
1524 nd.pdot = -nd.pdot;
1525 for (i = 0; i < 3; i++) {
1526 nd.pnorm [i] = -nd.pnorm [i];
1527 rayIn -> pert [i] = -rayIn -> pert [i];
1528 }
1529
1530 hitfront = 0;
1531 }
1532
1533 /* Get pattern kolour, modify diffuz valuz */
1534 copycolor(nd.mcolor, rayIn -> pcol);
1535 multcolor(nd.rdiff, nd.mcolor);
1536 multcolor(nd.tdiff, nd.mcolor);
1537
1538 /* Load cal file, evaluate spekula refl/tranz varz */
1539 nd.dp = NULL;
1540 mf = getfunc(mat, 9, 0x3f, 0);
1541 setbrdfunc(&nd);
1542 errno = 0;
1543 setcolor(rspecCol,
1544 evalue(mf->ep[0]), evalue(mf->ep[1]), evalue(mf->ep[2]));
1545 setcolor(tspecCol,
1546 evalue(mf->ep[3]), evalue(mf->ep[4]), evalue(mf->ep[5]));
1547 if (errno == EDOM || errno == ERANGE)
1548 objerror(mat, WARNING, "compute error");
1549 else {
1550 /* Set up probz */
1551 prDiff = colorAvg(nd.rdiff);
1552 ptDiff = colorAvg(nd.tdiff);
1553 prSpec = colorAvg(rspecCol);
1554 ptSpec = colorAvg(tspecCol);
1555 albedo = prDiff + ptDiff + prSpec + ptSpec;
1556 }
1557
1558 /* Insert direct and indirect photon hitz if diffuz komponent */
1559 if (prDiff > FTINY || ptDiff > FTINY)
1560 addPhotons(rayIn);
1561
1562 /* Stochastically sample absorption or scattering evenz */
1563 if ((xi = pmapRandom(rouletteState)) > albedo)
1564 /* Absorbed */
1565 return 0;
1566
1567 if (xi > (albedo -= prSpec)) {
1568 /* Ideal spekula reflekzion */
1569 photonRay(rayIn, &rayOut, PMAP_SPECREFL, rspecCol);
1570 VSUM(rayOut.rdir, rayIn -> rdir, nd.pnorm, 2 * nd.pdot);
1571 checknorm(rayOut.rdir);
1572 }
1573 else if (xi > (albedo -= ptSpec)) {
1574 /* Ideal spekula tranzmission */
1575 photonRay(rayIn, &rayOut, PMAP_SPECTRANS, tspecCol);
1576 if (hastexture) {
1577 /* Perturb direkzion */
1578 VSUB(rayOut.rdir, rayIn -> rdir, rayIn -> pert);
1579 if (normalize(rayOut.rdir) == 0.0) {
1580 objerror(mat, WARNING, "illegal perturbation");
1581 VCOPY(rayOut.rdir, rayIn -> rdir);
1582 }
1583 else VCOPY(rayOut.rdir, rayIn -> rdir);
1584 }
1585 }
1586 else if (xi > (albedo -= prDiff)) {
1587 /* Diffuz reflekzion */
1588 if (!hitfront)
1589 flipsurface(rayIn);
1590 photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
1591 diffPhotonScatter(nd.pnorm, &rayOut);
1592 }
1593 else {
1594 /* Diffuz tranzmission */
1595 if (hitfront)
1596 flipsurface(rayIn);
1597 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
1598 bnorm [0] = -nd.pnorm [0];
1599 bnorm [1] = -nd.pnorm [1];
1600 bnorm [2] = -nd.pnorm [2];
1601 diffPhotonScatter(bnorm, &rayOut);
1602 }
1603
1604 tracePhoton(&rayOut);
1605 return 0;
1606 }
1607
1608
1609
1610 int brdf2PhotonScatter (OBJREC *mat, RAY *rayIn)
1611 /* Generate new photon ray for procedural or data driven BRDF material and
1612 recurse. Only diffuse reflection and transmission are sampled. */
1613 {
1614 BRDFDAT nd;
1615 RAY rayOut;
1616 double dtmp, prDiff, ptDiff, albedo, xi;
1617 MFUNC *mf;
1618 FVECT bnorm;
1619
1620 /* Check argz */
1621 if (mat -> oargs.nsargs < (hasdata(mat -> otype) ? 4 : 2) ||
1622 mat -> oargs.nfargs < (mat -> otype == MAT_TFUNC ||
1623 mat -> otype == MAT_TDATA ? 6 : 4))
1624 objerror(mat, USER, "bad # arguments");
1625
1626 if (rayIn -> rod < 0.0) {
1627 /* Hit backside; reorient if visible, else transfer photon */
1628 if (!backvis) {
1629 photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1630 tracePhoton(&rayOut);
1631 return 0;
1632 }
1633
1634 raytexture(rayIn, mat -> omod);
1635 flipsurface(rayIn);
1636 }
1637 else raytexture(rayIn, mat -> omod);
1638
1639 nd.mp = mat;
1640 nd.pr = rayIn;
1641 /* Material kolour */
1642 setcolor(nd.mcolor, mat -> oargs.farg [0], mat -> oargs.farg [1],
1643 mat -> oargs.farg [2]);
1644 /* Spekula komponent */
1645 nd.rspec = mat -> oargs.farg [3];
1646
1647 /* Tranzmittanz */
1648 if (mat -> otype == MAT_TFUNC || mat -> otype == MAT_TDATA) {
1649 nd.trans = mat -> oargs.farg [4] * (1.0 - nd.rspec);
1650 nd.tspec = nd.trans * mat -> oargs.farg [5];
1651 dtmp = nd.trans - nd.tspec;
1652 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
1653 }
1654 else {
1655 nd.tspec = nd.trans = 0.0;
1656 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
1657 }
1658
1659 /* Reflektanz */
1660 dtmp = 1.0 - nd.trans - nd.rspec;
1661 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
1662 /* Perturb normal */
1663 nd.pdot = raynormal(nd.pnorm, rayIn);
1664 /* Modify material kolour */
1665 multcolor(nd.mcolor, rayIn -> pcol);
1666 multcolor(nd.rdiff, nd.mcolor);
1667 multcolor(nd.tdiff, nd.mcolor);
1668
1669 /* Load auxiliary filez */
1670 if (hasdata(mat -> otype)) {
1671 nd.dp = getdata(mat -> oargs.sarg [1]);
1672 getfunc(mat, 2, 0, 0);
1673 }
1674 else {
1675 nd.dp = NULL;
1676 getfunc(mat, 1, 0, 0);
1677 }
1678
1679 /* Set up probz */
1680 prDiff = colorAvg(nd.rdiff);
1681 ptDiff = colorAvg(nd.tdiff);
1682 albedo = prDiff + ptDiff;
1683
1684 /* Insert direct and indirect photon hitz if diffuz komponent */
1685 if (prDiff > FTINY || ptDiff > FTINY)
1686 addPhotons(rayIn);
1687
1688 /* Stochastically sample absorption or scattering evenz */
1689 if ((xi = pmapRandom(rouletteState)) > albedo)
1690 /* Absorbed */
1691 return 0;
1692
1693 if (xi > (albedo -= prDiff)) {
1694 /* Diffuz reflekzion */
1695 photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.rdiff);
1696 diffPhotonScatter(nd.pnorm, &rayOut);
1697 }
1698 else {
1699 /* Diffuz tranzmission */
1700 flipsurface(rayIn);
1701 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.tdiff);
1702 bnorm [0] = -nd.pnorm [0];
1703 bnorm [1] = -nd.pnorm [1];
1704 bnorm [2] = -nd.pnorm [2];
1705 diffPhotonScatter(bnorm, &rayOut);
1706 }
1707
1708 tracePhoton(&rayOut);
1709 return 0;
1710 }
1711
1712
1713
1714 /*
1715 ==================================================================
1716 The following code is
1717 (c) Lucerne University of Applied Sciences and Arts,
1718 supported by the Swiss National Science Foundation (SNSF, #147053)
1719 ==================================================================
1720 */
1721
1722 static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1723 /* Generate new photon ray for BSDF modifier and recurse. */
1724 {
1725 int hasthick = (mat->otype == MAT_BSDF);
1726 int hitFront;
1727 SDError err;
1728 SDValue bsdfVal;
1729 FVECT upvec;
1730 MFUNC *mf;
1731 BSDFDAT nd;
1732 RAY rayOut;
1733 COLOR bsdfRGB;
1734 int transmitted;
1735 double prDiff, ptDiff, prDiffSD, ptDiffSD, prSpecSD, ptSpecSD,
1736 albedo, xi;
1737 const double patAlb = bright(rayIn -> pcol);
1738
1739 /* Following code adapted from m_bsdf() */
1740 /* Check arguments */
1741 if (mat -> oargs.nsargs < hasthick+5 || mat -> oargs.nfargs > 9 ||
1742 mat -> oargs.nfargs % 3)
1743 objerror(mat, USER, "bad # arguments");
1744
1745 hitFront = (rayIn -> rod > 0);
1746
1747 /* Load cal file */
1748 mf = hasthick ? getfunc(mat, 5, 0x1d, 1) : getfunc(mat, 4, 0xe, 1);
1749
1750 /* Get thickness */
1751 nd.thick = 0;
1752 if (hasthick) {
1753 nd.thick = evalue(mf -> ep [0]);
1754 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
1755 nd.thick = .0;
1756 }
1757
1758 /* Get BSDF data */
1759 nd.sd = loadBSDF(mat -> oargs.sarg [hasthick]);
1760
1761 /* Extra diffuse reflectance from material def */
1762 if (hitFront) {
1763 if (mat -> oargs.nfargs < 3)
1764 setcolor(nd.rdiff, .0, .0, .0);
1765 else setcolor(nd.rdiff, mat -> oargs.farg [0], mat -> oargs.farg [1],
1766 mat -> oargs.farg [2]);
1767 }
1768 else if (mat -> oargs.nfargs < 6) {
1769 /* Check for absorbing backside */
1770 if (!backvis && !nd.sd -> rb && !nd.sd -> tf) {
1771 SDfreeCache(nd.sd);
1772 return 0;
1773 }
1774
1775 setcolor(nd.rdiff, .0, .0, .0);
1776 }
1777 else setcolor(nd.rdiff, mat -> oargs.farg [3], mat -> oargs.farg [4],
1778 mat -> oargs.farg [5]);
1779
1780 /* Extra diffuse transmittance from material def */
1781 if (mat -> oargs.nfargs < 9)
1782 setcolor(nd.tdiff, .0, .0, .0);
1783 else setcolor(nd.tdiff, mat -> oargs.farg [6], mat -> oargs.farg [7],
1784 mat -> oargs.farg [8]);
1785
1786 nd.mp = mat;
1787 nd.pr = rayIn;
1788
1789 /* Get modifiers */
1790 raytexture(rayIn, mat -> omod);
1791
1792 /* Modify diffuse values */
1793 multcolor(nd.rdiff, rayIn -> pcol);
1794 multcolor(nd.tdiff, rayIn -> pcol);
1795
1796 /* Get up vector & xform to world coords */
1797 upvec [0] = evalue(mf -> ep [hasthick+0]);
1798 upvec [1] = evalue(mf -> ep [hasthick+1]);
1799 upvec [2] = evalue(mf -> ep [hasthick+2]);
1800
1801 if (mf -> fxp != &unitxf) {
1802 multv3(upvec, upvec, mf -> fxp -> xfm);
1803 nd.thick *= mf -> fxp -> sca;
1804 }
1805
1806 if (rayIn -> rox) {
1807 multv3(upvec, upvec, rayIn -> rox -> f.xfm);
1808 nd.thick *= rayIn -> rox -> f.sca;
1809 }
1810
1811 /* Perturb normal */
1812 raynormal(nd.pnorm, rayIn);
1813
1814 /* Xform incident dir to local BSDF coords */
1815 err = SDcompXform(nd.toloc, nd.pnorm, upvec);
1816
1817 if (!err) {
1818 nd.vray [0] = -rayIn -> rdir [0];
1819 nd.vray [1] = -rayIn -> rdir [1];
1820 nd.vray [2] = -rayIn -> rdir [2];
1821 err = SDmapDir(nd.vray, nd.toloc, nd.vray);
1822 }
1823
1824 if (!err)
1825 err = SDinvXform(nd.fromloc, nd.toloc);
1826
1827 if (err) {
1828 objerror(mat, WARNING, "Illegal orientation vector");
1829 return 0;
1830 }
1831
1832 /* Determine BSDF resolution */
1833 err = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
1834 SDqueryMin + SDqueryMax, nd.sd);
1835
1836 if (err)
1837 objerror(mat, USER, transSDError(err));
1838
1839 nd.sr_vpsa [0] = sqrt(nd.sr_vpsa [0]);
1840 nd.sr_vpsa [1] = sqrt(nd.sr_vpsa [1]);
1841
1842 /* Orient perturbed normal towards incident side */
1843 if (!hitFront) {
1844 nd.pnorm [0] = -nd.pnorm [0];
1845 nd.pnorm [1] = -nd.pnorm [1];
1846 nd.pnorm [2] = -nd.pnorm [2];
1847 }
1848
1849 /* Get scatter probabilities (weighted by pattern except for spec refl)
1850 * prDiff, ptDiff: extra diffuse component in material def
1851 * prDiffSD, ptDiffSD: diffuse (constant) component in SDF
1852 * prSpecSD, ptSpecSD: non-diffuse ("specular") component in SDF
1853 * albedo: sum of above, inverse absorption probability */
1854 prDiff = colorAvg(nd.rdiff);
1855 ptDiff = colorAvg(nd.tdiff);
1856 prDiffSD = patAlb * SDdirectHemi(nd.vray, SDsampDf | SDsampR, nd.sd);
1857 ptDiffSD = patAlb * SDdirectHemi(nd.vray, SDsampDf | SDsampT, nd.sd);
1858 prSpecSD = SDdirectHemi(nd.vray, SDsampSp | SDsampR, nd.sd);
1859 ptSpecSD = patAlb * SDdirectHemi(nd.vray, SDsampSp | SDsampT, nd.sd);
1860 albedo = prDiff + ptDiff + prDiffSD + ptDiffSD + prSpecSD + ptSpecSD;
1861
1862 /*
1863 if (albedo > 1)
1864 objerror(mat, WARNING, "Invalid albedo");
1865 */
1866
1867 /* Insert direct and indirect photon hits if diffuse component */
1868 if (prDiff + ptDiff + prDiffSD + ptDiffSD > FTINY)
1869 addPhotons(rayIn);
1870
1871 xi = pmapRandom(rouletteState);
1872
1873 if (xi > albedo)
1874 /* Absorbtion */
1875 return 0;
1876
1877 transmitted = 0;
1878
1879 if ((xi -= prDiff) <= 0) {
1880 /* Diffuse reflection (extra component in material def) */
1881 photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.rdiff);
1882 diffPhotonScatter(nd.pnorm, &rayOut);
1883 }
1884
1885 else if ((xi -= ptDiff) <= 0) {
1886 /* Diffuse transmission (extra component in material def) */
1887 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.tdiff);
1888 diffPhotonScatter(nd.pnorm, &rayOut);
1889 transmitted = 1;
1890 }
1891
1892 else { /* Sample SDF */
1893 if ((xi -= prDiffSD) <= 0) {
1894 /* Diffuse SDF reflection (constant component) */
1895 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1896 SDsampDf | SDsampR, nd.sd)))
1897 objerror(mat, USER, transSDError(err));
1898
1899 /* Apply pattern to spectral component */
1900 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1901 multcolor(bsdfRGB, rayIn -> pcol);
1902 photonRay(rayIn, &rayOut, PMAP_DIFFREFL, bsdfRGB);
1903 }
1904
1905 else if ((xi -= ptDiffSD) <= 0) {
1906 /* Diffuse SDF transmission (constant component) */
1907 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1908 SDsampDf | SDsampT, nd.sd)))
1909 objerror(mat, USER, transSDError(err));
1910
1911 /* Apply pattern to spectral component */
1912 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1913 multcolor(bsdfRGB, rayIn -> pcol);
1914 addcolor(bsdfRGB, nd.tdiff);
1915 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, bsdfRGB);
1916 transmitted = 1;
1917 }
1918
1919 else if ((xi -= prSpecSD) <= 0) {
1920 /* Non-diffuse ("specular") SDF reflection */
1921 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1922 SDsampSp | SDsampR, nd.sd)))
1923 objerror(mat, USER, transSDError(err));
1924
1925 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1926 photonRay(rayIn, &rayOut, PMAP_SPECREFL, bsdfRGB);
1927 }
1928
1929 else {
1930 /* Non-diffuse ("specular") SDF transmission */
1931 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1932 SDsampSp | SDsampT, nd.sd)))
1933 objerror(mat, USER, transSDError(err));
1934
1935 /* Apply pattern to spectral component */
1936 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1937 multcolor(bsdfRGB, rayIn -> pcol);
1938 photonRay(rayIn, &rayOut, PMAP_SPECTRANS, bsdfRGB);
1939 transmitted = 1;
1940 }
1941
1942 /* Xform outgoing dir to world coords */
1943 if ((err = SDmapDir(rayOut.rdir, nd.fromloc, nd.vray))) {
1944 objerror(mat, USER, transSDError(err));
1945 return 0;
1946 }
1947 }
1948
1949 /* Clean up */
1950 SDfreeCache(nd.sd);
1951
1952 /* Offset outgoing photon origin by thickness to bypass proxy geometry */
1953 if (transmitted && nd.thick != 0)
1954 VSUM(rayOut.rorg, rayOut.rorg, rayIn -> ron, -nd.thick);
1955
1956 tracePhoton(&rayOut);
1957 return 0;
1958 }
1959
1960
1961
1962 static int lightPhotonScatter (OBJREC* mat, RAY* ray)
1963 /* Light sources doan' reflect, mang */
1964 {
1965 return 0;
1966 }
1967
1968
1969
1970 void initPhotonScatterFuncs ()
1971 /* Init photonScatter[] dispatch table */
1972 {
1973 int i;
1974
1975 /* Catch-all for inconsistencies */
1976 for (i = 0; i < NUMOTYPE; i++)
1977 photonScatter [i] = o_default;
1978
1979 photonScatter [MAT_LIGHT] = photonScatter [MAT_ILLUM] =
1980 photonScatter [MAT_GLOW] = photonScatter [MAT_SPOT] =
1981 lightPhotonScatter;
1982
1983 photonScatter [MAT_PLASTIC] = photonScatter [MAT_METAL] =
1984 photonScatter [MAT_TRANS] = normalPhotonScatter;
1985
1986 photonScatter [MAT_PLASTIC2] = photonScatter [MAT_METAL2] =
1987 photonScatter [MAT_TRANS2] = anisoPhotonScatter;
1988
1989 photonScatter [MAT_DIELECTRIC] = photonScatter [MAT_INTERFACE] =
1990 dielectricPhotonScatter;
1991
1992 photonScatter [MAT_MIST] = mistPhotonScatter;
1993 photonScatter [MAT_GLASS] = glassPhotonScatter;
1994 photonScatter [MAT_CLIP] = clipPhotonScatter;
1995 photonScatter [MAT_MIRROR] = mirrorPhotonScatter;
1996 photonScatter [MIX_FUNC] = mx_funcPhotonScatter;
1997 photonScatter [MIX_DATA] = mx_dataPhotonScatter;
1998 photonScatter [MIX_PICT]= mx_pdataPhotonScatter;
1999
2000 photonScatter [PAT_BDATA] = photonScatter [PAT_CDATA] =
2001 photonScatter [PAT_BFUNC] = photonScatter [PAT_CFUNC] =
2002 photonScatter [PAT_CPICT] = photonScatter [TEX_FUNC] =
2003 photonScatter [TEX_DATA] = pattexPhotonScatter;
2004
2005 photonScatter [MOD_ALIAS] = aliasPhotonScatter;
2006 photonScatter [MAT_BRTDF] = brdfPhotonScatter;
2007
2008 photonScatter [MAT_PFUNC] = photonScatter [MAT_MFUNC] =
2009 photonScatter [MAT_PDATA] = photonScatter [MAT_MDATA] =
2010 photonScatter [MAT_TFUNC] = photonScatter [MAT_TDATA] =
2011 brdf2PhotonScatter;
2012
2013 photonScatter [MAT_BSDF] = photonScatter [MAT_ABSDF] =
2014 bsdfPhotonScatter;
2015 }