ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/pmapmat.c
(Generate patch)

Comparing ray/src/rt/pmapmat.c (file contents):
Revision 2.19 by rschregle, Tue Dec 4 21:58:46 2018 UTC vs.
Revision 2.24 by rschregle, Mon Feb 22 13:27:49 2021 UTC

# Line 2 | Line 2
2   static const char RCSid[] = "$Id$";
3   #endif
4   /*
5 <   ==================================================================
5 >
6 >   ======================================================================
7     Photon map support routines for scattering by materials.
8  
9     Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
10     (c) Fraunhofer Institute for Solar Energy Systems,
11 +       supported by the German Research Foundation
12 +       (DFG LU-204/10-2, "Fassadenintegrierte Regelsysteme FARESYS")
13     (c) Lucerne University of Applied Sciences and Arts,
14 <   supported by the Swiss National Science Foundation (SNSF, #147053)
15 <   ==================================================================
14 >       supported by the Swiss National Science Foundation
15 >       (SNSF #147053, "Daylight Redirecting Components")
16 >   ======================================================================
17    
18   */
19  
# Line 46 | Line 50 | typedef struct {
50     COLOR    mcolor, scolor;
51     FVECT    vrefl, prdir, pnorm;
52     double   alpha2, rdiff, rspec, trans, tdiff, tspec, pdot;
53 < }  NORMDAT;
53 > } NORMDAT;
54  
55   typedef struct {
56     OBJREC   *mp;
# Line 55 | Line 59 | typedef struct {
59     COLOR    mcolor, scolor;
60     FVECT    vrefl, prdir, u, v, pnorm;
61     double   u_alpha, v_alpha, rdiff, rspec, trans, tdiff, tspec, pdot;
62 < }  ANISODAT;
62 > } ANISODAT;
63  
64   typedef struct {
65     OBJREC   *mp;
# Line 69 | Line 73 | typedef struct {
73     double   tspec;
74     FVECT    pnorm;
75     double   pdot;
76 < }  BRDFDAT;
76 > } BRDFDAT;
77  
78   typedef struct {
79     OBJREC   *mp;
# Line 145 | Line 149 | void photonRay (const RAY *rayIn, RAY *rayOut,
149   }
150  
151  
148
152   static void addPhotons (const RAY *r)
153   /* Insert photon hits, where applicable */
154   {
155     if (!r -> rlvl)
156 <      /* Add direct photon map at primary hitpoint */
156 >      /* Add direct photon at primary hitpoint */
157        newPhoton(directPmap, r);
158     else {
159 <      /* Add global or precomputed photon map at indirect hitpoint */
159 >      /* Add global or precomputed photon at indirect hitpoint */
160        newPhoton(preCompPmap ? preCompPmap : globalPmap, r);
161  
162        /* Store caustic photon if specular flag set */
# Line 319 | Line 322 | static int normalPhotonScatter (OBJREC *mat, RAY *rayI
322        }
323     else raytexture(rayIn, mat -> omod);
324    
325 +   nd.mp = mat;
326     nd.rp = rayIn;
327    
328     /* Get material color */
# Line 480 | Line 484 | static int normalPhotonScatter (OBJREC *mat, RAY *rayI
484  
485  
486  
487 < static void getacoords (ANISODAT *np)
487 > static void getacoords (ANISODAT *nd)
488   /* Set up coordinate system for anisotropic sampling; cloned from aniso.c */
489   {
490 <   MFUNC  *mf;
491 <   int  i;
490 >   MFUNC *mf;
491 >   int   i;
492  
493 <   mf = getfunc(np->mp, 3, 0x7, 1);
494 <   setfunc(np->mp, np->rp);
493 >   mf = getfunc(nd -> mp, 3, 0x7, 1);
494 >   setfunc(nd -> mp, nd -> rp);
495     errno = 0;
496  
497     for (i = 0; i < 3; i++)
498 <      np->u[i] = evalue(mf->ep[i]);
498 >      nd -> u [i] = evalue(mf -> ep [i]);
499    
500 <   if ((errno == EDOM) | (errno == ERANGE)) {
501 <      objerror(np->mp, WARNING, "compute error");
498 <      np->specfl |= SP_BADU;
499 <      return;
500 <   }
501 <  
502 <   if (mf->fxp != &unitxf)
503 <      multv3(np->u, np->u, mf->fxp->xfm);
500 >   if (errno == EDOM || errno == ERANGE)
501 >      nd -> u [0] = nd -> u [1] = nd -> u [2] = 0.0;
502        
503 <   fcross(np->v, np->pnorm, np->u);
503 >   if (mf -> fxp != &unitxf)
504 >      multv3(nd -> u, nd -> u, mf -> fxp -> xfm);
505  
506 <   if (normalize(np->v) == 0.0) {
508 <      objerror(np->mp, WARNING, "illegal orientation vector");
509 <      np->specfl |= SP_BADU;
510 <      return;
511 <   }
506 >   fcross(nd -> v, nd -> pnorm, nd -> u);
507    
508 <   fcross(np->u, np->v, np->pnorm);
508 >   if (normalize(nd -> v) == 0.0) {
509 >      if (fabs(nd -> u_alpha - nd -> v_alpha) > 0.001)
510 >         objerror(nd -> mp, WARNING, "illegal orientation vector");
511 >      getperpendicular(nd -> u, nd -> pnorm, 1);
512 >      fcross(nd -> v, nd -> pnorm, nd -> u);
513 >      nd -> u_alpha = nd -> v_alpha =
514 >         sqrt(0.5 * (sqr(nd -> u_alpha) + sqr(nd -> v_alpha)));
515 >   }
516 >   else fcross(nd -> u, nd -> v, nd -> pnorm);
517   }
518  
519  
# Line 616 | Line 619 | static int anisoPhotonScatter (OBJREC *mat, RAY *rayIn
619     if (mat -> oargs.nfargs != (mat -> otype == MAT_TRANS2 ? 8 : 6))
620        objerror(mat, USER, "bad number of real arguments");
621        
622 +   nd.mp = mat;
623     nd.rp = rayIn;
620   nd.mp = objptr(rayIn -> ro -> omod);
624    
625     /* get material color */
626     copycolor(nd.mcolor, mat -> oargs.farg);
# Line 661 | Line 664 | static int anisoPhotonScatter (OBJREC *mat, RAY *rayIn
664     if (nd.rspec > FTINY) {
665        nd.specfl |= SP_REFL;
666        
667 <      /* comput   e specular color */
667 >      /* compute specular color */
668        if (mat -> otype == MAT_METAL2)
669           copycolor(nd.scolor, nd.mcolor);
670        else setcolor(nd.scolor, 1, 1, 1);
# Line 1033 | Line 1036 | static int aliasPhotonScatter (OBJREC *mat, RAY *rayIn
1036     /* Replacement scattering routine */
1037     photonScatter [aliasRec.otype] (&aliasRec, rayIn);
1038  
1036 #if 0
1039     /* Avoid potential memory leak? */
1040     if (aliasRec.os != aliasPtr -> os) {
1041 <      if (aliasObj -> os)
1042 <         free_os(aliasObj);
1041 >      if (aliasPtr -> os)
1042 >         free_os(aliasPtr);
1043        aliasPtr -> os = aliasRec.os;
1044     }
1043 #endif
1045  
1046     return 0;
1047   }
# Line 1475 | Line 1476 | static int setbrdfunc(BRDFDAT *bd)
1476  
1477  
1478  
1479 < static int brtdFuncPhotonScatter (OBJREC *mat, RAY *rayIn)
1480 < /* Generate new photon ray for BRTDfunc material and recurse */
1479 > static int brdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1480 > /* Generate new photon ray for BRTDfunc material and recurse. Only ideal
1481 >   reflection and transmission are sampled for the specular componentent. */
1482   {
1483     int      hitfront = 1, hastexture, i;
1484     BRDFDAT  nd;
# Line 1486 | Line 1488 | static int brtdFuncPhotonScatter (OBJREC *mat, RAY *ra
1488     MFUNC    *mf;
1489     FVECT    bnorm;
1490  
1491 +   /* Check argz */
1492     if (mat -> oargs.nsargs < 10 || mat -> oargs.nfargs < 9)
1493        objerror(mat, USER, "bad # arguments");
1494 +      
1495     nd.mp = mat;
1496     nd.pr = rayIn;
1497 <   /* Dummies */
1497 >   /* Dummiez */
1498     nd.rspec = nd.tspec = 1.0;
1499     nd.trans = 0.5;
1500  
1501 <   /* Diffuse reflectance */
1501 >   /* Diffuz reflektanz */
1502     if (rayIn -> rod > 0.0)
1503        setcolor(nd.rdiff, mat -> oargs.farg[0], mat -> oargs.farg [1],
1504                 mat -> oargs.farg [2]);
1505     else
1506        setcolor(nd.rdiff, mat-> oargs.farg [3], mat -> oargs.farg [4],
1507                 mat -> oargs.farg [5]);
1508 <   /* Diffuse transmittance */
1508 >   /* Diffuz tranzmittanz */
1509     setcolor(nd.tdiff, mat -> oargs.farg [6], mat -> oargs.farg [7],
1510              mat -> oargs.farg [8]);
1511  
1512 <   /* Get modifiers */
1512 >   /* Get modz */
1513     raytexture(rayIn, mat -> omod);
1514     hastexture = (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY));
1515     if (hastexture) {
# Line 1518 | Line 1522 | static int brtdFuncPhotonScatter (OBJREC *mat, RAY *ra
1522     }
1523  
1524     if (rayIn -> rod < 0.0) {
1525 <      /* Orient perturbed values */
1525 >      /* Orient perturbed valuz */
1526        nd.pdot = -nd.pdot;
1527        for (i = 0; i < 3; i++) {
1528           nd.pnorm [i] = -nd.pnorm [i];
# Line 1528 | Line 1532 | static int brtdFuncPhotonScatter (OBJREC *mat, RAY *ra
1532        hitfront = 0;
1533     }
1534    
1535 <   /* Get pattern color, modify diffuse values */
1535 >   /* Get pattern kolour, modify diffuz valuz */
1536     copycolor(nd.mcolor, rayIn -> pcol);
1537     multcolor(nd.rdiff, nd.mcolor);
1538     multcolor(nd.tdiff, nd.mcolor);
1539  
1540 <   /* Load cal file, evaluate spec refl/trans vars */
1540 >   /* Load cal file, evaluate spekula refl/tranz varz */
1541     nd.dp = NULL;
1542     mf = getfunc(mat, 9, 0x3f, 0);
1543     setbrdfunc(&nd);
# Line 1545 | Line 1549 | static int brtdFuncPhotonScatter (OBJREC *mat, RAY *ra
1549     if (errno == EDOM || errno == ERANGE)
1550        objerror(mat, WARNING, "compute error");
1551     else {
1552 <      /* Set up probabilities */
1552 >      /* Set up probz */
1553        prDiff = colorAvg(nd.rdiff);
1554        ptDiff = colorAvg(nd.tdiff);
1555        prSpec = colorAvg(rspecCol);
# Line 1553 | Line 1557 | static int brtdFuncPhotonScatter (OBJREC *mat, RAY *ra
1557        albedo = prDiff + ptDiff + prSpec + ptSpec;
1558     }
1559  
1560 <   /* Insert direct and indirect photon hits if diffuse component */
1560 >   /* Insert direct and indirect photon hitz if diffuz komponent */
1561     if (prDiff > FTINY || ptDiff > FTINY)
1562        addPhotons(rayIn);
1563  
1564 <   /* Stochastically sample absorption or scattering events */
1564 >   /* Stochastically sample absorption or scattering evenz */
1565     if ((xi = pmapRandom(rouletteState)) > albedo)
1566        /* Absorbed */
1567        return 0;
1568  
1569     if (xi > (albedo -= prSpec)) {
1570 <      /* Specular reflection */
1570 >      /* Ideal spekula reflekzion */
1571        photonRay(rayIn, &rayOut, PMAP_SPECREFL, rspecCol);
1572        VSUM(rayOut.rdir, rayIn -> rdir, nd.pnorm, 2 * nd.pdot);
1573        checknorm(rayOut.rdir);
1574     }
1575     else if (xi > (albedo -= ptSpec)) {
1576 <      /* Specular transmission */
1576 >      /* Ideal spekula tranzmission */
1577        photonRay(rayIn, &rayOut, PMAP_SPECTRANS, tspecCol);
1578        if (hastexture) {
1579 <         /* Perturb direction */
1579 >         /* Perturb direkzion */
1580           VSUB(rayOut.rdir, rayIn -> rdir, rayIn -> pert);
1581           if (normalize(rayOut.rdir) == 0.0) {
1582              objerror(mat, WARNING, "illegal perturbation");
1583              VCOPY(rayOut.rdir, rayIn -> rdir);
1584           }
1581         else VCOPY(rayOut.rdir, rayIn -> rdir);
1585        }
1586 +      else VCOPY(rayOut.rdir, rayIn -> rdir);
1587     }
1588     else if (xi > (albedo -= prDiff)) {
1589 <      /* Diffuse reflection */
1589 >      /* Diffuz reflekzion */
1590        if (!hitfront)
1591           flipsurface(rayIn);
1592        photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
1593        diffPhotonScatter(nd.pnorm, &rayOut);
1594     }
1595     else {
1596 <      /* Diffuse transmission */
1596 >      /* Diffuz tranzmission */
1597        if (hitfront)
1598           flipsurface(rayIn);
1599        photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
# Line 1599 | Line 1603 | static int brtdFuncPhotonScatter (OBJREC *mat, RAY *ra
1603        diffPhotonScatter(bnorm, &rayOut);
1604     }
1605  
1606 +   tracePhoton(&rayOut);
1607     return 0;
1608   }
1609  
1610  
1611  
1612 < #if 0
1613 < int
1614 < m_brdf2(                        /* color a ray that hit a BRDF material */
1610 <        OBJREC  *m,
1611 <        RAY  *r
1612 < )
1612 > int brdf2PhotonScatter (OBJREC *mat, RAY *rayIn)
1613 > /* Generate new photon ray for procedural or data driven BRDF material and
1614 >   recurse. Only diffuse reflection and transmission are sampled. */
1615   {
1616 <        BRDFDAT  nd;
1617 <        COLOR  ctmp;
1618 <        FVECT  vtmp;
1619 <        double  dtmp;
1620 <                                                /* always a shadow */
1619 <        if (r->crtype & SHADOW)
1620 <                return(1);
1621 <                                                /* check arguments */
1622 <        if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
1623 <                        ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
1624 <                objerror(m, USER, "bad # arguments");
1625 <                                                /* check for back side */
1626 <        if (r->rod < 0.0) {
1627 <                if (!backvis) {
1628 <                        raytrans(r);
1629 <                        return(1);
1630 <                }
1631 <                raytexture(r, m->omod);
1632 <                flipsurface(r);                 /* reorient if backvis */
1633 <        } else
1634 <                raytexture(r, m->omod);
1616 >   BRDFDAT  nd;
1617 >   RAY      rayOut;
1618 >   double   dtmp, prDiff, ptDiff, albedo, xi;
1619 >   MFUNC    *mf;
1620 >   FVECT    bnorm;
1621  
1622 <        nd.mp = m;
1623 <        nd.pr = r;
1624 <                                                /* get material color */
1625 <        setcolor(nd.mcolor, m->oargs.farg[0],
1626 <                        m->oargs.farg[1],
1627 <                        m->oargs.farg[2]);
1628 <                                                /* get specular component */
1629 <        nd.rspec = m->oargs.farg[3];
1630 <                                                /* compute transmittance */
1631 <        if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
1632 <                nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
1633 <                nd.tspec = nd.trans * m->oargs.farg[5];
1634 <                dtmp = nd.trans - nd.tspec;
1635 <                setcolor(nd.tdiff, dtmp, dtmp, dtmp);
1636 <        } else {
1637 <                nd.tspec = nd.trans = 0.0;
1638 <                setcolor(nd.tdiff, 0.0, 0.0, 0.0);
1639 <        }
1654 <                                                /* compute reflectance */
1655 <        dtmp = 1.0 - nd.trans - nd.rspec;
1656 <        setcolor(nd.rdiff, dtmp, dtmp, dtmp);
1657 <        nd.pdot = raynormal(nd.pnorm, r);       /* perturb normal */
1658 <        multcolor(nd.mcolor, r->pcol);          /* modify material color */
1659 <        multcolor(nd.rdiff, nd.mcolor);
1660 <        multcolor(nd.tdiff, nd.mcolor);
1661 <                                                /* load auxiliary files */
1662 <        if (hasdata(m->otype)) {
1663 <                nd.dp = getdata(m->oargs.sarg[1]);
1664 <                getfunc(m, 2, 0, 0);
1665 <        } else {
1666 <                nd.dp = NULL;
1667 <                getfunc(m, 1, 0, 0);
1668 <        }
1669 <                                                /* compute ambient */
1670 <        if (nd.trans < 1.0-FTINY) {
1671 <                copycolor(ctmp, nd.mcolor);     /* modified by material color */
1672 <                scalecolor(ctmp, 1.0-nd.trans);
1673 <                multambient(ctmp, r, nd.pnorm);
1674 <                addcolor(r->rcol, ctmp);        /* add to returned color */
1675 <        }
1676 <        if (nd.trans > FTINY) {         /* from other side */
1677 <                flipsurface(r);
1678 <                vtmp[0] = -nd.pnorm[0];
1679 <                vtmp[1] = -nd.pnorm[1];
1680 <                vtmp[2] = -nd.pnorm[2];
1681 <                copycolor(ctmp, nd.mcolor);
1682 <                scalecolor(ctmp, nd.trans);
1683 <                multambient(ctmp, r, vtmp);
1684 <                addcolor(r->rcol, ctmp);
1685 <                flipsurface(r);
1686 <        }
1687 <                                                /* add direct component */
1688 <        direct(r, dirbrdf, &nd);
1622 >   /* Check argz */
1623 >   if (mat -> oargs.nsargs < (hasdata(mat -> otype) ? 4 : 2) ||
1624 >       mat -> oargs.nfargs < (mat -> otype == MAT_TFUNC ||
1625 >                              mat -> otype == MAT_TDATA ? 6 : 4))
1626 >      objerror(mat, USER, "bad # arguments");
1627 >      
1628 >   if (rayIn -> rod < 0.0) {
1629 >      /* Hit backside; reorient if visible, else transfer photon */
1630 >      if (!backvis) {
1631 >         photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1632 >         tracePhoton(&rayOut);
1633 >         return 0;
1634 >      }
1635 >      
1636 >      raytexture(rayIn, mat -> omod);
1637 >      flipsurface(rayIn);
1638 >   }
1639 >   else raytexture(rayIn, mat -> omod);
1640  
1641 <        return(1);
1641 >   nd.mp = mat;
1642 >   nd.pr = rayIn;
1643 >  
1644 >   /* Material kolour */
1645 >   setcolor(nd.mcolor, mat -> oargs.farg [0], mat -> oargs.farg [1],
1646 >            mat -> oargs.farg [2]);
1647 >   /* Spekula komponent */
1648 >   nd.rspec = mat -> oargs.farg [3];
1649 >  
1650 >   /* Tranzmittanz */
1651 >   if (mat -> otype == MAT_TFUNC || mat -> otype == MAT_TDATA) {
1652 >      nd.trans = mat -> oargs.farg [4] * (1.0 - nd.rspec);
1653 >      nd.tspec = nd.trans * mat -> oargs.farg [5];
1654 >      dtmp = nd.trans - nd.tspec;
1655 >      setcolor(nd.tdiff, dtmp, dtmp, dtmp);
1656 >   }
1657 >   else {
1658 >      nd.tspec = nd.trans = 0.0;
1659 >      setcolor(nd.tdiff, 0.0, 0.0, 0.0);
1660 >   }
1661 >  
1662 >   /* Reflektanz */
1663 >   dtmp = 1.0 - nd.trans - nd.rspec;
1664 >   setcolor(nd.rdiff, dtmp, dtmp, dtmp);
1665 >   /* Perturb normal */
1666 >   nd.pdot = raynormal(nd.pnorm, rayIn);
1667 >   /* Modify material kolour */
1668 >   multcolor(nd.mcolor, rayIn -> pcol);
1669 >   multcolor(nd.rdiff, nd.mcolor);
1670 >   multcolor(nd.tdiff, nd.mcolor);
1671 >  
1672 >   /* Load auxiliary filez */
1673 >   if (hasdata(mat -> otype)) {
1674 >      nd.dp = getdata(mat -> oargs.sarg [1]);
1675 >      getfunc(mat, 2, 0, 0);
1676 >   }
1677 >   else {
1678 >      nd.dp = NULL;
1679 >      getfunc(mat, 1, 0, 0);
1680 >   }
1681 >
1682 >   /* Set up probz */
1683 >   prDiff = colorAvg(nd.rdiff);
1684 >   ptDiff = colorAvg(nd.tdiff);
1685 >   albedo = prDiff + ptDiff;
1686 >
1687 >   /* Insert direct and indirect photon hitz if diffuz komponent */
1688 >   if (prDiff > FTINY || ptDiff > FTINY)
1689 >      addPhotons(rayIn);
1690 >
1691 >   /* Stochastically sample absorption or scattering evenz */
1692 >   if ((xi = pmapRandom(rouletteState)) > albedo)
1693 >      /* Absorbed */
1694 >      return 0;
1695 >
1696 >   if (xi > (albedo -= prDiff)) {
1697 >      /* Diffuz reflekzion */
1698 >      photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.rdiff);
1699 >      diffPhotonScatter(nd.pnorm, &rayOut);
1700 >   }
1701 >   else {
1702 >      /* Diffuz tranzmission */
1703 >      flipsurface(rayIn);
1704 >      photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.tdiff);
1705 >      bnorm [0] = -nd.pnorm [0];
1706 >      bnorm [1] = -nd.pnorm [1];
1707 >      bnorm [2] = -nd.pnorm [2];
1708 >      diffPhotonScatter(bnorm, &rayOut);
1709 >   }
1710 >
1711 >   tracePhoton(&rayOut);
1712 >   return 0;
1713   }
1692 #endif
1714  
1715  
1716  
1717   /*
1718 <   ==================================================================
1718 >   ======================================================================
1719     The following code is
1720     (c) Lucerne University of Applied Sciences and Arts,
1721 <   supported by the Swiss National Science Foundation (SNSF, #147053)
1722 <   ==================================================================
1721 >       supported by the Swiss National Science Foundation
1722 >       (SNSF #147053, "Daylight Redirecting Components")
1723 >   ======================================================================
1724   */
1725  
1726   static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1727   /* Generate new photon ray for BSDF modifier and recurse. */
1728   {
1729 <   int      hasthick = (mat->otype == MAT_BSDF);
1730 <   int      hitFront;
1731 <   SDError  err;
1732 <   SDValue  bsdfVal;
1733 <   FVECT           upvec;
1734 <   MFUNC           *mf;
1735 <   BSDFDAT      nd;
1736 <   RAY      rayOut;
1737 <   COLOR    bsdfRGB;
1738 <   int      transmitted;
1739 <   double   prDiff, ptDiff, prDiffSD, ptDiffSD, prSpecSD, ptSpecSD,
1740 <            albedo, xi;
1741 <   const double patAlb = bright(rayIn -> pcol);
1729 >   int            hasthick = (mat->otype == MAT_BSDF);
1730 >   int            hitFront;
1731 >   SDError        err;
1732 >   SDValue        bsdfVal;
1733 >   FVECT          upvec;
1734 >   MFUNC          *mf;
1735 >   BSDFDAT        nd;
1736 >   RAY            rayOut;
1737 >   COLOR          bsdfRGB;
1738 >   int            transmitted;
1739 >   double         prDiff, ptDiff, prDiffSD, ptDiffSD, prSpecSD, ptSpecSD,
1740 >                  albedo, xi;
1741 >   const double   patAlb = bright(rayIn -> pcol);
1742    
1743     /* Following code adapted from m_bsdf() */
1744     /* Check arguments */
1745 <   if (mat -> oargs.nsargs < hasthick+5 || mat -> oargs.nfargs > 9 ||
1746 <       mat -> oargs.nfargs % 3)
1745 >   if (
1746 >      mat -> oargs.nsargs < hasthick+5 ||
1747 >      mat -> oargs.nfargs > 9 || mat -> oargs.nfargs % 3
1748 >   )
1749        objerror(mat, USER, "bad # arguments");
1750        
1751     hitFront = (rayIn -> rod > 0);
# Line 1732 | Line 1756 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1756     /* Get thickness */
1757     nd.thick = 0;
1758     if (hasthick) {
1759 <   nd.thick = evalue(mf -> ep [0]);
1760 <   if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
1761 <      nd.thick = .0;
1759 >      nd.thick = evalue(mf -> ep [0]);
1760 >      if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
1761 >         nd.thick = .0;
1762     }
1763  
1764     /* Get BSDF data */
# Line 1744 | Line 1768 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1768     if (hitFront) {
1769        if (mat -> oargs.nfargs < 3)
1770           setcolor(nd.rdiff, .0, .0, .0);
1771 <      else setcolor(nd.rdiff, mat -> oargs.farg [0], mat -> oargs.farg [1],
1772 <                    mat -> oargs.farg [2]);
1771 >      else setcolor(
1772 >         nd.rdiff,
1773 >         mat -> oargs.farg [0], mat -> oargs.farg [1], mat -> oargs.farg [2]
1774 >      );
1775     }    
1776     else if (mat -> oargs.nfargs < 6) {
1777        /* Check for absorbing backside */
# Line 1756 | Line 1782 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1782        
1783        setcolor(nd.rdiff, .0, .0, .0);
1784     }
1785 <   else setcolor(nd.rdiff, mat -> oargs.farg [3], mat -> oargs.farg [4],
1786 <                 mat -> oargs.farg [5]);
1785 >   else setcolor(
1786 >      nd.rdiff,
1787 >      mat -> oargs.farg [3], mat -> oargs.farg [4], mat -> oargs.farg [5]
1788 >   );
1789  
1790     /* Extra diffuse transmittance from material def */
1791     if (mat -> oargs.nfargs < 9)
1792        setcolor(nd.tdiff, .0, .0, .0);
1793 <   else setcolor(nd.tdiff, mat -> oargs.farg [6], mat -> oargs.farg [7],
1794 <                 mat -> oargs.farg [8]);
1793 >   else setcolor(
1794 >      nd.tdiff,
1795 >      mat -> oargs.farg [6], mat -> oargs.farg [7], mat -> oargs.farg [8]
1796 >   );
1797                
1798     nd.mp = mat;
1799     nd.pr = rayIn;
# Line 1812 | Line 1842 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1842     }
1843    
1844     /* Determine BSDF resolution */
1845 <   err = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
1846 <                    SDqueryMin + SDqueryMax, nd.sd);
1845 >   err = SDsizeBSDF(
1846 >      nd.sr_vpsa, nd.vray, NULL, SDqueryMin + SDqueryMax, nd.sd
1847 >   );
1848    
1849     if (err)
1850        objerror(mat, USER, transSDError(err));
# Line 1874 | Line 1905 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1905     else {   /* Sample SDF */
1906        if ((xi -= prDiffSD) <= 0) {
1907           /* Diffuse SDF reflection (constant component) */
1908 <         if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1909 <                               SDsampDf | SDsampR, nd.sd)))
1908 >         if ((err = SDsampBSDF(
1909 >            &bsdfVal, nd.vray, pmapRandom(scatterState),
1910 >            SDsampDf | SDsampR, nd.sd
1911 >         )))
1912              objerror(mat, USER, transSDError(err));
1913          
1914           /* Apply pattern to spectral component */
# Line 1886 | Line 1919 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1919  
1920        else if ((xi -= ptDiffSD) <= 0) {
1921           /* Diffuse SDF transmission (constant component) */
1922 <         if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1923 <                               SDsampDf | SDsampT, nd.sd)))
1922 >         if ((err = SDsampBSDF(
1923 >            &bsdfVal, nd.vray, pmapRandom(scatterState),
1924 >            SDsampDf | SDsampT, nd.sd
1925 >         )))
1926              objerror(mat, USER, transSDError(err));
1927          
1928           /* Apply pattern to spectral component */
# Line 1900 | Line 1935 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1935  
1936        else if ((xi -= prSpecSD) <= 0) {
1937           /* Non-diffuse ("specular") SDF reflection */
1938 <         if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1939 <                               SDsampSp | SDsampR, nd.sd)))
1938 >         if ((err = SDsampBSDF(
1939 >            &bsdfVal, nd.vray, pmapRandom(scatterState),
1940 >            SDsampSp | SDsampR, nd.sd
1941 >         )))
1942              objerror(mat, USER, transSDError(err));
1943          
1944           ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
# Line 1910 | Line 1947 | static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1947        
1948        else {
1949           /* Non-diffuse ("specular") SDF transmission */
1950 <         if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1951 <                               SDsampSp | SDsampT, nd.sd)))
1950 >         if ((err = SDsampBSDF(
1951 >            &bsdfVal, nd.vray, pmapRandom(scatterState),
1952 >            SDsampSp | SDsampT, nd.sd
1953 >         )))
1954              objerror(mat, USER, transSDError(err));
1955  
1956           /* Apply pattern to spectral component */
# Line 1953 | Line 1992 | void initPhotonScatterFuncs ()
1992   /* Init photonScatter[] dispatch table */
1993   {
1994     int i;
1995 <  
1995 >
1996     /* Catch-all for inconsistencies */
1997     for (i = 0; i < NUMOTYPE; i++)
1998        photonScatter [i] = o_default;
1999 <      
1999 >
2000     photonScatter [MAT_LIGHT] = photonScatter [MAT_ILLUM] =
2001        photonScatter [MAT_GLOW] = photonScatter [MAT_SPOT] =
2002           lightPhotonScatter;
2003 <        
2003 >
2004     photonScatter [MAT_PLASTIC] = photonScatter [MAT_METAL] =
2005        photonScatter [MAT_TRANS] = normalPhotonScatter;
2006        
# Line 1970 | Line 2009 | void initPhotonScatterFuncs ()
2009        
2010     photonScatter [MAT_DIELECTRIC] = photonScatter [MAT_INTERFACE] =
2011        dielectricPhotonScatter;
2012 <      
2012 >
2013     photonScatter [MAT_MIST] = mistPhotonScatter;
2014     photonScatter [MAT_GLASS] = glassPhotonScatter;
2015     photonScatter [MAT_CLIP] = clipPhotonScatter;
# Line 1978 | Line 2017 | void initPhotonScatterFuncs ()
2017     photonScatter [MIX_FUNC] = mx_funcPhotonScatter;
2018     photonScatter [MIX_DATA] = mx_dataPhotonScatter;
2019     photonScatter [MIX_PICT]= mx_pdataPhotonScatter;
2020 <  
2020 >
2021     photonScatter [PAT_BDATA] = photonScatter [PAT_CDATA] =
2022        photonScatter [PAT_BFUNC] = photonScatter [PAT_CFUNC] =
2023           photonScatter [PAT_CPICT] = photonScatter [TEX_FUNC] =
2024              photonScatter [TEX_DATA] = pattexPhotonScatter;
2025 <            
2025 >
2026     photonScatter [MOD_ALIAS] = aliasPhotonScatter;
2027 <   photonScatter [MAT_BRTDF] = brtdFuncPhotonScatter;
2028 <   photonScatter [MAT_BSDF] =
2029 <      photonScatter [MAT_ABSDF] = bsdfPhotonScatter;
2027 >   photonScatter [MAT_BRTDF] = brdfPhotonScatter;
2028 >  
2029 >   photonScatter [MAT_PFUNC] = photonScatter [MAT_MFUNC] =
2030 >      photonScatter [MAT_PDATA] = photonScatter [MAT_MDATA] =
2031 >         photonScatter [MAT_TFUNC] = photonScatter [MAT_TDATA] =
2032 >            brdf2PhotonScatter;
2033 >
2034 >   photonScatter [MAT_BSDF] = photonScatter [MAT_ABSDF] =
2035 >      bsdfPhotonScatter;
2036   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines