ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/pmapmat.c
Revision: 2.8
Committed: Tue Aug 18 18:45:55 2015 UTC (8 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.7: +4 -1 lines
Log Message:
Added missing RCSid forgotten during initial check-in

File Contents

# User Rev Content
1 greg 2.8 #ifndef lint
2     static const char RCSid[] = "$Id$";
3     #endif
4 greg 2.1 /*
5     ==================================================================
6     Photon map support routines for scattering by materials.
7    
8     Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
9     (c) Fraunhofer Institute for Solar Energy Systems,
10 rschregle 2.3 (c) Lucerne University of Applied Sciences and Arts,
11     supported by the Swiss National Science Foundation (SNSF, #147053)
12 greg 2.1 ==================================================================
13    
14 greg 2.8 $Id: pmapmat.c,v 2.7 2015/05/27 17:54:19 rschregle Exp $
15 greg 2.1 */
16    
17    
18    
19     #include "pmapmat.h"
20     #include "pmapdata.h"
21     #include "pmaprand.h"
22     #include "otypes.h"
23     #include "data.h"
24     #include "func.h"
25     #include "bsdf.h"
26     #include <math.h>
27    
28    
29    
30     /* Stuff ripped off from material modules */
31     #define MAXITER 10
32     #define SP_REFL 01
33     #define SP_TRAN 02
34     #define SP_PURE 04
35     #define SP_FLAT 010
36     #define SP_BADU 040
37     #define MLAMBDA 500
38     #define RINDEX 1.52
39     #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
40    
41    
42    
43     typedef struct {
44     OBJREC *mp;
45     RAY *rp;
46     short specfl;
47     COLOR mcolor, scolor;
48     FVECT vrefl, prdir, pnorm;
49     double alpha2, rdiff, rspec, trans, tdiff, tspec, pdot;
50     } NORMDAT;
51    
52     typedef struct {
53     OBJREC *mp;
54     RAY *rp;
55     short specfl;
56     COLOR mcolor, scolor;
57     FVECT vrefl, prdir, u, v, pnorm;
58     double u_alpha, v_alpha, rdiff, rspec, trans, tdiff, tspec, pdot;
59     } ANISODAT;
60    
61     typedef struct {
62     OBJREC *mp;
63     RAY *pr;
64     FVECT pnorm;
65     FVECT vray;
66     double sr_vpsa [2];
67     RREAL toloc [3][3];
68     RREAL fromloc [3][3];
69     double thick;
70     SDData *sd;
71     COLOR runsamp;
72     COLOR rdiff;
73     COLOR tunsamp;
74     COLOR tdiff;
75     } BSDFDAT;
76    
77    
78    
79     extern const SDCDst SDemptyCD;
80    
81     /* Per-material scattering function dispatch table; return value is usually
82     * zero, indicating photon termination */
83     int (*photonScatter [NUMOTYPE]) (OBJREC*, RAY*);
84    
85     /* List of antimatter sensor modifier names and associated object set */
86     char *photonSensorList [MAXSET + 1] = {NULL};
87     static OBJECT photonSensorSet [MAXSET + 1] = {0};
88    
89    
90    
91     /* ================ General support routines ================ */
92    
93    
94     void photonRay (const RAY *rayIn, RAY *rayOut,
95     int rayOutType, COLOR fluxAtten)
96     /* Spawn a new photon ray from a previous one; this is effectively a
97     * customised rayorigin().
98     * A SPECULAR rayOutType flags this photon as _caustic_ for subsequent hits.
99     * It is preserved for transferred rays (of type PMAP_XFER).
100     * fluxAtten specifies the RGB attenuation of the photon flux effected by
101     * the scattering material. The outgoing flux is then normalised to maintain
102     * a uniform average of 1 over RGB. If fluxAtten == NULL, the flux remains
103     * unchanged for the outgoing photon. fluxAtten is ignored for transferred
104     * rays.
105     * The ray direction is preserved for transferred rays, and undefined for
106     * scattered rays and must be subsequently set by the caller. */
107     {
108     rayorigin(rayOut, rayOutType, rayIn, NULL);
109    
110     /* Transfer flux */
111     copycolor(rayOut -> rcol, rayIn -> rcol);
112    
113     /* Copy caustic flag & direction for transferred rays */
114     if (rayOutType == PMAP_XFER) {
115     /* rayOut -> rtype |= rayIn -> rtype & SPECULAR; */
116     rayOut -> rtype |= rayIn -> rtype;
117     VCOPY(rayOut -> rdir, rayIn -> rdir);
118     }
119     else if (fluxAtten) {
120 rschregle 2.2 /* Attenuate and normalise flux for scattered rays */
121 greg 2.1 multcolor(rayOut -> rcol, fluxAtten);
122     colorNorm(rayOut -> rcol);
123     }
124    
125     /* Propagate index of emitting light source */
126     rayOut -> rsrc = rayIn -> rsrc;
127     }
128    
129    
130    
131     static void addPhotons (const RAY *r)
132     /* Insert photon hits, where applicable */
133     {
134     if (!r -> rlvl)
135     /* Add direct photon map at primary hitpoint */
136     addPhoton(directPmap, r);
137     else {
138     /* Add global or precomputed photon map at indirect hitpoint */
139     addPhoton(preCompPmap ? preCompPmap : globalPmap, r);
140    
141     /* Store caustic photon if specular flag set */
142     if (PMAP_CAUSTICRAY(r))
143     addPhoton(causticPmap, r);
144    
145     /* Store in contribution photon map */
146     addPhoton(contribPmap, r);
147     }
148     }
149    
150    
151    
152     void getPhotonSensors (char **sensorList)
153     /* Find antimatter geometry declared as photon sensors */
154     {
155     OBJECT i;
156     OBJREC *obj;
157     char **lp;
158    
159     /* Init sensor set */
160     photonSensorSet [0] = 0;
161    
162     if (!sensorList [0])
163     return;
164    
165     for (i = 0; i < nobjects; i++) {
166     obj = objptr(i);
167    
168     /* Insert object in sensor set if it's in the specified sensor list
169     * and of type antimatter */
170     for (lp = sensorList; *lp; lp++) {
171     if (!strcmp(obj -> oname, *lp)) {
172     if (obj -> otype != MAT_CLIP) {
173     sprintf(errmsg, "photon sensor modifier %s is not antimatter",
174     obj -> oname);
175     error(USER, errmsg);
176     }
177    
178     if (photonSensorSet [0] >= AMBLLEN)
179     error(USER, "too many photon sensor modifiers");
180    
181     insertelem(photonSensorSet, i);
182     }
183     }
184     }
185    
186     if (!photonSensorSet [0])
187     error(USER, "no photon sensors found");
188     }
189    
190    
191    
192     /* ================ Material specific scattering routines ================ */
193    
194    
195     static int isoSpecPhotonScatter (NORMDAT *nd, RAY *rayOut)
196     /* Generate direction for isotropically specularly reflected
197     or transmitted ray. Returns 1 if successful. */
198     {
199     FVECT u, v, h;
200     RAY *rayIn = nd -> rp;
201     double d, d2, sinp, cosp;
202     int niter, i = 0;
203    
204     /* Set up sample coordinates */
205 greg 2.5 getperpendicular(u, nd -> pnorm, 1);
206 greg 2.1 fcross(v, nd -> pnorm, u);
207    
208     if (nd -> specfl & SP_REFL) {
209     /* Specular reflection; make MAXITER attempts at getting a ray */
210    
211     for (niter = 0; niter < MAXITER; niter++) {
212     d = 2 * PI * pmapRandom(scatterState);
213     cosp = cos(d);
214     sinp = sin(d);
215     d2 = pmapRandom(scatterState);
216     d = d2 <= FTINY ? 1 : sqrt(nd -> alpha2 * -log(d2));
217    
218     for (i = 0; i < 3; i++)
219     h [i] = nd -> pnorm [i] + d * (cosp * u [i] + sinp * v [i]);
220    
221     d = -2 * DOT(h, rayIn -> rdir) / (1 + d * d);
222     VSUM(rayOut -> rdir, rayIn -> rdir, h, d);
223    
224     if (DOT(rayOut -> rdir, rayIn -> ron) > FTINY)
225     return 1;
226     }
227    
228     return 0;
229     }
230    
231     else {
232     /* Specular transmission; make MAXITER attempts at getting a ray */
233    
234     for (niter = 0; niter < MAXITER; niter++) {
235     d = 2 * PI * pmapRandom(scatterState);
236     cosp = cos(d);
237     sinp = sin(d);
238     d2 = pmapRandom(scatterState);
239     d = d2 <= FTINY ? 1 : sqrt(-log(d2) * nd -> alpha2);
240    
241     for (i = 0; i < 3; i++)
242     rayOut -> rdir [i] = nd -> prdir [i] +
243     d * (cosp * u [i] + sinp * v [i]);
244    
245     if (DOT(rayOut -> rdir, rayIn -> ron) < -FTINY) {
246     normalize(rayOut -> rdir);
247     return 1;
248     }
249     }
250    
251     return 0;
252     }
253     }
254    
255    
256    
257     static void diffPhotonScatter (FVECT normal, RAY* rayOut)
258     /* Generate cosine-weighted direction for diffuse ray */
259     {
260     const RREAL cosThetaSqr = pmapRandom(scatterState),
261     cosTheta = sqrt(cosThetaSqr),
262     sinTheta = sqrt(1 - cosThetaSqr),
263     phi = 2 * PI * pmapRandom(scatterState),
264     du = cos(phi) * sinTheta, dv = sin(phi) * sinTheta;
265     FVECT u, v;
266     int i = 0;
267    
268     /* Set up sample coordinates */
269 greg 2.5 getperpendicular(u, normal, 1);
270 greg 2.1 fcross(v, normal, u);
271    
272     /* Convert theta & phi to cartesian */
273     for (i = 0; i < 3; i++)
274     rayOut -> rdir [i] = du * u [i] + dv * v [i] + cosTheta * normal [i];
275    
276     normalize(rayOut -> rdir);
277     }
278    
279    
280    
281     static int normalPhotonScatter (OBJREC *mat, RAY *rayIn)
282     /* Generate new photon ray for isotropic material and recurse */
283     {
284     NORMDAT nd;
285     int i, hastexture;
286     float xi, albedo, prdiff, ptdiff, prspec, ptspec;
287     double d, fresnel;
288     RAY rayOut;
289    
290     if (mat -> oargs.nfargs != (mat -> otype == MAT_TRANS ? 7 : 5))
291     objerror(mat, USER, "bad number of arguments");
292    
293     /* Check for back side; reorient if back is visible */
294     if (rayIn -> rod < 0)
295     if (!backvis && mat -> otype != MAT_TRANS)
296     return 0;
297     else {
298     /* Get modifiers */
299     raytexture(rayIn, mat -> omod);
300     flipsurface(rayIn);
301     }
302     else raytexture(rayIn, mat -> omod);
303    
304     nd.rp = rayIn;
305    
306     /* Get material color */
307     copycolor(nd.mcolor, mat -> oargs.farg);
308    
309     /* Get roughness */
310     nd.specfl = 0;
311     nd.alpha2 = mat -> oargs.farg [4];
312    
313     if ((nd.alpha2 *= nd.alpha2) <= FTINY)
314     nd.specfl |= SP_PURE;
315    
316     if (rayIn -> ro != NULL && isflat(rayIn -> ro -> otype))
317     nd.specfl |= SP_FLAT;
318    
319     /* Perturb normal */
320 greg 2.4 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY)) ))
321 greg 2.1 nd.pdot = raynormal(nd.pnorm, rayIn);
322     else {
323     VCOPY(nd.pnorm, rayIn -> ron);
324     nd.pdot = rayIn -> rod;
325     }
326    
327     nd.pdot = max(nd.pdot, .001);
328    
329     /* Modify material color */
330     multcolor(nd.mcolor, rayIn -> pcol);
331     nd.rspec = mat -> oargs.farg [3];
332    
333     /* Approximate Fresnel term */
334     if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
335     fresnel = FRESNE(rayIn -> rod);
336     nd.rspec += fresnel * (1 - nd.rspec);
337     }
338     else fresnel = 0;
339    
340     /* Transmission params */
341     if (mat -> otype == MAT_TRANS) {
342     nd.trans = mat -> oargs.farg [5] * (1 - nd.rspec);
343     nd.tspec = nd.trans * mat -> oargs.farg [6];
344     nd.tdiff = nd.trans - nd.tspec;
345     }
346     else nd.tdiff = nd.tspec = nd.trans = 0;
347    
348     /* Specular reflection params */
349     if (nd.rspec > FTINY) {
350     /* Specular color */
351     if (mat -> otype != MAT_METAL)
352     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
353     else if (fresnel > FTINY) {
354     d = nd.rspec * (1 - fresnel);
355     for (i = 0; i < 3; i++)
356     nd.scolor [i] = fresnel + nd.mcolor [i] * d;
357     }
358     else {
359     copycolor(nd.scolor, nd.mcolor);
360     scalecolor(nd.scolor, nd.rspec);
361     }
362     }
363     else setcolor(nd.scolor, 0, 0, 0);
364    
365     /* Diffuse reflection params */
366     nd.rdiff = 1 - nd.trans - nd.rspec;
367    
368     /* Set up probabilities */
369     prdiff = ptdiff = ptspec = colorAvg(nd.mcolor);
370     prdiff *= nd.rdiff;
371     ptdiff *= nd.tdiff;
372     prspec = colorAvg(nd.scolor);
373     ptspec *= nd.tspec;
374     albedo = prdiff + ptdiff + prspec + ptspec;
375    
376     /* Insert direct and indirect photon hits if diffuse component */
377     if (prdiff > FTINY || ptdiff > FTINY)
378     addPhotons(rayIn);
379    
380     xi = pmapRandom(rouletteState);
381    
382     if (xi > albedo)
383     /* Absorbed */
384     return 0;
385    
386     if (xi > (albedo -= prspec)) {
387     /* Specular reflection */
388     nd.specfl |= SP_REFL;
389    
390     if (nd.specfl & SP_PURE) {
391     /* Perfect specular reflection */
392     for (i = 0; i < 3; i++) {
393     /* Reflected ray */
394     nd.vrefl [i] = rayIn -> rdir [i] + 2 * nd.pdot * nd.pnorm [i];
395     }
396    
397     /* Penetration? */
398     if (hastexture && DOT(nd.vrefl, rayIn -> ron) <= FTINY)
399     for (i = 0; i < 3; i++) {
400     /* Safety measure */
401     nd.vrefl [i] = rayIn -> rdir [i] +
402     2 * rayIn -> rod * rayIn -> ron [i];
403     }
404    
405     VCOPY(rayOut.rdir, nd.vrefl);
406     }
407    
408     else if (!isoSpecPhotonScatter(&nd, &rayOut))
409     return 0;
410    
411     photonRay(rayIn, &rayOut, PMAP_SPECREFL, nd.scolor);
412     }
413    
414     else if (xi > (albedo -= ptspec)) {
415     /* Specular transmission */
416     nd.specfl |= SP_TRAN;
417    
418     if (hastexture) {
419     /* Perturb */
420     for (i = 0; i < 3; i++)
421     nd.prdir [i] = rayIn -> rdir [i] - rayIn -> pert [i];
422    
423     if (DOT(nd.prdir, rayIn -> ron) < -FTINY)
424     normalize(nd.prdir);
425     else VCOPY(nd.prdir, rayIn -> rdir);
426     }
427     else VCOPY(nd.prdir, rayIn -> rdir);
428    
429     if ((nd.specfl & (SP_TRAN | SP_PURE)) == (SP_TRAN | SP_PURE))
430     /* Perfect specular transmission */
431     VCOPY(rayOut.rdir, nd.prdir);
432     else if (!isoSpecPhotonScatter(&nd, &rayOut))
433     return 0;
434    
435     photonRay(rayIn, &rayOut, PMAP_SPECTRANS, nd.mcolor);
436     }
437    
438     else if (xi > (albedo -= prdiff)) {
439     /* Diffuse reflection */
440     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
441     diffPhotonScatter(hastexture ? nd.pnorm : rayIn -> ron, &rayOut);
442     }
443    
444     else {
445     /* Diffuse transmission */
446     flipsurface(rayIn);
447     photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
448    
449     if (hastexture) {
450     FVECT bnorm;
451     bnorm [0] = -nd.pnorm [0];
452     bnorm [1] = -nd.pnorm [1];
453     bnorm [2] = -nd.pnorm [2];
454     diffPhotonScatter(bnorm, &rayOut);
455     }
456     else diffPhotonScatter(rayIn -> ron, &rayOut);
457     }
458    
459     tracePhoton(&rayOut);
460     return 0;
461     }
462    
463    
464    
465     static void getacoords (ANISODAT *np)
466     /* Set up coordinate system for anisotropic sampling; cloned from aniso.c */
467     {
468     MFUNC *mf;
469     int i;
470    
471     mf = getfunc(np->mp, 3, 0x7, 1);
472     setfunc(np->mp, np->rp);
473     errno = 0;
474    
475     for (i = 0; i < 3; i++)
476     np->u[i] = evalue(mf->ep[i]);
477    
478     if ((errno == EDOM) | (errno == ERANGE)) {
479     objerror(np->mp, WARNING, "compute error");
480     np->specfl |= SP_BADU;
481     return;
482     }
483    
484     if (mf->fxp != &unitxf)
485     multv3(np->u, np->u, mf->fxp->xfm);
486    
487     fcross(np->v, np->pnorm, np->u);
488    
489     if (normalize(np->v) == 0.0) {
490     objerror(np->mp, WARNING, "illegal orientation vector");
491     np->specfl |= SP_BADU;
492     return;
493     }
494    
495     fcross(np->u, np->v, np->pnorm);
496     }
497    
498    
499    
500     static int anisoSpecPhotonScatter (ANISODAT *nd, RAY *rayOut)
501     /* Generate direction for anisotropically specularly reflected
502     or transmitted ray. Returns 1 if successful. */
503     {
504     FVECT h;
505     double d, d2, sinp, cosp;
506     int niter, i;
507     RAY *rayIn = nd -> rp;
508    
509     if (rayIn -> ro != NULL && isflat(rayIn -> ro -> otype))
510     nd -> specfl |= SP_FLAT;
511    
512     /* set up coordinates */
513     getacoords(nd);
514    
515     if (rayOut -> rtype & TRANS) {
516     /* Specular transmission */
517    
518     if (DOT(rayIn -> pert, rayIn -> pert) <= FTINY * FTINY)
519     VCOPY(nd -> prdir, rayIn -> rdir);
520     else {
521     /* perturb */
522     for (i = 0; i < 3; i++)
523     nd -> prdir [i] = rayIn -> rdir [i] - rayIn -> pert [i];
524    
525     if (DOT(nd -> prdir, rayIn -> ron) < -FTINY)
526     normalize(nd -> prdir);
527     else VCOPY(nd -> prdir, rayIn -> rdir);
528     }
529    
530     /* Make MAXITER attempts at getting a ray */
531     for (niter = 0; niter < MAXITER; niter++) {
532     d = 2 * PI * pmapRandom(scatterState);
533     cosp = cos(d) * nd -> u_alpha;
534     sinp = sin(d) * nd -> v_alpha;
535     d = sqrt(sqr(cosp) + sqr(sinp));
536     cosp /= d;
537     sinp /= d;
538     d2 = pmapRandom(scatterState);
539     d = d2 <= FTINY ? 1
540     : sqrt(-log(d2) /
541     (sqr(cosp) / sqr(nd -> u_alpha) +
542     sqr(sinp) / (nd -> v_alpha * nd -> u_alpha)));
543    
544     for (i = 0; i < 3; i++)
545     rayOut -> rdir [i] = nd -> prdir [i] + d *
546     (cosp * nd -> u [i] + sinp * nd -> v [i]);
547    
548     if (DOT(rayOut -> rdir, rayIn -> ron) < -FTINY) {
549     normalize(rayOut -> rdir);
550     return 1;
551     }
552     }
553    
554     return 0;
555     }
556    
557     else {
558     /* Specular reflection */
559    
560     /* Make MAXITER attempts at getting a ray */
561     for (niter = 0; niter < MAXITER; niter++) {
562     d = 2 * PI * pmapRandom(scatterState);
563     cosp = cos(d) * nd -> u_alpha;
564     sinp = sin(d) * nd -> v_alpha;
565     d = sqrt(sqr(cosp) + sqr(sinp));
566     cosp /= d;
567     sinp /= d;
568     d2 = pmapRandom(scatterState);
569     d = d2 <= FTINY ? 1
570     : sqrt(-log(d2) /
571     (sqr(cosp) / sqr(nd -> u_alpha) +
572     sqr(sinp) / (nd -> v_alpha * nd -> v_alpha)));
573    
574     for (i = 0; i < 3; i++)
575     h [i] = nd -> pnorm [i] +
576     d * (cosp * nd -> u [i] + sinp * nd -> v [i]);
577    
578     d = -2 * DOT(h, rayIn -> rdir) / (1 + d * d);
579     VSUM(rayOut -> rdir, rayIn -> rdir, h, d);
580    
581     if (DOT(rayOut -> rdir, rayIn -> ron) > FTINY)
582     return 1;
583     }
584    
585     return 0;
586     }
587     }
588    
589    
590    
591     static int anisoPhotonScatter (OBJREC *mat, RAY *rayIn)
592     /* Generate new photon ray for anisotropic material and recurse */
593     {
594     ANISODAT nd;
595     float xi, albedo, prdiff, ptdiff, prspec, ptspec;
596     RAY rayOut;
597    
598     if (mat -> oargs.nfargs != (mat -> otype == MAT_TRANS2 ? 8 : 6))
599     objerror(mat, USER, "bad number of real arguments");
600    
601     nd.rp = rayIn;
602     nd.mp = objptr(rayIn -> ro -> omod);
603    
604     /* get material color */
605     copycolor(nd.mcolor, mat -> oargs.farg);
606    
607     /* get roughness */
608     nd.specfl = 0;
609     nd.u_alpha = mat -> oargs.farg [4];
610     nd.v_alpha = mat -> oargs.farg [5];
611     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
612     objerror(mat, USER, "roughness too small");
613    
614     /* check for back side; reorient if back is visible */
615     if (rayIn -> rod < 0)
616     if (!backvis && mat -> otype != MAT_TRANS2)
617     return 0;
618     else {
619     /* get modifiers */
620     raytexture(rayIn, mat -> omod);
621     flipsurface(rayIn);
622     }
623     else raytexture(rayIn, mat -> omod);
624    
625     /* perturb normal */
626     nd.pdot = max(raynormal(nd.pnorm, rayIn), .001);
627    
628     /* modify material color */
629     multcolor(nd.mcolor, rayIn -> pcol);
630     nd.rspec = mat -> oargs.farg [3];
631    
632     /* transmission params */
633     if (mat -> otype == MAT_TRANS2) {
634     nd.trans = mat -> oargs.farg [6] * (1 - nd.rspec);
635     nd.tspec = nd.trans * mat -> oargs.farg [7];
636     nd.tdiff = nd.trans - nd.tspec;
637     if (nd.tspec > FTINY)
638     nd.specfl |= SP_TRAN;
639     }
640     else nd.tdiff = nd.tspec = nd.trans = 0;
641    
642     /* specular reflection params */
643     if (nd.rspec > FTINY) {
644     nd.specfl |= SP_REFL;
645    
646     /* comput e specular color */
647     if (mat -> otype == MAT_METAL2)
648     copycolor(nd.scolor, nd.mcolor);
649     else setcolor(nd.scolor, 1, 1, 1);
650    
651     scalecolor(nd.scolor, nd.rspec);
652     }
653     else setcolor(nd.scolor, 0, 0, 0);
654    
655     /* diffuse reflection params */
656     nd.rdiff = 1 - nd.trans - nd.rspec;
657    
658     /* Set up probabilities */
659     prdiff = ptdiff = ptspec = colorAvg(nd.mcolor);
660     prdiff *= nd.rdiff;
661     ptdiff *= nd.tdiff;
662     prspec = colorAvg(nd.scolor);
663     ptspec *= nd.tspec;
664     albedo = prdiff + ptdiff + prspec + ptspec;
665    
666     /* Insert direct and indirect photon hits if diffuse component */
667     if (prdiff > FTINY || ptdiff > FTINY)
668     addPhotons(rayIn);
669    
670     xi = pmapRandom(rouletteState);
671    
672     if (xi > albedo)
673     /* Absorbed */
674     return 0;
675    
676     if (xi > (albedo -= prspec))
677     /* Specular reflection */
678     if (!(nd.specfl & SP_BADU)) {
679     photonRay(rayIn, &rayOut, PMAP_SPECREFL, nd.scolor);
680    
681     if (!anisoSpecPhotonScatter(&nd, &rayOut))
682     return 0;
683     }
684     else return 0;
685    
686     else if (xi > (albedo -= ptspec))
687     /* Specular transmission */
688    
689     if (!(nd.specfl & SP_BADU)) {
690     /* Specular transmission */
691     photonRay(rayIn, &rayOut, PMAP_SPECTRANS, nd.mcolor);
692    
693     if (!anisoSpecPhotonScatter(&nd, &rayOut))
694     return 0;
695     }
696     else return 0;
697    
698     else if (xi > (albedo -= prdiff)) {
699     /* Diffuse reflection */
700     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
701     diffPhotonScatter(nd.pnorm, &rayOut);
702     }
703    
704     else {
705     /* Diffuse transmission */
706     FVECT bnorm;
707     flipsurface(rayIn);
708     bnorm [0] = -nd.pnorm [0];
709     bnorm [1] = -nd.pnorm [1];
710     bnorm [2] = -nd.pnorm [2];
711    
712     photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
713     diffPhotonScatter(bnorm, &rayOut);
714     }
715    
716     tracePhoton(&rayOut);
717     return 0;
718     }
719    
720    
721     static double mylog (double x)
722     /* special log for extinction coefficients; cloned from dielectric.c */
723     {
724     if (x < 1e-40)
725     return(-100.);
726    
727     if (x >= 1.)
728     return(0.);
729    
730     return(log(x));
731     }
732    
733    
734     static int dielectricPhotonScatter (OBJREC *mat, RAY *rayIn)
735     /* Generate new photon ray for dielectric material and recurse */
736     {
737     double cos1, cos2, nratio, d1, d2, refl;
738     COLOR ctrans, talb;
739     FVECT dnorm;
740     int hastexture, i;
741     RAY rayOut;
742    
743     if (mat -> oargs.nfargs != (mat -> otype == MAT_DIELECTRIC ? 5 : 8))
744     objerror(mat, USER, "bad arguments");
745    
746     /* get modifiers */
747     raytexture(rayIn, mat -> omod);
748    
749 greg 2.4 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > FTINY * FTINY)))
750 greg 2.1 /* Perturb normal */
751     cos1 = raynormal(dnorm, rayIn);
752     else {
753     VCOPY(dnorm, rayIn -> ron);
754     cos1 = rayIn -> rod;
755     }
756    
757     /* index of refraction */
758     nratio = mat -> otype ==
759     MAT_DIELECTRIC ? mat -> oargs.farg [3] + mat -> oargs.farg [4] / MLAMBDA
760     : mat -> oargs.farg [3] / mat -> oargs.farg [7];
761    
762     if (cos1 < 0) {
763     /* inside */
764     hastexture = -hastexture;
765     cos1 = -cos1;
766     dnorm [0] = -dnorm [0];
767     dnorm [1] = -dnorm [1];
768     dnorm [2] = -dnorm [2];
769     setcolor(rayIn -> cext,
770     -mylog(mat -> oargs.farg [0] * rayIn -> pcol [0]),
771     -mylog(mat -> oargs.farg [1] * rayIn -> pcol [1]),
772     -mylog(mat -> oargs.farg [2] * rayIn -> pcol [2]));
773     setcolor(rayIn -> albedo, 0, 0, 0);
774     rayIn -> gecc = 0;
775    
776     if (mat -> otype == MAT_INTERFACE) {
777     setcolor(ctrans,
778     -mylog(mat -> oargs.farg [4] * rayIn -> pcol [0]),
779     -mylog(mat -> oargs.farg [5] * rayIn -> pcol [1]),
780     -mylog(mat -> oargs.farg [6] * rayIn -> pcol [2]));
781     setcolor(talb, 0, 0, 0);
782     }
783     else {
784     copycolor(ctrans, cextinction);
785     copycolor(talb, salbedo);
786     }
787     }
788    
789     else {
790     /* outside */
791     nratio = 1.0 / nratio;
792     setcolor(ctrans,
793     -mylog(mat -> oargs.farg [0] * rayIn -> pcol [0]),
794     -mylog(mat -> oargs.farg [1] * rayIn -> pcol [1]),
795     -mylog(mat -> oargs.farg [2] * rayIn -> pcol [2]));
796     setcolor(talb, 0, 0, 0);
797    
798     if (mat -> otype == MAT_INTERFACE) {
799     setcolor(rayIn -> cext,
800     -mylog(mat -> oargs.farg [4] * rayIn -> pcol [0]),
801     -mylog(mat -> oargs.farg [5] * rayIn -> pcol [1]),
802     -mylog(mat -> oargs.farg [6] * rayIn -> pcol [2]));
803     setcolor(rayIn -> albedo, 0, 0, 0);
804     rayIn -> gecc = 0;
805     }
806     }
807    
808     /* compute cos theta2 */
809     d2 = 1 - sqr(nratio) * (1 - sqr(cos1));
810    
811     if (d2 < FTINY) {
812     /* Total reflection */
813     refl = cos2 = 1.0;
814     }
815     else {
816     /* Refraction, compute Fresnel's equations */
817     cos2 = sqrt(d2);
818     d1 = cos1;
819     d2 = nratio * cos2;
820     d1 = (d1 - d2) / (d1 + d2);
821     refl = sqr(d1);
822     d1 = 1 / cos1;
823     d2 = nratio / cos2;
824     d1 = (d1 - d2) / (d1 + d2);
825     refl += sqr(d1);
826     refl *= 0.5;
827     }
828    
829     if (pmapRandom(rouletteState) > refl) {
830     /* Refraction */
831     photonRay(rayIn, &rayOut, PMAP_REFRACT, NULL);
832     d1 = nratio * cos1 - cos2;
833    
834     for (i = 0; i < 3; i++)
835     rayOut.rdir [i] = nratio * rayIn -> rdir [i] + d1 * dnorm [i];
836    
837     if (hastexture && DOT(rayOut.rdir, rayIn -> ron) * hastexture >= -FTINY) {
838     d1 *= hastexture;
839    
840     for (i = 0; i < 3; i++)
841     rayOut.rdir [i] = nratio * rayIn -> rdir [i] +
842     d1 * rayIn -> ron [i];
843    
844     normalize(rayOut.rdir);
845     }
846    
847     copycolor(rayOut.cext, ctrans);
848     copycolor(rayOut.albedo, talb);
849     }
850    
851     else {
852     /* Reflection */
853     photonRay(rayIn, &rayOut, PMAP_SPECREFL, NULL);
854     VSUM(rayOut.rdir, rayIn -> rdir, dnorm, 2 * cos1);
855    
856     if (hastexture && DOT(rayOut.rdir, rayIn -> ron) * hastexture <= FTINY)
857     for (i = 0; i < 3; i++)
858     rayOut.rdir [i] = rayIn -> rdir [i] +
859     2 * rayIn -> rod * rayIn -> ron [i];
860     }
861    
862     /* Ray is modified by medium defined by cext and albedo in
863     * photonParticipate() */
864     tracePhoton(&rayOut);
865    
866     return 0;
867     }
868    
869    
870    
871     static int glassPhotonScatter (OBJREC *mat, RAY *rayIn)
872     /* Generate new photon ray for glass material and recurse */
873     {
874     float albedo, xi, ptrans;
875     COLOR mcolor, refl, trans;
876     double pdot, cos2, d, r1e, r1m, rindex = 0.0;
877     FVECT pnorm, pdir;
878     int hastexture, i;
879     RAY rayOut;
880    
881     /* check arguments */
882     if (mat -> oargs.nfargs == 3)
883     rindex = RINDEX;
884     else if (mat -> oargs.nfargs == 4)
885     rindex = mat -> oargs.farg [3];
886     else objerror(mat, USER, "bad arguments");
887    
888     copycolor(mcolor, mat -> oargs.farg);
889    
890     /* get modifiers */
891     raytexture(rayIn, mat -> omod);
892    
893     /* reorient if necessary */
894     if (rayIn -> rod < 0)
895     flipsurface(rayIn);
896 greg 2.4 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > FTINY * FTINY) ))
897 greg 2.1 pdot = raynormal(pnorm, rayIn);
898     else {
899     VCOPY(pnorm, rayIn -> ron);
900     pdot = rayIn -> rod;
901     }
902    
903     /* Modify material color */
904     multcolor(mcolor, rayIn -> pcol);
905    
906     /* angular transmission */
907     cos2 = sqrt((1 - 1 / sqr(rindex)) + sqr(pdot / rindex));
908     setcolor(mcolor, pow(mcolor [0], 1 / cos2), pow(mcolor [1], 1 / cos2),
909     pow(mcolor [2], 1 / cos2));
910    
911     /* compute reflection */
912     r1e = (pdot - rindex * cos2) / (pdot + rindex * cos2);
913     r1e *= r1e;
914     r1m = (1 / pdot - rindex / cos2) / (1 / pdot + rindex / cos2);
915     r1m *= r1m;
916    
917     for (i = 0; i < 3; i++) {
918     double r1ed2, r1md2, d2;
919    
920     d = mcolor [i];
921     d2 = sqr(d);
922     r1ed2 = sqr(r1e) * d2;
923     r1md2 = sqr(r1m) * d2;
924    
925     /* compute transmittance */
926     trans [i] = 0.5 * d *
927     (sqr(1 - r1e) / (1 - r1ed2) + sqr(1 - r1m) / (1 - r1md2));
928    
929     /* compute reflectance */
930     refl [i] = 0.5 * (r1e * (1 + (1 - 2 * r1e) * d2) / (1 - r1ed2) +
931     r1m * (1 + (1 - 2 * r1m) * d2) / (1 - r1md2));
932     }
933    
934     /* Set up probabilities */
935     ptrans = colorAvg(trans);
936     albedo = colorAvg(refl) + ptrans;
937     xi = pmapRandom(rouletteState);
938    
939    
940     if (xi > albedo)
941     /* Absorbed */
942     return 0;
943    
944     if (xi > (albedo -= ptrans)) {
945     /* Transmitted */
946    
947     if (hastexture) {
948     /* perturb direction */
949     VSUM(pdir, rayIn -> rdir, rayIn -> pert, 2 * (1 - rindex));
950    
951     if (normalize(pdir) == 0) {
952     objerror(mat, WARNING, "bad perturbation");
953     VCOPY(pdir, rayIn -> rdir);
954     }
955     }
956     else VCOPY(pdir, rayIn -> rdir);
957    
958     VCOPY(rayOut.rdir, pdir);
959     photonRay(rayIn, &rayOut, PMAP_SPECTRANS, mcolor);
960     }
961    
962     else {
963     /* reflected ray */
964     VSUM(rayOut.rdir, rayIn -> rdir, pnorm, 2 * pdot);
965     photonRay(rayIn, &rayOut, PMAP_SPECREFL, mcolor);
966     }
967    
968     tracePhoton(&rayOut);
969     return 0;
970     }
971    
972    
973    
974     static int aliasPhotonScatter (OBJREC *mat, RAY *rayIn)
975     /* Transfer photon scattering to alias target */
976     {
977     OBJECT aliasObj;
978     OBJREC aliasRec;
979    
980     /* Straight replacement? */
981     if (!mat -> oargs.nsargs) {
982     mat = objptr(mat -> omod);
983     photonScatter [mat -> otype] (mat, rayIn);
984    
985     return 0;
986     }
987    
988     /* Else replace alias */
989     if (mat -> oargs.nsargs != 1)
990     objerror(mat, INTERNAL, "bad # string arguments");
991    
992     aliasObj = lastmod(objndx(mat), mat -> oargs.sarg [0]);
993    
994     if (aliasObj < 0)
995     objerror(mat, USER, "bad reference");
996    
997     memcpy(&aliasRec, objptr(aliasObj), sizeof(OBJREC));
998    
999     /* Substitute modifier */
1000     aliasRec.omod = mat -> omod;
1001    
1002     /* Replacement scattering routine */
1003     photonScatter [aliasRec.otype] (&aliasRec, rayIn);
1004     return 0;
1005     }
1006    
1007    
1008    
1009     static int clipPhotonScatter (OBJREC *mat, RAY *rayIn)
1010     /* Generate new photon ray for antimatter material and recurse */
1011     {
1012     OBJECT obj = objndx(mat), mod, cset [MAXSET + 1], *modset;
1013     int entering, inside = 0, i;
1014     const RAY *rp;
1015     RAY rayOut;
1016    
1017     if ((modset = (OBJECT*)mat -> os) == NULL) {
1018     if (mat -> oargs.nsargs < 1 || mat -> oargs.nsargs > MAXSET)
1019     objerror(mat, USER, "bad # arguments");
1020    
1021     modset = (OBJECT*)malloc((mat -> oargs.nsargs + 1) * sizeof(OBJECT));
1022    
1023     if (modset == NULL)
1024     error(SYSTEM, "out of memory in clipPhotonScatter");
1025     modset [0] = 0;
1026    
1027     for (i = 0; i < mat -> oargs.nsargs; i++) {
1028     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1029     continue;
1030    
1031     if ((mod = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1032     sprintf(errmsg, "unknown modifier \"%s\"", mat -> oargs.sarg [i]);
1033     objerror(mat, WARNING, errmsg);
1034     continue;
1035     }
1036    
1037     if (inset(modset, mod)) {
1038     objerror(mat, WARNING, "duplicate modifier");
1039     continue;
1040     }
1041    
1042     insertelem(modset, mod);
1043     }
1044    
1045     mat -> os = (char*)modset;
1046     }
1047    
1048     if (rayIn -> clipset != NULL)
1049     setcopy(cset, rayIn -> clipset);
1050     else cset [0] = 0;
1051    
1052     entering = rayIn -> rod > 0;
1053    
1054     /* Store photon incident from front if material defined as sensor */
1055     if (entering && inset(photonSensorSet, obj))
1056     addPhotons(rayIn);
1057    
1058     for (i = modset [0]; i > 0; i--) {
1059     if (entering) {
1060     if (!inset(cset, modset [i])) {
1061     if (cset [0] >= MAXSET)
1062     error(INTERNAL, "set overflow in clipPhotonScatter");
1063     insertelem(cset, modset [i]);
1064     }
1065     }
1066     else if (inset(cset, modset [i]))
1067     deletelem(cset, modset [i]);
1068     }
1069    
1070     rayIn -> newcset = cset;
1071    
1072     if (strcmp(mat -> oargs.sarg [0], VOIDID)) {
1073     for (rp = rayIn; rp -> parent != NULL; rp = rp -> parent) {
1074     if ( !(rp -> rtype & RAYREFL) && rp->parent->ro != NULL &&
1075     inset(modset, rp -> parent -> ro -> omod)) {
1076    
1077     if (rp -> parent -> rod > 0)
1078     inside++;
1079     else inside--;
1080     }
1081     }
1082    
1083     if (inside > 0) {
1084     flipsurface(rayIn);
1085     mat = objptr(lastmod(obj, mat -> oargs.sarg [0]));
1086     photonScatter [mat -> otype] (mat, rayIn);
1087     return 0;
1088     }
1089     }
1090    
1091     /* Else transfer ray */
1092     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1093     tracePhoton(&rayOut);
1094    
1095     return 0;
1096     }
1097    
1098    
1099    
1100     static int mirrorPhotonScatter (OBJREC *mat, RAY *rayIn)
1101     /* Generate new photon ray for mirror material and recurse */
1102     {
1103     RAY rayOut;
1104     int rpure = 1, i;
1105     FVECT pnorm;
1106     double pdot;
1107     float albedo;
1108     COLOR mcolor;
1109    
1110     /* check arguments */
1111     if (mat -> oargs.nfargs != 3 || mat -> oargs.nsargs > 1)
1112     objerror(mat, USER, "bad number of arguments");
1113    
1114     /* back is black */
1115     if (rayIn -> rod < 0)
1116     return 0;
1117    
1118     /* get modifiers */
1119     raytexture(rayIn, mat -> omod);
1120    
1121     /* assign material color */
1122     copycolor(mcolor, mat -> oargs.farg);
1123     multcolor(mcolor, rayIn -> pcol);
1124    
1125     /* Set up probabilities */
1126     albedo = colorAvg(mcolor);
1127    
1128     if (pmapRandom(rouletteState) > albedo)
1129     /* Absorbed */
1130     return 0;
1131    
1132     /* compute reflected ray */
1133     photonRay(rayIn, &rayOut, PMAP_SPECREFL, mcolor);
1134    
1135     if (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY)) {
1136     /* use textures */
1137     pdot = raynormal(pnorm, rayIn);
1138    
1139     for (i = 0; i < 3; i++)
1140     rayOut.rdir [i] = rayIn -> rdir [i] + 2 * pdot * pnorm [i];
1141    
1142     rpure = 0;
1143     }
1144    
1145     /* Check for penetration */
1146     if (rpure || DOT(rayOut.rdir, rayIn -> ron) <= FTINY)
1147     for (i = 0; i < 3; i++)
1148     rayOut.rdir [i] = rayIn -> rdir [i] +
1149     2 * rayIn -> rod * rayIn -> ron [i];
1150    
1151     tracePhoton(&rayOut);
1152     return 0;
1153     }
1154    
1155    
1156    
1157     static int mistPhotonScatter (OBJREC *mat, RAY *rayIn)
1158     /* Generate new photon ray within mist and recurse */
1159     {
1160     COLOR mext;
1161     RREAL re, ge, be;
1162     RAY rayOut;
1163    
1164     /* check arguments */
1165     if (mat -> oargs.nfargs > 7)
1166     objerror(mat, USER, "bad arguments");
1167    
1168     if (mat -> oargs.nfargs > 2) {
1169     /* compute extinction */
1170     copycolor(mext, mat -> oargs.farg);
1171     /* get modifiers */
1172     raytexture(rayIn, mat -> omod);
1173     multcolor(mext, rayIn -> pcol);
1174     }
1175     else setcolor(mext, 0, 0, 0);
1176    
1177     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1178    
1179     if (rayIn -> rod > 0) {
1180     /* entering ray */
1181     addcolor(rayOut.cext, mext);
1182    
1183     if (mat -> oargs.nfargs > 5)
1184     copycolor(rayOut.albedo, mat -> oargs.farg + 3);
1185     if (mat -> oargs.nfargs > 6)
1186     rayOut.gecc = mat -> oargs.farg [6];
1187     }
1188    
1189     else {
1190     /* leaving ray */
1191     re = max(rayIn -> cext [0] - mext [0], cextinction [0]);
1192     ge = max(rayIn -> cext [1] - mext [1], cextinction [1]);
1193     be = max(rayIn -> cext [2] - mext [2], cextinction [2]);
1194     setcolor(rayOut.cext, re, ge, be);
1195    
1196     if (mat -> oargs.nfargs > 5)
1197     copycolor(rayOut.albedo, salbedo);
1198     if (mat -> oargs.nfargs > 6)
1199     rayOut.gecc = seccg;
1200     }
1201    
1202     tracePhoton(&rayOut);
1203    
1204     return 0;
1205     }
1206    
1207    
1208    
1209     static int mx_dataPhotonScatter (OBJREC *mat, RAY *rayIn)
1210     /* Pass photon on to materials selected by mixture data */
1211     {
1212     OBJECT obj;
1213     double coef, pt [MAXDIM];
1214     DATARRAY *dp;
1215     OBJECT mod [2];
1216     MFUNC *mf;
1217     int i;
1218    
1219     if (mat -> oargs.nsargs < 6)
1220     objerror(mat, USER, "bad # arguments");
1221    
1222     obj = objndx(mat);
1223    
1224     for (i = 0; i < 2; i++)
1225     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1226     mod [i] = OVOID;
1227     else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1228     sprintf(errmsg, "undefined modifier \"%s\"", mat -> oargs.sarg [i]);
1229     objerror(mat, USER, errmsg);
1230     }
1231    
1232     dp = getdata(mat -> oargs.sarg [3]);
1233     i = (1 << dp -> nd) - 1;
1234     mf = getfunc(mat, 4, i << 5, 0);
1235     setfunc(mat, rayIn);
1236     errno = 0;
1237    
1238     for (i = 0; i < dp -> nd; i++) {
1239     pt [i] = evalue(mf -> ep [i]);
1240    
1241     if (errno) {
1242     objerror(mat, WARNING, "compute error");
1243     return 0;
1244     }
1245     }
1246    
1247     coef = datavalue(dp, pt);
1248     errno = 0;
1249     coef = funvalue(mat -> oargs.sarg [2], 1, &coef);
1250    
1251     if (errno)
1252     objerror(mat, WARNING, "compute error");
1253     else {
1254     mat = objptr(mod [pmapRandom(rouletteState) < coef ? 0 : 1]);
1255     photonScatter [mat -> otype] (mat, rayIn);
1256     }
1257    
1258     return 0;
1259     }
1260    
1261    
1262    
1263     static int mx_pdataPhotonScatter (OBJREC *mat, RAY *rayIn)
1264     /* Pass photon on to materials selected by mixture picture */
1265     {
1266     OBJECT obj;
1267     double col [3], coef, pt [MAXDIM];
1268     DATARRAY *dp;
1269     OBJECT mod [2];
1270     MFUNC *mf;
1271     int i;
1272    
1273     if (mat -> oargs.nsargs < 7)
1274     objerror(mat, USER, "bad # arguments");
1275    
1276     obj = objndx(mat);
1277    
1278     for (i = 0; i < 2; i++)
1279     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1280     mod [i] = OVOID;
1281     else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1282     sprintf(errmsg, "undefined modifier \"%s\"", mat -> oargs.sarg [i]);
1283     objerror(mat, USER, errmsg);
1284     }
1285    
1286     dp = getpict(mat -> oargs.sarg [3]);
1287     mf = getfunc(mat, 4, 0x3 << 5, 0);
1288     setfunc(mat, rayIn);
1289     errno = 0;
1290     pt [1] = evalue(mf -> ep [0]);
1291     pt [0] = evalue(mf -> ep [1]);
1292    
1293     if (errno) {
1294     objerror(mat, WARNING, "compute error");
1295     return 0;
1296     }
1297    
1298     for (i = 0; i < 3; i++)
1299     col [i] = datavalue(dp + i, pt);
1300    
1301     errno = 0;
1302     coef = funvalue(mat -> oargs.sarg [2], 3, col);
1303    
1304     if (errno)
1305     objerror(mat, WARNING, "compute error");
1306     else {
1307     mat = objptr(mod [pmapRandom(rouletteState) < coef ? 0 : 1]);
1308     photonScatter [mat -> otype] (mat, rayIn);
1309     }
1310    
1311     return 0;
1312     }
1313    
1314    
1315    
1316     static int mx_funcPhotonScatter (OBJREC *mat, RAY *rayIn)
1317     /* Pass photon on to materials selected by mixture function */
1318     {
1319     OBJECT obj, mod [2];
1320     int i;
1321     double coef;
1322     MFUNC *mf;
1323    
1324     if (mat -> oargs.nsargs < 4)
1325     objerror(mat, USER, "bad # arguments");
1326    
1327     obj = objndx(mat);
1328    
1329     for (i = 0; i < 2; i++)
1330     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1331     mod [i] = OVOID;
1332     else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1333     sprintf(errmsg, "undefined modifier \"%s\"", mat -> oargs.sarg [i]);
1334     objerror(mat, USER, errmsg);
1335     }
1336    
1337     mf = getfunc(mat, 3, 0x4, 0);
1338     setfunc(mat, rayIn);
1339     errno = 0;
1340    
1341     /* bound coefficient */
1342     coef = min(1, max(0, evalue(mf -> ep [0])));
1343    
1344     if (errno)
1345     objerror(mat, WARNING, "compute error");
1346     else {
1347     mat = objptr(mod [pmapRandom(rouletteState) < coef ? 0 : 1]);
1348     photonScatter [mat -> otype] (mat, rayIn);
1349     }
1350    
1351     return 0;
1352     }
1353    
1354    
1355    
1356     static int pattexPhotonScatter (OBJREC *mat, RAY *rayIn)
1357     /* Generate new photon ray for pattern or texture modifier and recurse.
1358     This code is brought to you by Henkel! :^) */
1359     {
1360     RAY rayOut;
1361    
1362     /* Get pattern */
1363     ofun [mat -> otype].funp(mat, rayIn);
1364     if (mat -> omod != OVOID) {
1365     /* Scatter using modifier (if any) */
1366     mat = objptr(mat -> omod);
1367     photonScatter [mat -> otype] (mat, rayIn);
1368     }
1369     else {
1370     /* Transfer ray if no modifier */
1371     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1372     tracePhoton(&rayOut);
1373     }
1374    
1375     return 0;
1376     }
1377    
1378    
1379    
1380 rschregle 2.3 /*
1381 rschregle 2.7 ==================================================================
1382 rschregle 2.3 The following code is
1383     (c) Lucerne University of Applied Sciences and Arts,
1384     supported by the Swiss National Science Foundation (SNSF, #147053)
1385 rschregle 2.7 ==================================================================
1386 rschregle 2.3 */
1387    
1388 greg 2.1 static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1389     /* Generate new photon ray for BSDF modifier and recurse. */
1390     {
1391     int hitFront;
1392     SDError err;
1393 rschregle 2.2 SDValue bsdfVal;
1394 greg 2.1 FVECT upvec;
1395     MFUNC *mf;
1396     BSDFDAT nd;
1397     RAY rayOut;
1398 rschregle 2.2 COLOR bsdfRGB;
1399 greg 2.6 int transmitted;
1400 rschregle 2.2 double prDiff, ptDiff, prDiffSD, ptDiffSD, prSpecSD, ptSpecSD,
1401 greg 2.6 albedo, xi;
1402     const double patAlb = bright(rayIn -> pcol);
1403 rschregle 2.2
1404 greg 2.1 /* Following code adapted from m_bsdf() */
1405     /* Check arguments */
1406     if (mat -> oargs.nsargs < 6 || mat -> oargs.nfargs > 9 ||
1407     mat -> oargs.nfargs % 3)
1408     objerror(mat, USER, "bad # arguments");
1409    
1410     hitFront = (rayIn -> rod > 0);
1411    
1412     /* Load cal file */
1413     mf = getfunc(mat, 5, 0x1d, 1);
1414    
1415     /* Get thickness */
1416     nd.thick = evalue(mf -> ep [0]);
1417     if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
1418     nd.thick = .0;
1419 rschregle 2.7
1420 greg 2.1 /* Get BSDF data */
1421     nd.sd = loadBSDF(mat -> oargs.sarg [1]);
1422    
1423 rschregle 2.2 /* Extra diffuse reflectance from material def */
1424 greg 2.1 if (hitFront) {
1425     if (mat -> oargs.nfargs < 3)
1426     setcolor(nd.rdiff, .0, .0, .0);
1427     else setcolor(nd.rdiff, mat -> oargs.farg [0], mat -> oargs.farg [1],
1428     mat -> oargs.farg [2]);
1429     }
1430     else if (mat -> oargs.nfargs < 6) {
1431     /* Check for absorbing backside */
1432     if (!backvis && !nd.sd -> rb && !nd.sd -> tf) {
1433     SDfreeCache(nd.sd);
1434     return 0;
1435     }
1436    
1437     setcolor(nd.rdiff, .0, .0, .0);
1438     }
1439     else setcolor(nd.rdiff, mat -> oargs.farg [3], mat -> oargs.farg [4],
1440     mat -> oargs.farg [5]);
1441    
1442 rschregle 2.2 /* Extra diffuse transmittance from material def */
1443 greg 2.1 if (mat -> oargs.nfargs < 9)
1444     setcolor(nd.tdiff, .0, .0, .0);
1445     else setcolor(nd.tdiff, mat -> oargs.farg [6], mat -> oargs.farg [7],
1446     mat -> oargs.farg [8]);
1447    
1448     nd.mp = mat;
1449     nd.pr = rayIn;
1450    
1451     /* Get modifiers */
1452     raytexture(rayIn, mat -> omod);
1453    
1454     /* Modify diffuse values */
1455     multcolor(nd.rdiff, rayIn -> pcol);
1456     multcolor(nd.tdiff, rayIn -> pcol);
1457    
1458     /* Get up vector & xform to world coords */
1459     upvec [0] = evalue(mf -> ep [1]);
1460     upvec [1] = evalue(mf -> ep [2]);
1461     upvec [2] = evalue(mf -> ep [3]);
1462    
1463     if (mf -> fxp != &unitxf) {
1464     multv3(upvec, upvec, mf -> fxp -> xfm);
1465     nd.thick *= mf -> fxp -> sca;
1466     }
1467    
1468     if (rayIn -> rox) {
1469     multv3(upvec, upvec, rayIn -> rox -> f.xfm);
1470     nd.thick *= rayIn -> rox -> f.sca;
1471     }
1472    
1473     /* Perturb normal */
1474     raynormal(nd.pnorm, rayIn);
1475    
1476     /* Xform incident dir to local BSDF coords */
1477     err = SDcompXform(nd.toloc, nd.pnorm, upvec);
1478    
1479     if (!err) {
1480     nd.vray [0] = -rayIn -> rdir [0];
1481     nd.vray [1] = -rayIn -> rdir [1];
1482     nd.vray [2] = -rayIn -> rdir [2];
1483     err = SDmapDir(nd.vray, nd.toloc, nd.vray);
1484     }
1485    
1486     if (!err)
1487     err = SDinvXform(nd.fromloc, nd.toloc);
1488    
1489     if (err) {
1490     objerror(mat, WARNING, "Illegal orientation vector");
1491     return 0;
1492     }
1493    
1494     /* Determine BSDF resolution */
1495     err = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin + SDqueryMax, nd.sd);
1496    
1497     if (err)
1498     objerror(mat, USER, transSDError(err));
1499    
1500     nd.sr_vpsa [0] = sqrt(nd.sr_vpsa [0]);
1501     nd.sr_vpsa [1] = sqrt(nd.sr_vpsa [1]);
1502    
1503     /* Orient perturbed normal towards incident side */
1504     if (!hitFront) {
1505     nd.pnorm [0] = -nd.pnorm [0];
1506     nd.pnorm [1] = -nd.pnorm [1];
1507     nd.pnorm [2] = -nd.pnorm [2];
1508     }
1509 rschregle 2.2
1510     /* Get scatter probabilities (weighted by pattern except for spec refl)
1511     * prDiff, ptDiff: extra diffuse component in material def
1512     * prDiffSD, ptDiffSD: diffuse (constant) component in SDF
1513     * prSpecSD, ptSpecSD: non-diffuse ("specular") component in SDF
1514     * albedo: sum of above, inverse absorption probability */
1515     prDiff = colorAvg(nd.rdiff);
1516     ptDiff = colorAvg(nd.tdiff);
1517     prDiffSD = patAlb * SDdirectHemi(nd.vray, SDsampDf | SDsampR, nd.sd);
1518     ptDiffSD = patAlb * SDdirectHemi(nd.vray, SDsampDf | SDsampT, nd.sd);
1519     prSpecSD = SDdirectHemi(nd.vray, SDsampSp | SDsampR, nd.sd);
1520     ptSpecSD = patAlb * SDdirectHemi(nd.vray, SDsampSp | SDsampT, nd.sd);
1521     albedo = prDiff + ptDiff + prDiffSD + ptDiffSD + prSpecSD + ptSpecSD;
1522    
1523     /*
1524     if (albedo > 1)
1525     objerror(mat, WARNING, "Invalid albedo");
1526     */
1527    
1528     /* Insert direct and indirect photon hits if diffuse component */
1529     if (prDiff + ptDiff + prDiffSD + ptDiffSD > FTINY)
1530     addPhotons(rayIn);
1531    
1532 greg 2.6 xi = pmapRandom(rouletteState);
1533 rschregle 2.2
1534     if (xi > albedo)
1535     /* Absorbtion */
1536     return 0;
1537    
1538 greg 2.6 transmitted = 0;
1539    
1540 rschregle 2.2 if ((xi -= prDiff) <= 0) {
1541     /* Diffuse reflection (extra component in material def) */
1542     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.rdiff);
1543     diffPhotonScatter(nd.pnorm, &rayOut);
1544     }
1545 greg 2.1
1546 rschregle 2.2 else if ((xi -= ptDiff) <= 0) {
1547     /* Diffuse transmission (extra component in material def) */
1548     flipsurface(rayIn);
1549 greg 2.6 nd.thick = -nd.thick;
1550 rschregle 2.2 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.tdiff);
1551 greg 2.6 diffPhotonScatter(nd.pnorm, &rayOut);
1552     transmitted = 1;
1553 rschregle 2.2 }
1554 greg 2.6
1555 rschregle 2.2 else { /* Sample SDF */
1556     if ((xi -= prDiffSD) <= 0) {
1557     /* Diffuse SDF reflection (constant component) */
1558 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1559 rschregle 2.2 SDsampDf | SDsampR, nd.sd)))
1560     objerror(mat, USER, transSDError(err));
1561    
1562     /* Apply pattern to spectral component */
1563     ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1564     multcolor(bsdfRGB, rayIn -> pcol);
1565     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, bsdfRGB);
1566 greg 2.1 }
1567 rschregle 2.2
1568     else if ((xi -= ptDiffSD) <= 0) {
1569     /* Diffuse SDF transmission (constant component) */
1570 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1571 rschregle 2.2 SDsampDf | SDsampT, nd.sd)))
1572     objerror(mat, USER, transSDError(err));
1573 greg 2.1
1574 rschregle 2.2 /* Apply pattern to spectral component */
1575     ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1576     multcolor(bsdfRGB, rayIn -> pcol);
1577     addcolor(bsdfRGB, nd.tdiff);
1578     flipsurface(rayIn); /* Necessary? */
1579 rschregle 2.7 nd.thick = -nd.thick;
1580     photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, bsdfRGB);
1581 greg 2.6 transmitted = 1;
1582 greg 2.1 }
1583 rschregle 2.2
1584     else if ((xi -= prSpecSD) <= 0) {
1585     /* Non-diffuse ("specular") SDF reflection */
1586 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1587 rschregle 2.2 SDsampSp | SDsampR, nd.sd)))
1588     objerror(mat, USER, transSDError(err));
1589 greg 2.1
1590 rschregle 2.2 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1591     photonRay(rayIn, &rayOut, PMAP_SPECREFL, bsdfRGB);
1592 greg 2.1 }
1593    
1594     else {
1595 rschregle 2.2 /* Non-diffuse ("specular") SDF transmission */
1596 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1597 rschregle 2.2 SDsampSp | SDsampT, nd.sd)))
1598     objerror(mat, USER, transSDError(err));
1599 greg 2.1
1600 rschregle 2.2 /* Apply pattern to spectral component */
1601 greg 2.1 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1602 rschregle 2.2 multcolor(bsdfRGB, rayIn -> pcol);
1603     flipsurface(rayIn); /* Necessary? */
1604 rschregle 2.7 nd.thick = -nd.thick;
1605 rschregle 2.2 photonRay(rayIn, &rayOut, PMAP_SPECTRANS, bsdfRGB);
1606 greg 2.6 transmitted = 1;
1607 rschregle 2.2 }
1608    
1609     /* Xform outgoing dir to world coords */
1610     if ((err = SDmapDir(rayOut.rdir, nd.fromloc, nd.vray))) {
1611     objerror(mat, USER, transSDError(err));
1612     return 0;
1613 greg 2.1 }
1614 rschregle 2.2 }
1615 greg 2.1
1616 rschregle 2.2 /* Clean up */
1617 greg 2.1 SDfreeCache(nd.sd);
1618    
1619 greg 2.6 /* Need to offset ray origin to get past detail geometry? */
1620     if (transmitted && nd.thick != 0)
1621 rschregle 2.7 VSUM(rayOut.rorg, rayOut.rorg, rayIn -> ron, -nd.thick);
1622 greg 2.6
1623 greg 2.1 tracePhoton(&rayOut);
1624     return 0;
1625     }
1626    
1627    
1628    
1629     static int lightPhotonScatter (OBJREC* mat, RAY* ray)
1630     /* Light sources doan' reflect */
1631     {
1632     return 0;
1633     }
1634    
1635    
1636    
1637     void initPhotonScatterFuncs ()
1638     /* Init photonScatter[] dispatch table */
1639     {
1640     int i;
1641    
1642     for (i = 0; i < NUMOTYPE; i++)
1643     photonScatter [i] = o_default;
1644    
1645     photonScatter [MAT_LIGHT] = photonScatter [MAT_ILLUM] =
1646     photonScatter [MAT_GLOW] = photonScatter [MAT_SPOT] =
1647     lightPhotonScatter;
1648    
1649     photonScatter [MAT_PLASTIC] = photonScatter [MAT_METAL] =
1650     photonScatter [MAT_TRANS] = normalPhotonScatter;
1651    
1652     photonScatter [MAT_PLASTIC2] = photonScatter [MAT_METAL2] =
1653     photonScatter [MAT_TRANS2] = anisoPhotonScatter;
1654    
1655     photonScatter [MAT_DIELECTRIC] = photonScatter [MAT_INTERFACE] =
1656     dielectricPhotonScatter;
1657    
1658     photonScatter [MAT_MIST] = mistPhotonScatter;
1659     photonScatter [MAT_GLASS] = glassPhotonScatter;
1660     photonScatter [MAT_CLIP] = clipPhotonScatter;
1661     photonScatter [MAT_MIRROR] = mirrorPhotonScatter;
1662     photonScatter [MIX_FUNC] = mx_funcPhotonScatter;
1663     photonScatter [MIX_DATA] = mx_dataPhotonScatter;
1664     photonScatter [MIX_PICT]= mx_pdataPhotonScatter;
1665    
1666     photonScatter [PAT_BDATA] = photonScatter [PAT_CDATA] =
1667     photonScatter [PAT_BFUNC] = photonScatter [PAT_CFUNC] =
1668     photonScatter [PAT_CPICT] = photonScatter [TEX_FUNC] =
1669     photonScatter [TEX_DATA] = pattexPhotonScatter;
1670    
1671     photonScatter [MOD_ALIAS] = aliasPhotonScatter;
1672     photonScatter [MAT_BSDF] = bsdfPhotonScatter;
1673     }