ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/pmapmat.c
Revision: 2.13
Committed: Tue May 17 17:39:47 2016 UTC (8 years ago) by rschregle
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R1
Changes since 2.12: +24 -22 lines
Log Message:
Initial import of ooC photon map

File Contents

# User Rev Content
1 greg 2.8 #ifndef lint
2 rschregle 2.13 static const char RCSid[] = "$Id: pmapmat.c,v 4.16 2015/11/13 17:47:00 taschreg Exp taschreg $";
3 greg 2.8 #endif
4 greg 2.1 /*
5     ==================================================================
6     Photon map support routines for scattering by materials.
7    
8     Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
9     (c) Fraunhofer Institute for Solar Energy Systems,
10 rschregle 2.3 (c) Lucerne University of Applied Sciences and Arts,
11     supported by the Swiss National Science Foundation (SNSF, #147053)
12 greg 2.1 ==================================================================
13    
14     */
15    
16    
17    
18     #include "pmapmat.h"
19     #include "pmapdata.h"
20     #include "pmaprand.h"
21     #include "otypes.h"
22     #include "data.h"
23     #include "func.h"
24     #include "bsdf.h"
25     #include <math.h>
26    
27    
28    
29     /* Stuff ripped off from material modules */
30     #define MAXITER 10
31     #define SP_REFL 01
32     #define SP_TRAN 02
33     #define SP_PURE 04
34     #define SP_FLAT 010
35     #define SP_BADU 040
36     #define MLAMBDA 500
37     #define RINDEX 1.52
38     #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
39    
40    
41    
42     typedef struct {
43     OBJREC *mp;
44     RAY *rp;
45     short specfl;
46     COLOR mcolor, scolor;
47     FVECT vrefl, prdir, pnorm;
48     double alpha2, rdiff, rspec, trans, tdiff, tspec, pdot;
49     } NORMDAT;
50    
51     typedef struct {
52     OBJREC *mp;
53     RAY *rp;
54     short specfl;
55     COLOR mcolor, scolor;
56     FVECT vrefl, prdir, u, v, pnorm;
57     double u_alpha, v_alpha, rdiff, rspec, trans, tdiff, tspec, pdot;
58     } ANISODAT;
59    
60     typedef struct {
61     OBJREC *mp;
62     RAY *pr;
63     FVECT pnorm;
64     FVECT vray;
65     double sr_vpsa [2];
66     RREAL toloc [3][3];
67     RREAL fromloc [3][3];
68     double thick;
69     SDData *sd;
70     COLOR runsamp;
71     COLOR rdiff;
72     COLOR tunsamp;
73     COLOR tdiff;
74     } BSDFDAT;
75    
76    
77    
78     extern const SDCDst SDemptyCD;
79    
80     /* Per-material scattering function dispatch table; return value is usually
81     * zero, indicating photon termination */
82     int (*photonScatter [NUMOTYPE]) (OBJREC*, RAY*);
83    
84     /* List of antimatter sensor modifier names and associated object set */
85     char *photonSensorList [MAXSET + 1] = {NULL};
86     static OBJECT photonSensorSet [MAXSET + 1] = {0};
87    
88    
89    
90     /* ================ General support routines ================ */
91    
92    
93     void photonRay (const RAY *rayIn, RAY *rayOut,
94     int rayOutType, COLOR fluxAtten)
95     /* Spawn a new photon ray from a previous one; this is effectively a
96     * customised rayorigin().
97     * A SPECULAR rayOutType flags this photon as _caustic_ for subsequent hits.
98     * It is preserved for transferred rays (of type PMAP_XFER).
99     * fluxAtten specifies the RGB attenuation of the photon flux effected by
100     * the scattering material. The outgoing flux is then normalised to maintain
101     * a uniform average of 1 over RGB. If fluxAtten == NULL, the flux remains
102     * unchanged for the outgoing photon. fluxAtten is ignored for transferred
103     * rays.
104     * The ray direction is preserved for transferred rays, and undefined for
105     * scattered rays and must be subsequently set by the caller. */
106     {
107     rayorigin(rayOut, rayOutType, rayIn, NULL);
108    
109 rschregle 2.13 if (rayIn) {
110     /* Transfer flux */
111     copycolor(rayOut -> rcol, rayIn -> rcol);
112    
113     /* Copy caustic flag & direction for transferred rays */
114     if (rayOutType == PMAP_XFER) {
115     /* rayOut -> rtype |= rayIn -> rtype & SPECULAR; */
116     rayOut -> rtype |= rayIn -> rtype;
117     VCOPY(rayOut -> rdir, rayIn -> rdir);
118     }
119     else if (fluxAtten) {
120     /* Attenuate and normalise flux for scattered rays */
121     multcolor(rayOut -> rcol, fluxAtten);
122     colorNorm(rayOut -> rcol);
123     }
124    
125     /* Propagate index of emitting light source */
126     rayOut -> rsrc = rayIn -> rsrc;
127 greg 2.1 }
128     }
129    
130    
131    
132     static void addPhotons (const RAY *r)
133     /* Insert photon hits, where applicable */
134     {
135     if (!r -> rlvl)
136     /* Add direct photon map at primary hitpoint */
137 rschregle 2.13 newPhoton(directPmap, r);
138 greg 2.1 else {
139     /* Add global or precomputed photon map at indirect hitpoint */
140 rschregle 2.13 newPhoton(preCompPmap ? preCompPmap : globalPmap, r);
141 greg 2.1
142     /* Store caustic photon if specular flag set */
143     if (PMAP_CAUSTICRAY(r))
144 rschregle 2.13 newPhoton(causticPmap, r);
145 greg 2.1
146     /* Store in contribution photon map */
147 rschregle 2.13 newPhoton(contribPmap, r);
148 greg 2.1 }
149     }
150    
151    
152    
153     void getPhotonSensors (char **sensorList)
154     /* Find antimatter geometry declared as photon sensors */
155     {
156     OBJECT i;
157     OBJREC *obj;
158     char **lp;
159    
160     /* Init sensor set */
161     photonSensorSet [0] = 0;
162    
163     if (!sensorList [0])
164     return;
165    
166     for (i = 0; i < nobjects; i++) {
167     obj = objptr(i);
168    
169     /* Insert object in sensor set if it's in the specified sensor list
170     * and of type antimatter */
171     for (lp = sensorList; *lp; lp++) {
172     if (!strcmp(obj -> oname, *lp)) {
173     if (obj -> otype != MAT_CLIP) {
174     sprintf(errmsg, "photon sensor modifier %s is not antimatter",
175     obj -> oname);
176     error(USER, errmsg);
177     }
178    
179     if (photonSensorSet [0] >= AMBLLEN)
180     error(USER, "too many photon sensor modifiers");
181    
182     insertelem(photonSensorSet, i);
183     }
184     }
185     }
186    
187     if (!photonSensorSet [0])
188     error(USER, "no photon sensors found");
189     }
190    
191    
192    
193     /* ================ Material specific scattering routines ================ */
194    
195    
196     static int isoSpecPhotonScatter (NORMDAT *nd, RAY *rayOut)
197     /* Generate direction for isotropically specularly reflected
198     or transmitted ray. Returns 1 if successful. */
199     {
200     FVECT u, v, h;
201     RAY *rayIn = nd -> rp;
202     double d, d2, sinp, cosp;
203     int niter, i = 0;
204    
205     /* Set up sample coordinates */
206 greg 2.5 getperpendicular(u, nd -> pnorm, 1);
207 greg 2.1 fcross(v, nd -> pnorm, u);
208    
209     if (nd -> specfl & SP_REFL) {
210     /* Specular reflection; make MAXITER attempts at getting a ray */
211    
212     for (niter = 0; niter < MAXITER; niter++) {
213     d = 2 * PI * pmapRandom(scatterState);
214     cosp = cos(d);
215     sinp = sin(d);
216     d2 = pmapRandom(scatterState);
217     d = d2 <= FTINY ? 1 : sqrt(nd -> alpha2 * -log(d2));
218    
219     for (i = 0; i < 3; i++)
220     h [i] = nd -> pnorm [i] + d * (cosp * u [i] + sinp * v [i]);
221    
222     d = -2 * DOT(h, rayIn -> rdir) / (1 + d * d);
223     VSUM(rayOut -> rdir, rayIn -> rdir, h, d);
224    
225     if (DOT(rayOut -> rdir, rayIn -> ron) > FTINY)
226     return 1;
227     }
228    
229     return 0;
230     }
231    
232     else {
233     /* Specular transmission; make MAXITER attempts at getting a ray */
234    
235     for (niter = 0; niter < MAXITER; niter++) {
236     d = 2 * PI * pmapRandom(scatterState);
237     cosp = cos(d);
238     sinp = sin(d);
239     d2 = pmapRandom(scatterState);
240     d = d2 <= FTINY ? 1 : sqrt(-log(d2) * nd -> alpha2);
241    
242     for (i = 0; i < 3; i++)
243     rayOut -> rdir [i] = nd -> prdir [i] +
244     d * (cosp * u [i] + sinp * v [i]);
245    
246     if (DOT(rayOut -> rdir, rayIn -> ron) < -FTINY) {
247     normalize(rayOut -> rdir);
248     return 1;
249     }
250     }
251    
252     return 0;
253     }
254     }
255    
256    
257    
258     static void diffPhotonScatter (FVECT normal, RAY* rayOut)
259     /* Generate cosine-weighted direction for diffuse ray */
260     {
261     const RREAL cosThetaSqr = pmapRandom(scatterState),
262     cosTheta = sqrt(cosThetaSqr),
263     sinTheta = sqrt(1 - cosThetaSqr),
264     phi = 2 * PI * pmapRandom(scatterState),
265     du = cos(phi) * sinTheta, dv = sin(phi) * sinTheta;
266     FVECT u, v;
267     int i = 0;
268    
269     /* Set up sample coordinates */
270 greg 2.5 getperpendicular(u, normal, 1);
271 greg 2.1 fcross(v, normal, u);
272    
273     /* Convert theta & phi to cartesian */
274     for (i = 0; i < 3; i++)
275     rayOut -> rdir [i] = du * u [i] + dv * v [i] + cosTheta * normal [i];
276    
277     normalize(rayOut -> rdir);
278     }
279    
280    
281    
282     static int normalPhotonScatter (OBJREC *mat, RAY *rayIn)
283     /* Generate new photon ray for isotropic material and recurse */
284     {
285     NORMDAT nd;
286     int i, hastexture;
287     float xi, albedo, prdiff, ptdiff, prspec, ptspec;
288     double d, fresnel;
289     RAY rayOut;
290    
291     if (mat -> oargs.nfargs != (mat -> otype == MAT_TRANS ? 7 : 5))
292     objerror(mat, USER, "bad number of arguments");
293    
294     /* Check for back side; reorient if back is visible */
295     if (rayIn -> rod < 0)
296     if (!backvis && mat -> otype != MAT_TRANS)
297     return 0;
298     else {
299     /* Get modifiers */
300     raytexture(rayIn, mat -> omod);
301     flipsurface(rayIn);
302     }
303     else raytexture(rayIn, mat -> omod);
304    
305     nd.rp = rayIn;
306    
307     /* Get material color */
308     copycolor(nd.mcolor, mat -> oargs.farg);
309    
310     /* Get roughness */
311     nd.specfl = 0;
312     nd.alpha2 = mat -> oargs.farg [4];
313    
314     if ((nd.alpha2 *= nd.alpha2) <= FTINY)
315     nd.specfl |= SP_PURE;
316    
317     if (rayIn -> ro != NULL && isflat(rayIn -> ro -> otype))
318     nd.specfl |= SP_FLAT;
319    
320     /* Perturb normal */
321 greg 2.4 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY)) ))
322 greg 2.1 nd.pdot = raynormal(nd.pnorm, rayIn);
323     else {
324     VCOPY(nd.pnorm, rayIn -> ron);
325     nd.pdot = rayIn -> rod;
326     }
327    
328     nd.pdot = max(nd.pdot, .001);
329    
330     /* Modify material color */
331     multcolor(nd.mcolor, rayIn -> pcol);
332     nd.rspec = mat -> oargs.farg [3];
333    
334     /* Approximate Fresnel term */
335     if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
336     fresnel = FRESNE(rayIn -> rod);
337     nd.rspec += fresnel * (1 - nd.rspec);
338     }
339     else fresnel = 0;
340    
341     /* Transmission params */
342     if (mat -> otype == MAT_TRANS) {
343     nd.trans = mat -> oargs.farg [5] * (1 - nd.rspec);
344     nd.tspec = nd.trans * mat -> oargs.farg [6];
345     nd.tdiff = nd.trans - nd.tspec;
346     }
347     else nd.tdiff = nd.tspec = nd.trans = 0;
348    
349     /* Specular reflection params */
350     if (nd.rspec > FTINY) {
351     /* Specular color */
352     if (mat -> otype != MAT_METAL)
353     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
354     else if (fresnel > FTINY) {
355     d = nd.rspec * (1 - fresnel);
356     for (i = 0; i < 3; i++)
357     nd.scolor [i] = fresnel + nd.mcolor [i] * d;
358     }
359     else {
360     copycolor(nd.scolor, nd.mcolor);
361     scalecolor(nd.scolor, nd.rspec);
362     }
363     }
364     else setcolor(nd.scolor, 0, 0, 0);
365    
366     /* Diffuse reflection params */
367     nd.rdiff = 1 - nd.trans - nd.rspec;
368    
369     /* Set up probabilities */
370     prdiff = ptdiff = ptspec = colorAvg(nd.mcolor);
371     prdiff *= nd.rdiff;
372     ptdiff *= nd.tdiff;
373     prspec = colorAvg(nd.scolor);
374     ptspec *= nd.tspec;
375     albedo = prdiff + ptdiff + prspec + ptspec;
376    
377     /* Insert direct and indirect photon hits if diffuse component */
378     if (prdiff > FTINY || ptdiff > FTINY)
379     addPhotons(rayIn);
380    
381     xi = pmapRandom(rouletteState);
382    
383     if (xi > albedo)
384     /* Absorbed */
385     return 0;
386    
387     if (xi > (albedo -= prspec)) {
388     /* Specular reflection */
389     nd.specfl |= SP_REFL;
390    
391     if (nd.specfl & SP_PURE) {
392     /* Perfect specular reflection */
393     for (i = 0; i < 3; i++) {
394     /* Reflected ray */
395     nd.vrefl [i] = rayIn -> rdir [i] + 2 * nd.pdot * nd.pnorm [i];
396     }
397    
398     /* Penetration? */
399     if (hastexture && DOT(nd.vrefl, rayIn -> ron) <= FTINY)
400     for (i = 0; i < 3; i++) {
401     /* Safety measure */
402     nd.vrefl [i] = rayIn -> rdir [i] +
403     2 * rayIn -> rod * rayIn -> ron [i];
404     }
405    
406     VCOPY(rayOut.rdir, nd.vrefl);
407     }
408    
409     else if (!isoSpecPhotonScatter(&nd, &rayOut))
410     return 0;
411    
412     photonRay(rayIn, &rayOut, PMAP_SPECREFL, nd.scolor);
413     }
414    
415     else if (xi > (albedo -= ptspec)) {
416     /* Specular transmission */
417     nd.specfl |= SP_TRAN;
418    
419     if (hastexture) {
420     /* Perturb */
421     for (i = 0; i < 3; i++)
422     nd.prdir [i] = rayIn -> rdir [i] - rayIn -> pert [i];
423    
424     if (DOT(nd.prdir, rayIn -> ron) < -FTINY)
425     normalize(nd.prdir);
426     else VCOPY(nd.prdir, rayIn -> rdir);
427     }
428     else VCOPY(nd.prdir, rayIn -> rdir);
429    
430     if ((nd.specfl & (SP_TRAN | SP_PURE)) == (SP_TRAN | SP_PURE))
431     /* Perfect specular transmission */
432     VCOPY(rayOut.rdir, nd.prdir);
433     else if (!isoSpecPhotonScatter(&nd, &rayOut))
434     return 0;
435    
436     photonRay(rayIn, &rayOut, PMAP_SPECTRANS, nd.mcolor);
437     }
438    
439     else if (xi > (albedo -= prdiff)) {
440     /* Diffuse reflection */
441     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
442     diffPhotonScatter(hastexture ? nd.pnorm : rayIn -> ron, &rayOut);
443     }
444    
445     else {
446     /* Diffuse transmission */
447     flipsurface(rayIn);
448     photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
449    
450     if (hastexture) {
451     FVECT bnorm;
452     bnorm [0] = -nd.pnorm [0];
453     bnorm [1] = -nd.pnorm [1];
454     bnorm [2] = -nd.pnorm [2];
455     diffPhotonScatter(bnorm, &rayOut);
456     }
457     else diffPhotonScatter(rayIn -> ron, &rayOut);
458     }
459    
460     tracePhoton(&rayOut);
461     return 0;
462     }
463    
464    
465    
466     static void getacoords (ANISODAT *np)
467     /* Set up coordinate system for anisotropic sampling; cloned from aniso.c */
468     {
469     MFUNC *mf;
470     int i;
471    
472     mf = getfunc(np->mp, 3, 0x7, 1);
473     setfunc(np->mp, np->rp);
474     errno = 0;
475    
476     for (i = 0; i < 3; i++)
477     np->u[i] = evalue(mf->ep[i]);
478    
479     if ((errno == EDOM) | (errno == ERANGE)) {
480     objerror(np->mp, WARNING, "compute error");
481     np->specfl |= SP_BADU;
482     return;
483     }
484    
485     if (mf->fxp != &unitxf)
486     multv3(np->u, np->u, mf->fxp->xfm);
487    
488     fcross(np->v, np->pnorm, np->u);
489    
490     if (normalize(np->v) == 0.0) {
491     objerror(np->mp, WARNING, "illegal orientation vector");
492     np->specfl |= SP_BADU;
493     return;
494     }
495    
496     fcross(np->u, np->v, np->pnorm);
497     }
498    
499    
500    
501     static int anisoSpecPhotonScatter (ANISODAT *nd, RAY *rayOut)
502     /* Generate direction for anisotropically specularly reflected
503     or transmitted ray. Returns 1 if successful. */
504     {
505     FVECT h;
506     double d, d2, sinp, cosp;
507     int niter, i;
508     RAY *rayIn = nd -> rp;
509    
510     if (rayIn -> ro != NULL && isflat(rayIn -> ro -> otype))
511     nd -> specfl |= SP_FLAT;
512    
513     /* set up coordinates */
514     getacoords(nd);
515    
516     if (rayOut -> rtype & TRANS) {
517     /* Specular transmission */
518    
519     if (DOT(rayIn -> pert, rayIn -> pert) <= FTINY * FTINY)
520     VCOPY(nd -> prdir, rayIn -> rdir);
521     else {
522     /* perturb */
523     for (i = 0; i < 3; i++)
524     nd -> prdir [i] = rayIn -> rdir [i] - rayIn -> pert [i];
525    
526     if (DOT(nd -> prdir, rayIn -> ron) < -FTINY)
527     normalize(nd -> prdir);
528     else VCOPY(nd -> prdir, rayIn -> rdir);
529     }
530    
531     /* Make MAXITER attempts at getting a ray */
532     for (niter = 0; niter < MAXITER; niter++) {
533     d = 2 * PI * pmapRandom(scatterState);
534     cosp = cos(d) * nd -> u_alpha;
535     sinp = sin(d) * nd -> v_alpha;
536     d = sqrt(sqr(cosp) + sqr(sinp));
537     cosp /= d;
538     sinp /= d;
539     d2 = pmapRandom(scatterState);
540     d = d2 <= FTINY ? 1
541     : sqrt(-log(d2) /
542     (sqr(cosp) / sqr(nd -> u_alpha) +
543     sqr(sinp) / (nd -> v_alpha * nd -> u_alpha)));
544    
545     for (i = 0; i < 3; i++)
546     rayOut -> rdir [i] = nd -> prdir [i] + d *
547     (cosp * nd -> u [i] + sinp * nd -> v [i]);
548    
549     if (DOT(rayOut -> rdir, rayIn -> ron) < -FTINY) {
550     normalize(rayOut -> rdir);
551     return 1;
552     }
553     }
554    
555     return 0;
556     }
557    
558     else {
559     /* Specular reflection */
560    
561     /* Make MAXITER attempts at getting a ray */
562     for (niter = 0; niter < MAXITER; niter++) {
563     d = 2 * PI * pmapRandom(scatterState);
564     cosp = cos(d) * nd -> u_alpha;
565     sinp = sin(d) * nd -> v_alpha;
566     d = sqrt(sqr(cosp) + sqr(sinp));
567     cosp /= d;
568     sinp /= d;
569     d2 = pmapRandom(scatterState);
570     d = d2 <= FTINY ? 1
571     : sqrt(-log(d2) /
572     (sqr(cosp) / sqr(nd -> u_alpha) +
573     sqr(sinp) / (nd -> v_alpha * nd -> v_alpha)));
574    
575     for (i = 0; i < 3; i++)
576     h [i] = nd -> pnorm [i] +
577     d * (cosp * nd -> u [i] + sinp * nd -> v [i]);
578    
579     d = -2 * DOT(h, rayIn -> rdir) / (1 + d * d);
580     VSUM(rayOut -> rdir, rayIn -> rdir, h, d);
581    
582     if (DOT(rayOut -> rdir, rayIn -> ron) > FTINY)
583     return 1;
584     }
585    
586     return 0;
587     }
588     }
589    
590    
591    
592     static int anisoPhotonScatter (OBJREC *mat, RAY *rayIn)
593     /* Generate new photon ray for anisotropic material and recurse */
594     {
595     ANISODAT nd;
596     float xi, albedo, prdiff, ptdiff, prspec, ptspec;
597     RAY rayOut;
598    
599     if (mat -> oargs.nfargs != (mat -> otype == MAT_TRANS2 ? 8 : 6))
600     objerror(mat, USER, "bad number of real arguments");
601    
602     nd.rp = rayIn;
603     nd.mp = objptr(rayIn -> ro -> omod);
604    
605     /* get material color */
606     copycolor(nd.mcolor, mat -> oargs.farg);
607    
608     /* get roughness */
609     nd.specfl = 0;
610     nd.u_alpha = mat -> oargs.farg [4];
611     nd.v_alpha = mat -> oargs.farg [5];
612     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
613     objerror(mat, USER, "roughness too small");
614    
615     /* check for back side; reorient if back is visible */
616     if (rayIn -> rod < 0)
617     if (!backvis && mat -> otype != MAT_TRANS2)
618     return 0;
619     else {
620     /* get modifiers */
621     raytexture(rayIn, mat -> omod);
622     flipsurface(rayIn);
623     }
624     else raytexture(rayIn, mat -> omod);
625    
626     /* perturb normal */
627     nd.pdot = max(raynormal(nd.pnorm, rayIn), .001);
628    
629     /* modify material color */
630     multcolor(nd.mcolor, rayIn -> pcol);
631     nd.rspec = mat -> oargs.farg [3];
632    
633     /* transmission params */
634     if (mat -> otype == MAT_TRANS2) {
635     nd.trans = mat -> oargs.farg [6] * (1 - nd.rspec);
636     nd.tspec = nd.trans * mat -> oargs.farg [7];
637     nd.tdiff = nd.trans - nd.tspec;
638     if (nd.tspec > FTINY)
639     nd.specfl |= SP_TRAN;
640     }
641     else nd.tdiff = nd.tspec = nd.trans = 0;
642    
643     /* specular reflection params */
644     if (nd.rspec > FTINY) {
645     nd.specfl |= SP_REFL;
646    
647     /* comput e specular color */
648     if (mat -> otype == MAT_METAL2)
649     copycolor(nd.scolor, nd.mcolor);
650     else setcolor(nd.scolor, 1, 1, 1);
651    
652     scalecolor(nd.scolor, nd.rspec);
653     }
654     else setcolor(nd.scolor, 0, 0, 0);
655    
656     /* diffuse reflection params */
657     nd.rdiff = 1 - nd.trans - nd.rspec;
658    
659     /* Set up probabilities */
660     prdiff = ptdiff = ptspec = colorAvg(nd.mcolor);
661     prdiff *= nd.rdiff;
662     ptdiff *= nd.tdiff;
663     prspec = colorAvg(nd.scolor);
664     ptspec *= nd.tspec;
665     albedo = prdiff + ptdiff + prspec + ptspec;
666    
667     /* Insert direct and indirect photon hits if diffuse component */
668     if (prdiff > FTINY || ptdiff > FTINY)
669     addPhotons(rayIn);
670    
671     xi = pmapRandom(rouletteState);
672    
673     if (xi > albedo)
674     /* Absorbed */
675     return 0;
676    
677     if (xi > (albedo -= prspec))
678     /* Specular reflection */
679     if (!(nd.specfl & SP_BADU)) {
680     photonRay(rayIn, &rayOut, PMAP_SPECREFL, nd.scolor);
681    
682     if (!anisoSpecPhotonScatter(&nd, &rayOut))
683     return 0;
684     }
685     else return 0;
686    
687     else if (xi > (albedo -= ptspec))
688     /* Specular transmission */
689    
690     if (!(nd.specfl & SP_BADU)) {
691     /* Specular transmission */
692     photonRay(rayIn, &rayOut, PMAP_SPECTRANS, nd.mcolor);
693    
694     if (!anisoSpecPhotonScatter(&nd, &rayOut))
695     return 0;
696     }
697     else return 0;
698    
699     else if (xi > (albedo -= prdiff)) {
700     /* Diffuse reflection */
701     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.mcolor);
702     diffPhotonScatter(nd.pnorm, &rayOut);
703     }
704    
705     else {
706     /* Diffuse transmission */
707     FVECT bnorm;
708     flipsurface(rayIn);
709     bnorm [0] = -nd.pnorm [0];
710     bnorm [1] = -nd.pnorm [1];
711     bnorm [2] = -nd.pnorm [2];
712    
713     photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.mcolor);
714     diffPhotonScatter(bnorm, &rayOut);
715     }
716    
717     tracePhoton(&rayOut);
718     return 0;
719     }
720    
721    
722     static double mylog (double x)
723     /* special log for extinction coefficients; cloned from dielectric.c */
724     {
725     if (x < 1e-40)
726     return(-100.);
727    
728     if (x >= 1.)
729     return(0.);
730    
731     return(log(x));
732     }
733    
734    
735     static int dielectricPhotonScatter (OBJREC *mat, RAY *rayIn)
736     /* Generate new photon ray for dielectric material and recurse */
737     {
738     double cos1, cos2, nratio, d1, d2, refl;
739     COLOR ctrans, talb;
740     FVECT dnorm;
741     int hastexture, i;
742     RAY rayOut;
743    
744     if (mat -> oargs.nfargs != (mat -> otype == MAT_DIELECTRIC ? 5 : 8))
745     objerror(mat, USER, "bad arguments");
746    
747     /* get modifiers */
748     raytexture(rayIn, mat -> omod);
749    
750 greg 2.4 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > FTINY * FTINY)))
751 greg 2.1 /* Perturb normal */
752     cos1 = raynormal(dnorm, rayIn);
753     else {
754     VCOPY(dnorm, rayIn -> ron);
755     cos1 = rayIn -> rod;
756     }
757    
758     /* index of refraction */
759     nratio = mat -> otype ==
760     MAT_DIELECTRIC ? mat -> oargs.farg [3] + mat -> oargs.farg [4] / MLAMBDA
761     : mat -> oargs.farg [3] / mat -> oargs.farg [7];
762    
763     if (cos1 < 0) {
764     /* inside */
765     hastexture = -hastexture;
766     cos1 = -cos1;
767     dnorm [0] = -dnorm [0];
768     dnorm [1] = -dnorm [1];
769     dnorm [2] = -dnorm [2];
770     setcolor(rayIn -> cext,
771     -mylog(mat -> oargs.farg [0] * rayIn -> pcol [0]),
772     -mylog(mat -> oargs.farg [1] * rayIn -> pcol [1]),
773     -mylog(mat -> oargs.farg [2] * rayIn -> pcol [2]));
774     setcolor(rayIn -> albedo, 0, 0, 0);
775     rayIn -> gecc = 0;
776    
777     if (mat -> otype == MAT_INTERFACE) {
778     setcolor(ctrans,
779     -mylog(mat -> oargs.farg [4] * rayIn -> pcol [0]),
780     -mylog(mat -> oargs.farg [5] * rayIn -> pcol [1]),
781     -mylog(mat -> oargs.farg [6] * rayIn -> pcol [2]));
782     setcolor(talb, 0, 0, 0);
783     }
784     else {
785     copycolor(ctrans, cextinction);
786     copycolor(talb, salbedo);
787     }
788     }
789    
790     else {
791     /* outside */
792     nratio = 1.0 / nratio;
793     setcolor(ctrans,
794     -mylog(mat -> oargs.farg [0] * rayIn -> pcol [0]),
795     -mylog(mat -> oargs.farg [1] * rayIn -> pcol [1]),
796     -mylog(mat -> oargs.farg [2] * rayIn -> pcol [2]));
797     setcolor(talb, 0, 0, 0);
798    
799     if (mat -> otype == MAT_INTERFACE) {
800     setcolor(rayIn -> cext,
801     -mylog(mat -> oargs.farg [4] * rayIn -> pcol [0]),
802     -mylog(mat -> oargs.farg [5] * rayIn -> pcol [1]),
803     -mylog(mat -> oargs.farg [6] * rayIn -> pcol [2]));
804     setcolor(rayIn -> albedo, 0, 0, 0);
805     rayIn -> gecc = 0;
806     }
807     }
808    
809     /* compute cos theta2 */
810     d2 = 1 - sqr(nratio) * (1 - sqr(cos1));
811    
812     if (d2 < FTINY) {
813     /* Total reflection */
814     refl = cos2 = 1.0;
815     }
816     else {
817     /* Refraction, compute Fresnel's equations */
818     cos2 = sqrt(d2);
819     d1 = cos1;
820     d2 = nratio * cos2;
821     d1 = (d1 - d2) / (d1 + d2);
822     refl = sqr(d1);
823     d1 = 1 / cos1;
824     d2 = nratio / cos2;
825     d1 = (d1 - d2) / (d1 + d2);
826     refl += sqr(d1);
827     refl *= 0.5;
828     }
829    
830     if (pmapRandom(rouletteState) > refl) {
831     /* Refraction */
832     photonRay(rayIn, &rayOut, PMAP_REFRACT, NULL);
833     d1 = nratio * cos1 - cos2;
834    
835     for (i = 0; i < 3; i++)
836     rayOut.rdir [i] = nratio * rayIn -> rdir [i] + d1 * dnorm [i];
837    
838     if (hastexture && DOT(rayOut.rdir, rayIn -> ron) * hastexture >= -FTINY) {
839     d1 *= hastexture;
840    
841     for (i = 0; i < 3; i++)
842     rayOut.rdir [i] = nratio * rayIn -> rdir [i] +
843     d1 * rayIn -> ron [i];
844    
845     normalize(rayOut.rdir);
846     }
847    
848     copycolor(rayOut.cext, ctrans);
849     copycolor(rayOut.albedo, talb);
850     }
851    
852     else {
853     /* Reflection */
854     photonRay(rayIn, &rayOut, PMAP_SPECREFL, NULL);
855     VSUM(rayOut.rdir, rayIn -> rdir, dnorm, 2 * cos1);
856    
857     if (hastexture && DOT(rayOut.rdir, rayIn -> ron) * hastexture <= FTINY)
858     for (i = 0; i < 3; i++)
859     rayOut.rdir [i] = rayIn -> rdir [i] +
860     2 * rayIn -> rod * rayIn -> ron [i];
861     }
862    
863     /* Ray is modified by medium defined by cext and albedo in
864     * photonParticipate() */
865     tracePhoton(&rayOut);
866    
867     return 0;
868     }
869    
870    
871    
872     static int glassPhotonScatter (OBJREC *mat, RAY *rayIn)
873     /* Generate new photon ray for glass material and recurse */
874     {
875     float albedo, xi, ptrans;
876     COLOR mcolor, refl, trans;
877     double pdot, cos2, d, r1e, r1m, rindex = 0.0;
878     FVECT pnorm, pdir;
879     int hastexture, i;
880     RAY rayOut;
881    
882     /* check arguments */
883     if (mat -> oargs.nfargs == 3)
884     rindex = RINDEX;
885     else if (mat -> oargs.nfargs == 4)
886     rindex = mat -> oargs.farg [3];
887     else objerror(mat, USER, "bad arguments");
888    
889     copycolor(mcolor, mat -> oargs.farg);
890    
891     /* get modifiers */
892     raytexture(rayIn, mat -> omod);
893    
894     /* reorient if necessary */
895     if (rayIn -> rod < 0)
896     flipsurface(rayIn);
897 greg 2.4 if ((hastexture = (DOT(rayIn -> pert, rayIn -> pert) > FTINY * FTINY) ))
898 greg 2.1 pdot = raynormal(pnorm, rayIn);
899     else {
900     VCOPY(pnorm, rayIn -> ron);
901     pdot = rayIn -> rod;
902     }
903    
904     /* Modify material color */
905     multcolor(mcolor, rayIn -> pcol);
906    
907     /* angular transmission */
908     cos2 = sqrt((1 - 1 / sqr(rindex)) + sqr(pdot / rindex));
909     setcolor(mcolor, pow(mcolor [0], 1 / cos2), pow(mcolor [1], 1 / cos2),
910     pow(mcolor [2], 1 / cos2));
911    
912     /* compute reflection */
913     r1e = (pdot - rindex * cos2) / (pdot + rindex * cos2);
914     r1e *= r1e;
915     r1m = (1 / pdot - rindex / cos2) / (1 / pdot + rindex / cos2);
916     r1m *= r1m;
917    
918     for (i = 0; i < 3; i++) {
919     double r1ed2, r1md2, d2;
920    
921     d = mcolor [i];
922     d2 = sqr(d);
923     r1ed2 = sqr(r1e) * d2;
924     r1md2 = sqr(r1m) * d2;
925    
926     /* compute transmittance */
927     trans [i] = 0.5 * d *
928     (sqr(1 - r1e) / (1 - r1ed2) + sqr(1 - r1m) / (1 - r1md2));
929    
930     /* compute reflectance */
931     refl [i] = 0.5 * (r1e * (1 + (1 - 2 * r1e) * d2) / (1 - r1ed2) +
932     r1m * (1 + (1 - 2 * r1m) * d2) / (1 - r1md2));
933     }
934    
935     /* Set up probabilities */
936     ptrans = colorAvg(trans);
937     albedo = colorAvg(refl) + ptrans;
938     xi = pmapRandom(rouletteState);
939    
940    
941     if (xi > albedo)
942     /* Absorbed */
943     return 0;
944    
945     if (xi > (albedo -= ptrans)) {
946     /* Transmitted */
947    
948     if (hastexture) {
949     /* perturb direction */
950     VSUM(pdir, rayIn -> rdir, rayIn -> pert, 2 * (1 - rindex));
951    
952     if (normalize(pdir) == 0) {
953     objerror(mat, WARNING, "bad perturbation");
954     VCOPY(pdir, rayIn -> rdir);
955     }
956     }
957     else VCOPY(pdir, rayIn -> rdir);
958    
959     VCOPY(rayOut.rdir, pdir);
960     photonRay(rayIn, &rayOut, PMAP_SPECTRANS, mcolor);
961     }
962    
963     else {
964     /* reflected ray */
965     VSUM(rayOut.rdir, rayIn -> rdir, pnorm, 2 * pdot);
966     photonRay(rayIn, &rayOut, PMAP_SPECREFL, mcolor);
967     }
968    
969     tracePhoton(&rayOut);
970     return 0;
971     }
972    
973    
974    
975     static int aliasPhotonScatter (OBJREC *mat, RAY *rayIn)
976     /* Transfer photon scattering to alias target */
977     {
978     OBJECT aliasObj;
979     OBJREC aliasRec;
980    
981     /* Straight replacement? */
982     if (!mat -> oargs.nsargs) {
983 rschregle 2.11 /* Skip void modifier! */
984 rschregle 2.13 if (mat -> omod != OVOID) {
985 rschregle 2.11 mat = objptr(mat -> omod);
986     photonScatter [mat -> otype] (mat, rayIn);
987     }
988 greg 2.1
989     return 0;
990     }
991    
992     /* Else replace alias */
993     if (mat -> oargs.nsargs != 1)
994     objerror(mat, INTERNAL, "bad # string arguments");
995    
996     aliasObj = lastmod(objndx(mat), mat -> oargs.sarg [0]);
997    
998     if (aliasObj < 0)
999     objerror(mat, USER, "bad reference");
1000    
1001     memcpy(&aliasRec, objptr(aliasObj), sizeof(OBJREC));
1002    
1003     /* Substitute modifier */
1004     aliasRec.omod = mat -> omod;
1005    
1006     /* Replacement scattering routine */
1007     photonScatter [aliasRec.otype] (&aliasRec, rayIn);
1008     return 0;
1009     }
1010    
1011    
1012    
1013     static int clipPhotonScatter (OBJREC *mat, RAY *rayIn)
1014     /* Generate new photon ray for antimatter material and recurse */
1015     {
1016     OBJECT obj = objndx(mat), mod, cset [MAXSET + 1], *modset;
1017     int entering, inside = 0, i;
1018     const RAY *rp;
1019     RAY rayOut;
1020    
1021     if ((modset = (OBJECT*)mat -> os) == NULL) {
1022     if (mat -> oargs.nsargs < 1 || mat -> oargs.nsargs > MAXSET)
1023     objerror(mat, USER, "bad # arguments");
1024    
1025     modset = (OBJECT*)malloc((mat -> oargs.nsargs + 1) * sizeof(OBJECT));
1026    
1027     if (modset == NULL)
1028     error(SYSTEM, "out of memory in clipPhotonScatter");
1029     modset [0] = 0;
1030    
1031     for (i = 0; i < mat -> oargs.nsargs; i++) {
1032     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1033     continue;
1034    
1035     if ((mod = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1036     sprintf(errmsg, "unknown modifier \"%s\"", mat -> oargs.sarg [i]);
1037     objerror(mat, WARNING, errmsg);
1038     continue;
1039     }
1040    
1041     if (inset(modset, mod)) {
1042     objerror(mat, WARNING, "duplicate modifier");
1043     continue;
1044     }
1045    
1046     insertelem(modset, mod);
1047     }
1048    
1049     mat -> os = (char*)modset;
1050     }
1051    
1052     if (rayIn -> clipset != NULL)
1053     setcopy(cset, rayIn -> clipset);
1054     else cset [0] = 0;
1055    
1056     entering = rayIn -> rod > 0;
1057    
1058     /* Store photon incident from front if material defined as sensor */
1059     if (entering && inset(photonSensorSet, obj))
1060     addPhotons(rayIn);
1061    
1062     for (i = modset [0]; i > 0; i--) {
1063     if (entering) {
1064     if (!inset(cset, modset [i])) {
1065     if (cset [0] >= MAXSET)
1066     error(INTERNAL, "set overflow in clipPhotonScatter");
1067     insertelem(cset, modset [i]);
1068     }
1069     }
1070     else if (inset(cset, modset [i]))
1071     deletelem(cset, modset [i]);
1072     }
1073    
1074     rayIn -> newcset = cset;
1075    
1076     if (strcmp(mat -> oargs.sarg [0], VOIDID)) {
1077     for (rp = rayIn; rp -> parent != NULL; rp = rp -> parent) {
1078     if ( !(rp -> rtype & RAYREFL) && rp->parent->ro != NULL &&
1079     inset(modset, rp -> parent -> ro -> omod)) {
1080    
1081     if (rp -> parent -> rod > 0)
1082     inside++;
1083     else inside--;
1084     }
1085     }
1086    
1087     if (inside > 0) {
1088     flipsurface(rayIn);
1089     mat = objptr(lastmod(obj, mat -> oargs.sarg [0]));
1090     photonScatter [mat -> otype] (mat, rayIn);
1091     return 0;
1092     }
1093     }
1094    
1095     /* Else transfer ray */
1096     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1097     tracePhoton(&rayOut);
1098    
1099     return 0;
1100     }
1101    
1102    
1103    
1104     static int mirrorPhotonScatter (OBJREC *mat, RAY *rayIn)
1105     /* Generate new photon ray for mirror material and recurse */
1106     {
1107     RAY rayOut;
1108     int rpure = 1, i;
1109     FVECT pnorm;
1110     double pdot;
1111     float albedo;
1112     COLOR mcolor;
1113    
1114     /* check arguments */
1115     if (mat -> oargs.nfargs != 3 || mat -> oargs.nsargs > 1)
1116     objerror(mat, USER, "bad number of arguments");
1117    
1118     /* back is black */
1119     if (rayIn -> rod < 0)
1120     return 0;
1121    
1122     /* get modifiers */
1123     raytexture(rayIn, mat -> omod);
1124    
1125     /* assign material color */
1126     copycolor(mcolor, mat -> oargs.farg);
1127     multcolor(mcolor, rayIn -> pcol);
1128    
1129     /* Set up probabilities */
1130     albedo = colorAvg(mcolor);
1131    
1132     if (pmapRandom(rouletteState) > albedo)
1133     /* Absorbed */
1134     return 0;
1135    
1136     /* compute reflected ray */
1137     photonRay(rayIn, &rayOut, PMAP_SPECREFL, mcolor);
1138    
1139     if (DOT(rayIn -> pert, rayIn -> pert) > sqr(FTINY)) {
1140     /* use textures */
1141     pdot = raynormal(pnorm, rayIn);
1142    
1143     for (i = 0; i < 3; i++)
1144     rayOut.rdir [i] = rayIn -> rdir [i] + 2 * pdot * pnorm [i];
1145    
1146     rpure = 0;
1147     }
1148    
1149     /* Check for penetration */
1150     if (rpure || DOT(rayOut.rdir, rayIn -> ron) <= FTINY)
1151     for (i = 0; i < 3; i++)
1152     rayOut.rdir [i] = rayIn -> rdir [i] +
1153     2 * rayIn -> rod * rayIn -> ron [i];
1154    
1155     tracePhoton(&rayOut);
1156     return 0;
1157     }
1158    
1159    
1160    
1161     static int mistPhotonScatter (OBJREC *mat, RAY *rayIn)
1162     /* Generate new photon ray within mist and recurse */
1163     {
1164     COLOR mext;
1165     RREAL re, ge, be;
1166     RAY rayOut;
1167    
1168     /* check arguments */
1169     if (mat -> oargs.nfargs > 7)
1170     objerror(mat, USER, "bad arguments");
1171    
1172     if (mat -> oargs.nfargs > 2) {
1173     /* compute extinction */
1174     copycolor(mext, mat -> oargs.farg);
1175     /* get modifiers */
1176     raytexture(rayIn, mat -> omod);
1177     multcolor(mext, rayIn -> pcol);
1178     }
1179     else setcolor(mext, 0, 0, 0);
1180    
1181     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1182    
1183     if (rayIn -> rod > 0) {
1184     /* entering ray */
1185     addcolor(rayOut.cext, mext);
1186    
1187     if (mat -> oargs.nfargs > 5)
1188     copycolor(rayOut.albedo, mat -> oargs.farg + 3);
1189     if (mat -> oargs.nfargs > 6)
1190     rayOut.gecc = mat -> oargs.farg [6];
1191     }
1192    
1193     else {
1194     /* leaving ray */
1195     re = max(rayIn -> cext [0] - mext [0], cextinction [0]);
1196     ge = max(rayIn -> cext [1] - mext [1], cextinction [1]);
1197     be = max(rayIn -> cext [2] - mext [2], cextinction [2]);
1198     setcolor(rayOut.cext, re, ge, be);
1199    
1200     if (mat -> oargs.nfargs > 5)
1201     copycolor(rayOut.albedo, salbedo);
1202     if (mat -> oargs.nfargs > 6)
1203     rayOut.gecc = seccg;
1204     }
1205    
1206     tracePhoton(&rayOut);
1207    
1208     return 0;
1209     }
1210    
1211    
1212    
1213     static int mx_dataPhotonScatter (OBJREC *mat, RAY *rayIn)
1214     /* Pass photon on to materials selected by mixture data */
1215     {
1216     OBJECT obj;
1217     double coef, pt [MAXDIM];
1218     DATARRAY *dp;
1219     OBJECT mod [2];
1220     MFUNC *mf;
1221     int i;
1222    
1223     if (mat -> oargs.nsargs < 6)
1224     objerror(mat, USER, "bad # arguments");
1225    
1226     obj = objndx(mat);
1227    
1228     for (i = 0; i < 2; i++)
1229     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1230     mod [i] = OVOID;
1231     else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1232     sprintf(errmsg, "undefined modifier \"%s\"", mat -> oargs.sarg [i]);
1233     objerror(mat, USER, errmsg);
1234     }
1235    
1236     dp = getdata(mat -> oargs.sarg [3]);
1237     i = (1 << dp -> nd) - 1;
1238     mf = getfunc(mat, 4, i << 5, 0);
1239     setfunc(mat, rayIn);
1240     errno = 0;
1241    
1242     for (i = 0; i < dp -> nd; i++) {
1243     pt [i] = evalue(mf -> ep [i]);
1244    
1245     if (errno) {
1246     objerror(mat, WARNING, "compute error");
1247     return 0;
1248     }
1249     }
1250    
1251     coef = datavalue(dp, pt);
1252     errno = 0;
1253     coef = funvalue(mat -> oargs.sarg [2], 1, &coef);
1254    
1255     if (errno)
1256     objerror(mat, WARNING, "compute error");
1257     else {
1258 rschregle 2.10 OBJECT mxMod = mod [pmapRandom(rouletteState) < coef ? 0 : 1];
1259    
1260     if (mxMod != OVOID) {
1261     mat = objptr(mxMod);
1262     photonScatter [mat -> otype] (mat, rayIn);
1263     }
1264     else {
1265     /* Transfer ray if no modifier */
1266     RAY rayOut;
1267    
1268     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1269     tracePhoton(&rayOut);
1270     }
1271 greg 2.1 }
1272    
1273     return 0;
1274     }
1275    
1276    
1277    
1278     static int mx_pdataPhotonScatter (OBJREC *mat, RAY *rayIn)
1279     /* Pass photon on to materials selected by mixture picture */
1280     {
1281     OBJECT obj;
1282     double col [3], coef, pt [MAXDIM];
1283     DATARRAY *dp;
1284     OBJECT mod [2];
1285     MFUNC *mf;
1286     int i;
1287    
1288     if (mat -> oargs.nsargs < 7)
1289     objerror(mat, USER, "bad # arguments");
1290    
1291     obj = objndx(mat);
1292    
1293     for (i = 0; i < 2; i++)
1294     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1295     mod [i] = OVOID;
1296     else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1297     sprintf(errmsg, "undefined modifier \"%s\"", mat -> oargs.sarg [i]);
1298     objerror(mat, USER, errmsg);
1299     }
1300    
1301     dp = getpict(mat -> oargs.sarg [3]);
1302     mf = getfunc(mat, 4, 0x3 << 5, 0);
1303     setfunc(mat, rayIn);
1304     errno = 0;
1305     pt [1] = evalue(mf -> ep [0]);
1306     pt [0] = evalue(mf -> ep [1]);
1307    
1308     if (errno) {
1309     objerror(mat, WARNING, "compute error");
1310     return 0;
1311     }
1312    
1313     for (i = 0; i < 3; i++)
1314     col [i] = datavalue(dp + i, pt);
1315    
1316     errno = 0;
1317     coef = funvalue(mat -> oargs.sarg [2], 3, col);
1318    
1319     if (errno)
1320     objerror(mat, WARNING, "compute error");
1321     else {
1322 rschregle 2.10 OBJECT mxMod = mod [pmapRandom(rouletteState) < coef ? 0 : 1];
1323    
1324     if (mxMod != OVOID) {
1325     mat = objptr(mxMod);
1326     photonScatter [mat -> otype] (mat, rayIn);
1327     }
1328     else {
1329     /* Transfer ray if no modifier */
1330     RAY rayOut;
1331    
1332     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1333     tracePhoton(&rayOut);
1334     }
1335 greg 2.1 }
1336    
1337     return 0;
1338     }
1339    
1340    
1341    
1342     static int mx_funcPhotonScatter (OBJREC *mat, RAY *rayIn)
1343     /* Pass photon on to materials selected by mixture function */
1344     {
1345     OBJECT obj, mod [2];
1346     int i;
1347     double coef;
1348     MFUNC *mf;
1349    
1350     if (mat -> oargs.nsargs < 4)
1351     objerror(mat, USER, "bad # arguments");
1352    
1353     obj = objndx(mat);
1354    
1355     for (i = 0; i < 2; i++)
1356     if (!strcmp(mat -> oargs.sarg [i], VOIDID))
1357     mod [i] = OVOID;
1358     else if ((mod [i] = lastmod(obj, mat -> oargs.sarg [i])) == OVOID) {
1359     sprintf(errmsg, "undefined modifier \"%s\"", mat -> oargs.sarg [i]);
1360     objerror(mat, USER, errmsg);
1361     }
1362    
1363     mf = getfunc(mat, 3, 0x4, 0);
1364     setfunc(mat, rayIn);
1365     errno = 0;
1366    
1367     /* bound coefficient */
1368     coef = min(1, max(0, evalue(mf -> ep [0])));
1369    
1370     if (errno)
1371     objerror(mat, WARNING, "compute error");
1372     else {
1373 rschregle 2.10 OBJECT mxMod = mod [pmapRandom(rouletteState) < coef ? 0 : 1];
1374    
1375     if (mxMod != OVOID) {
1376     mat = objptr(mxMod);
1377     photonScatter [mat -> otype] (mat, rayIn);
1378     }
1379     else {
1380     /* Transfer ray if no modifier */
1381     RAY rayOut;
1382    
1383     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1384     tracePhoton(&rayOut);
1385     }
1386 greg 2.1 }
1387    
1388     return 0;
1389     }
1390    
1391    
1392    
1393     static int pattexPhotonScatter (OBJREC *mat, RAY *rayIn)
1394     /* Generate new photon ray for pattern or texture modifier and recurse.
1395     This code is brought to you by Henkel! :^) */
1396     {
1397     RAY rayOut;
1398    
1399     /* Get pattern */
1400     ofun [mat -> otype].funp(mat, rayIn);
1401     if (mat -> omod != OVOID) {
1402     /* Scatter using modifier (if any) */
1403     mat = objptr(mat -> omod);
1404     photonScatter [mat -> otype] (mat, rayIn);
1405     }
1406     else {
1407     /* Transfer ray if no modifier */
1408     photonRay(rayIn, &rayOut, PMAP_XFER, NULL);
1409     tracePhoton(&rayOut);
1410     }
1411    
1412     return 0;
1413     }
1414    
1415    
1416    
1417 rschregle 2.3 /*
1418 rschregle 2.7 ==================================================================
1419 rschregle 2.3 The following code is
1420     (c) Lucerne University of Applied Sciences and Arts,
1421     supported by the Swiss National Science Foundation (SNSF, #147053)
1422 rschregle 2.7 ==================================================================
1423 rschregle 2.3 */
1424    
1425 greg 2.1 static int bsdfPhotonScatter (OBJREC *mat, RAY *rayIn)
1426     /* Generate new photon ray for BSDF modifier and recurse. */
1427     {
1428     int hitFront;
1429     SDError err;
1430 rschregle 2.2 SDValue bsdfVal;
1431 greg 2.1 FVECT upvec;
1432     MFUNC *mf;
1433     BSDFDAT nd;
1434     RAY rayOut;
1435 rschregle 2.2 COLOR bsdfRGB;
1436 greg 2.6 int transmitted;
1437 rschregle 2.2 double prDiff, ptDiff, prDiffSD, ptDiffSD, prSpecSD, ptSpecSD,
1438 greg 2.6 albedo, xi;
1439     const double patAlb = bright(rayIn -> pcol);
1440 rschregle 2.2
1441 greg 2.1 /* Following code adapted from m_bsdf() */
1442     /* Check arguments */
1443     if (mat -> oargs.nsargs < 6 || mat -> oargs.nfargs > 9 ||
1444     mat -> oargs.nfargs % 3)
1445     objerror(mat, USER, "bad # arguments");
1446    
1447     hitFront = (rayIn -> rod > 0);
1448    
1449     /* Load cal file */
1450     mf = getfunc(mat, 5, 0x1d, 1);
1451    
1452     /* Get thickness */
1453     nd.thick = evalue(mf -> ep [0]);
1454     if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
1455     nd.thick = .0;
1456 rschregle 2.7
1457 greg 2.1 /* Get BSDF data */
1458     nd.sd = loadBSDF(mat -> oargs.sarg [1]);
1459    
1460 rschregle 2.2 /* Extra diffuse reflectance from material def */
1461 greg 2.1 if (hitFront) {
1462     if (mat -> oargs.nfargs < 3)
1463     setcolor(nd.rdiff, .0, .0, .0);
1464     else setcolor(nd.rdiff, mat -> oargs.farg [0], mat -> oargs.farg [1],
1465     mat -> oargs.farg [2]);
1466     }
1467     else if (mat -> oargs.nfargs < 6) {
1468     /* Check for absorbing backside */
1469     if (!backvis && !nd.sd -> rb && !nd.sd -> tf) {
1470     SDfreeCache(nd.sd);
1471     return 0;
1472     }
1473    
1474     setcolor(nd.rdiff, .0, .0, .0);
1475     }
1476     else setcolor(nd.rdiff, mat -> oargs.farg [3], mat -> oargs.farg [4],
1477     mat -> oargs.farg [5]);
1478    
1479 rschregle 2.2 /* Extra diffuse transmittance from material def */
1480 greg 2.1 if (mat -> oargs.nfargs < 9)
1481     setcolor(nd.tdiff, .0, .0, .0);
1482     else setcolor(nd.tdiff, mat -> oargs.farg [6], mat -> oargs.farg [7],
1483     mat -> oargs.farg [8]);
1484    
1485     nd.mp = mat;
1486     nd.pr = rayIn;
1487    
1488     /* Get modifiers */
1489     raytexture(rayIn, mat -> omod);
1490    
1491     /* Modify diffuse values */
1492     multcolor(nd.rdiff, rayIn -> pcol);
1493     multcolor(nd.tdiff, rayIn -> pcol);
1494    
1495     /* Get up vector & xform to world coords */
1496     upvec [0] = evalue(mf -> ep [1]);
1497     upvec [1] = evalue(mf -> ep [2]);
1498     upvec [2] = evalue(mf -> ep [3]);
1499    
1500     if (mf -> fxp != &unitxf) {
1501     multv3(upvec, upvec, mf -> fxp -> xfm);
1502     nd.thick *= mf -> fxp -> sca;
1503     }
1504    
1505     if (rayIn -> rox) {
1506     multv3(upvec, upvec, rayIn -> rox -> f.xfm);
1507     nd.thick *= rayIn -> rox -> f.sca;
1508     }
1509    
1510     /* Perturb normal */
1511     raynormal(nd.pnorm, rayIn);
1512    
1513     /* Xform incident dir to local BSDF coords */
1514     err = SDcompXform(nd.toloc, nd.pnorm, upvec);
1515    
1516     if (!err) {
1517     nd.vray [0] = -rayIn -> rdir [0];
1518     nd.vray [1] = -rayIn -> rdir [1];
1519     nd.vray [2] = -rayIn -> rdir [2];
1520     err = SDmapDir(nd.vray, nd.toloc, nd.vray);
1521     }
1522    
1523     if (!err)
1524     err = SDinvXform(nd.fromloc, nd.toloc);
1525    
1526     if (err) {
1527     objerror(mat, WARNING, "Illegal orientation vector");
1528     return 0;
1529     }
1530    
1531     /* Determine BSDF resolution */
1532     err = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin + SDqueryMax, nd.sd);
1533    
1534     if (err)
1535     objerror(mat, USER, transSDError(err));
1536    
1537     nd.sr_vpsa [0] = sqrt(nd.sr_vpsa [0]);
1538     nd.sr_vpsa [1] = sqrt(nd.sr_vpsa [1]);
1539    
1540     /* Orient perturbed normal towards incident side */
1541     if (!hitFront) {
1542     nd.pnorm [0] = -nd.pnorm [0];
1543     nd.pnorm [1] = -nd.pnorm [1];
1544     nd.pnorm [2] = -nd.pnorm [2];
1545     }
1546 rschregle 2.2
1547     /* Get scatter probabilities (weighted by pattern except for spec refl)
1548     * prDiff, ptDiff: extra diffuse component in material def
1549     * prDiffSD, ptDiffSD: diffuse (constant) component in SDF
1550     * prSpecSD, ptSpecSD: non-diffuse ("specular") component in SDF
1551     * albedo: sum of above, inverse absorption probability */
1552     prDiff = colorAvg(nd.rdiff);
1553     ptDiff = colorAvg(nd.tdiff);
1554     prDiffSD = patAlb * SDdirectHemi(nd.vray, SDsampDf | SDsampR, nd.sd);
1555     ptDiffSD = patAlb * SDdirectHemi(nd.vray, SDsampDf | SDsampT, nd.sd);
1556     prSpecSD = SDdirectHemi(nd.vray, SDsampSp | SDsampR, nd.sd);
1557     ptSpecSD = patAlb * SDdirectHemi(nd.vray, SDsampSp | SDsampT, nd.sd);
1558     albedo = prDiff + ptDiff + prDiffSD + ptDiffSD + prSpecSD + ptSpecSD;
1559    
1560     /*
1561     if (albedo > 1)
1562     objerror(mat, WARNING, "Invalid albedo");
1563     */
1564    
1565     /* Insert direct and indirect photon hits if diffuse component */
1566     if (prDiff + ptDiff + prDiffSD + ptDiffSD > FTINY)
1567     addPhotons(rayIn);
1568    
1569 greg 2.6 xi = pmapRandom(rouletteState);
1570 rschregle 2.2
1571     if (xi > albedo)
1572     /* Absorbtion */
1573     return 0;
1574    
1575 greg 2.6 transmitted = 0;
1576    
1577 rschregle 2.2 if ((xi -= prDiff) <= 0) {
1578     /* Diffuse reflection (extra component in material def) */
1579     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, nd.rdiff);
1580     diffPhotonScatter(nd.pnorm, &rayOut);
1581     }
1582 greg 2.1
1583 rschregle 2.2 else if ((xi -= ptDiff) <= 0) {
1584     /* Diffuse transmission (extra component in material def) */
1585     flipsurface(rayIn);
1586 greg 2.6 nd.thick = -nd.thick;
1587 rschregle 2.2 photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, nd.tdiff);
1588 greg 2.6 diffPhotonScatter(nd.pnorm, &rayOut);
1589     transmitted = 1;
1590 rschregle 2.2 }
1591 greg 2.6
1592 rschregle 2.2 else { /* Sample SDF */
1593     if ((xi -= prDiffSD) <= 0) {
1594     /* Diffuse SDF reflection (constant component) */
1595 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1596 rschregle 2.2 SDsampDf | SDsampR, nd.sd)))
1597     objerror(mat, USER, transSDError(err));
1598    
1599     /* Apply pattern to spectral component */
1600     ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1601     multcolor(bsdfRGB, rayIn -> pcol);
1602     photonRay(rayIn, &rayOut, PMAP_DIFFREFL, bsdfRGB);
1603 greg 2.1 }
1604 rschregle 2.2
1605     else if ((xi -= ptDiffSD) <= 0) {
1606     /* Diffuse SDF transmission (constant component) */
1607 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1608 rschregle 2.2 SDsampDf | SDsampT, nd.sd)))
1609     objerror(mat, USER, transSDError(err));
1610 greg 2.1
1611 rschregle 2.2 /* Apply pattern to spectral component */
1612     ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1613     multcolor(bsdfRGB, rayIn -> pcol);
1614     addcolor(bsdfRGB, nd.tdiff);
1615     flipsurface(rayIn); /* Necessary? */
1616 rschregle 2.7 nd.thick = -nd.thick;
1617     photonRay(rayIn, &rayOut, PMAP_DIFFTRANS, bsdfRGB);
1618 greg 2.6 transmitted = 1;
1619 greg 2.1 }
1620 rschregle 2.2
1621     else if ((xi -= prSpecSD) <= 0) {
1622     /* Non-diffuse ("specular") SDF reflection */
1623 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1624 rschregle 2.2 SDsampSp | SDsampR, nd.sd)))
1625     objerror(mat, USER, transSDError(err));
1626 greg 2.1
1627 rschregle 2.2 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1628     photonRay(rayIn, &rayOut, PMAP_SPECREFL, bsdfRGB);
1629 greg 2.1 }
1630    
1631     else {
1632 rschregle 2.2 /* Non-diffuse ("specular") SDF transmission */
1633 greg 2.6 if ((err = SDsampBSDF(&bsdfVal, nd.vray, pmapRandom(scatterState),
1634 rschregle 2.2 SDsampSp | SDsampT, nd.sd)))
1635     objerror(mat, USER, transSDError(err));
1636 greg 2.1
1637 rschregle 2.2 /* Apply pattern to spectral component */
1638 greg 2.1 ccy2rgb(&bsdfVal.spec, bsdfVal.cieY, bsdfRGB);
1639 rschregle 2.2 multcolor(bsdfRGB, rayIn -> pcol);
1640     flipsurface(rayIn); /* Necessary? */
1641 rschregle 2.7 nd.thick = -nd.thick;
1642 rschregle 2.2 photonRay(rayIn, &rayOut, PMAP_SPECTRANS, bsdfRGB);
1643 greg 2.6 transmitted = 1;
1644 rschregle 2.2 }
1645    
1646     /* Xform outgoing dir to world coords */
1647     if ((err = SDmapDir(rayOut.rdir, nd.fromloc, nd.vray))) {
1648     objerror(mat, USER, transSDError(err));
1649     return 0;
1650 greg 2.1 }
1651 rschregle 2.2 }
1652 greg 2.1
1653 rschregle 2.2 /* Clean up */
1654 greg 2.1 SDfreeCache(nd.sd);
1655    
1656 greg 2.6 /* Need to offset ray origin to get past detail geometry? */
1657     if (transmitted && nd.thick != 0)
1658 rschregle 2.7 VSUM(rayOut.rorg, rayOut.rorg, rayIn -> ron, -nd.thick);
1659 greg 2.6
1660 greg 2.1 tracePhoton(&rayOut);
1661     return 0;
1662     }
1663    
1664    
1665    
1666     static int lightPhotonScatter (OBJREC* mat, RAY* ray)
1667     /* Light sources doan' reflect */
1668     {
1669     return 0;
1670     }
1671    
1672    
1673    
1674     void initPhotonScatterFuncs ()
1675     /* Init photonScatter[] dispatch table */
1676     {
1677     int i;
1678    
1679     for (i = 0; i < NUMOTYPE; i++)
1680     photonScatter [i] = o_default;
1681    
1682     photonScatter [MAT_LIGHT] = photonScatter [MAT_ILLUM] =
1683     photonScatter [MAT_GLOW] = photonScatter [MAT_SPOT] =
1684     lightPhotonScatter;
1685    
1686     photonScatter [MAT_PLASTIC] = photonScatter [MAT_METAL] =
1687     photonScatter [MAT_TRANS] = normalPhotonScatter;
1688    
1689     photonScatter [MAT_PLASTIC2] = photonScatter [MAT_METAL2] =
1690     photonScatter [MAT_TRANS2] = anisoPhotonScatter;
1691    
1692     photonScatter [MAT_DIELECTRIC] = photonScatter [MAT_INTERFACE] =
1693     dielectricPhotonScatter;
1694    
1695     photonScatter [MAT_MIST] = mistPhotonScatter;
1696     photonScatter [MAT_GLASS] = glassPhotonScatter;
1697     photonScatter [MAT_CLIP] = clipPhotonScatter;
1698     photonScatter [MAT_MIRROR] = mirrorPhotonScatter;
1699     photonScatter [MIX_FUNC] = mx_funcPhotonScatter;
1700     photonScatter [MIX_DATA] = mx_dataPhotonScatter;
1701     photonScatter [MIX_PICT]= mx_pdataPhotonScatter;
1702    
1703     photonScatter [PAT_BDATA] = photonScatter [PAT_CDATA] =
1704     photonScatter [PAT_BFUNC] = photonScatter [PAT_CFUNC] =
1705     photonScatter [PAT_CPICT] = photonScatter [TEX_FUNC] =
1706     photonScatter [TEX_DATA] = pattexPhotonScatter;
1707    
1708     photonScatter [MOD_ALIAS] = aliasPhotonScatter;
1709     photonScatter [MAT_BSDF] = bsdfPhotonScatter;
1710     }