| 1 |
/*
|
| 2 |
======================================================================
|
| 3 |
In-core kd-tree for photon map
|
| 4 |
|
| 5 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
|
| 6 |
(c) Fraunhofer Institute for Solar Energy Systems,
|
| 7 |
(c) Lucerne University of Applied Sciences and Arts,
|
| 8 |
supported by the Swiss National Science Foundation (SNSF, #147053)
|
| 9 |
======================================================================
|
| 10 |
|
| 11 |
$Id: pmapkdt.c,v 1.5 2018/11/08 00:54:07 greg Exp $
|
| 12 |
*/
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
#include "pmapdata.h" /* Includes pmapkdt.h */
|
| 17 |
#include "source.h"
|
| 18 |
#include "otspecial.h"
|
| 19 |
#include "random.h"
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
void kdT_Null (PhotonKdTree *kdt)
|
| 25 |
{
|
| 26 |
kdt -> nodes = NULL;
|
| 27 |
}
|
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
static unsigned long kdT_MedianPartition (const Photon *heap,
|
| 32 |
unsigned long *heapIdx,
|
| 33 |
unsigned long *heapXdi,
|
| 34 |
unsigned long left,
|
| 35 |
unsigned long right, unsigned dim)
|
| 36 |
/* Returns index to median in heap from indices left to right
|
| 37 |
(inclusive) in dimension dim. The heap is partitioned relative to
|
| 38 |
median using a quicksort algorithm. The heap indices in heapIdx are
|
| 39 |
sorted rather than the heap itself. */
|
| 40 |
{
|
| 41 |
const float *p;
|
| 42 |
unsigned long l, r, lg2, n2, m, n = right - left + 1;
|
| 43 |
unsigned d;
|
| 44 |
|
| 45 |
/* Round down n to nearest power of 2 */
|
| 46 |
for (lg2 = 0, n2 = n; n2 > 1; n2 >>= 1, ++lg2);
|
| 47 |
n2 = 1 << lg2;
|
| 48 |
|
| 49 |
/* Determine median position; this takes into account the fact that
|
| 50 |
only the last level in the heap can be partially empty, and that
|
| 51 |
it fills from left to right */
|
| 52 |
m = left + ((n - n2) > (n2 >> 1) - 1 ? n2 - 1 : n - (n2 >> 1));
|
| 53 |
|
| 54 |
while (right > left) {
|
| 55 |
/* Pivot node */
|
| 56 |
p = heap [heapIdx [right]].pos;
|
| 57 |
l = left;
|
| 58 |
r = right - 1;
|
| 59 |
|
| 60 |
/* l & r converge, swapping elements out of order with respect to
|
| 61 |
pivot node. Identical keys are resolved by cycling through
|
| 62 |
dim. The convergence point is then the pivot's position. */
|
| 63 |
do {
|
| 64 |
while (l <= r) {
|
| 65 |
d = dim;
|
| 66 |
|
| 67 |
while (heap [heapIdx [l]].pos [d] == p [d]) {
|
| 68 |
d = (d + 1) % 3;
|
| 69 |
|
| 70 |
if (d == dim) {
|
| 71 |
/* Ignore dupes? */
|
| 72 |
error(WARNING, "duplicate keys in photon heap");
|
| 73 |
l++;
|
| 74 |
break;
|
| 75 |
}
|
| 76 |
}
|
| 77 |
|
| 78 |
if (heap [heapIdx [l]].pos [d] < p [d])
|
| 79 |
l++;
|
| 80 |
else break;
|
| 81 |
}
|
| 82 |
|
| 83 |
while (r > l) {
|
| 84 |
d = dim;
|
| 85 |
|
| 86 |
while (heap [heapIdx [r]].pos [d] == p [d]) {
|
| 87 |
d = (d + 1) % 3;
|
| 88 |
|
| 89 |
if (d == dim) {
|
| 90 |
/* Ignore dupes? */
|
| 91 |
error(WARNING, "duplicate keys in photon heap");
|
| 92 |
r--;
|
| 93 |
break;
|
| 94 |
}
|
| 95 |
}
|
| 96 |
|
| 97 |
if (heap [heapIdx [r]].pos [d] > p [d])
|
| 98 |
r--;
|
| 99 |
else break;
|
| 100 |
}
|
| 101 |
|
| 102 |
/* Swap indices (not the nodes they point to) */
|
| 103 |
n2 = heapIdx [l];
|
| 104 |
heapIdx [l] = heapIdx [r];
|
| 105 |
heapIdx [r] = n2;
|
| 106 |
/* Update reverse indices */
|
| 107 |
heapXdi [heapIdx [l]] = l;
|
| 108 |
heapXdi [n2] = r;
|
| 109 |
} while (l < r);
|
| 110 |
|
| 111 |
/* Swap indices of convergence and pivot nodes */
|
| 112 |
heapIdx [r] = heapIdx [l];
|
| 113 |
heapIdx [l] = heapIdx [right];
|
| 114 |
heapIdx [right] = n2;
|
| 115 |
/* Update reverse indices */
|
| 116 |
heapXdi [heapIdx [r]] = r;
|
| 117 |
heapXdi [heapIdx [l]] = l;
|
| 118 |
heapXdi [n2] = right;
|
| 119 |
|
| 120 |
if (l >= m)
|
| 121 |
right = l - 1;
|
| 122 |
if (l <= m)
|
| 123 |
left = l + 1;
|
| 124 |
}
|
| 125 |
|
| 126 |
/* Once left & right have converged at m, we have found the median */
|
| 127 |
return m;
|
| 128 |
}
|
| 129 |
|
| 130 |
|
| 131 |
|
| 132 |
static void kdT_Build (Photon *heap, unsigned long *heapIdx,
|
| 133 |
unsigned long *heapXdi, const float min [3],
|
| 134 |
const float max [3], unsigned long left,
|
| 135 |
unsigned long right, unsigned long root)
|
| 136 |
/* Recursive part of balancePhotons(..). Builds heap from subarray
|
| 137 |
defined by indices left and right. min and max are the minimum resp.
|
| 138 |
maximum photon positions in the array. root is the index of the
|
| 139 |
current subtree's root, which corresponds to the median's 1-based
|
| 140 |
index in the heap. heapIdx are the balanced heap indices. The heap
|
| 141 |
is accessed indirectly through these. heapXdi are the reverse indices
|
| 142 |
from the heap to heapIdx so that heapXdi [heapIdx [i]] = i. */
|
| 143 |
{
|
| 144 |
float maxLeft [3], minRight [3];
|
| 145 |
Photon rootNode;
|
| 146 |
unsigned d;
|
| 147 |
|
| 148 |
/* Choose median for dimension with largest spread and partition
|
| 149 |
accordingly */
|
| 150 |
const float d0 = max [0] - min [0],
|
| 151 |
d1 = max [1] - min [1],
|
| 152 |
d2 = max [2] - min [2];
|
| 153 |
const unsigned char dim = d0 > d1 ? d0 > d2 ? 0 : 2
|
| 154 |
: d1 > d2 ? 1 : 2;
|
| 155 |
const unsigned long median = left == right
|
| 156 |
? left
|
| 157 |
: kdT_MedianPartition(heap, heapIdx, heapXdi,
|
| 158 |
left, right, dim);
|
| 159 |
|
| 160 |
/* Place median at root of current subtree. This consists of swapping
|
| 161 |
the median and the root nodes and updating the heap indices */
|
| 162 |
memcpy(&rootNode, heap + heapIdx [median], sizeof(Photon));
|
| 163 |
memcpy(heap + heapIdx [median], heap + root - 1, sizeof(Photon));
|
| 164 |
rootNode.discr = dim;
|
| 165 |
memcpy(heap + root - 1, &rootNode, sizeof(Photon));
|
| 166 |
heapIdx [heapXdi [root - 1]] = heapIdx [median];
|
| 167 |
heapXdi [heapIdx [median]] = heapXdi [root - 1];
|
| 168 |
heapIdx [median] = root - 1;
|
| 169 |
heapXdi [root - 1] = median;
|
| 170 |
|
| 171 |
/* Update bounds for left and right subtrees and recurse on them */
|
| 172 |
for (d = 0; d <= 2; d++)
|
| 173 |
if (d == dim)
|
| 174 |
maxLeft [d] = minRight [d] = rootNode.pos [d];
|
| 175 |
else {
|
| 176 |
maxLeft [d] = max [d];
|
| 177 |
minRight [d] = min [d];
|
| 178 |
}
|
| 179 |
|
| 180 |
if (left < median)
|
| 181 |
kdT_Build(heap, heapIdx, heapXdi, min, maxLeft, left, median - 1,
|
| 182 |
root << 1);
|
| 183 |
|
| 184 |
if (right > median)
|
| 185 |
kdT_Build(heap, heapIdx, heapXdi, minRight, max, median + 1, right,
|
| 186 |
(root << 1) + 1);
|
| 187 |
}
|
| 188 |
|
| 189 |
|
| 190 |
|
| 191 |
void kdT_BuildPhotonMap (struct PhotonMap *pmap)
|
| 192 |
{
|
| 193 |
Photon *nodes;
|
| 194 |
unsigned long i;
|
| 195 |
unsigned long *heapIdx, /* Photon index array */
|
| 196 |
*heapXdi; /* Reverse index to heapIdx */
|
| 197 |
|
| 198 |
/* Allocate kd-tree nodes and load photons from heap file */
|
| 199 |
if (!(nodes = calloc(pmap -> numPhotons, sizeof(Photon))))
|
| 200 |
error(SYSTEM, "failed in-core heap allocation in kdT_BuildPhotonMap");
|
| 201 |
|
| 202 |
rewind(pmap -> heap);
|
| 203 |
i = fread(nodes, sizeof(Photon), pmap -> numPhotons, pmap -> heap);
|
| 204 |
if (i !=
|
| 205 |
pmap -> numPhotons)
|
| 206 |
error(SYSTEM, "failed loading photon heap in kdT_BuildPhotonMap");
|
| 207 |
|
| 208 |
pmap -> store.nodes = nodes;
|
| 209 |
heapIdx = calloc(pmap -> numPhotons, sizeof(unsigned long));
|
| 210 |
heapXdi = calloc(pmap -> numPhotons, sizeof(unsigned long));
|
| 211 |
if (!heapIdx || !heapXdi)
|
| 212 |
error(SYSTEM, "failed heap index allocation in kdT_BuildPhotonMap");
|
| 213 |
|
| 214 |
/* Initialize index arrays */
|
| 215 |
for (i = 0; i < pmap -> numPhotons; i++)
|
| 216 |
heapXdi [i] = heapIdx [i] = i;
|
| 217 |
|
| 218 |
/* Build kd-tree */
|
| 219 |
kdT_Build(nodes, heapIdx, heapXdi, pmap -> minPos, pmap -> maxPos, 0,
|
| 220 |
pmap -> numPhotons - 1, 1);
|
| 221 |
|
| 222 |
/* Cleanup */
|
| 223 |
free(heapIdx);
|
| 224 |
free(heapXdi);
|
| 225 |
}
|
| 226 |
|
| 227 |
|
| 228 |
|
| 229 |
int kdT_SavePhotons (const struct PhotonMap *pmap, FILE *out)
|
| 230 |
{
|
| 231 |
unsigned long i, j;
|
| 232 |
Photon *p = (Photon*)pmap -> store.nodes;
|
| 233 |
|
| 234 |
for (i = 0; i < pmap -> numPhotons; i++, p++) {
|
| 235 |
/* Write photon attributes */
|
| 236 |
for (j = 0; j < 3; j++)
|
| 237 |
putflt(p -> pos [j], out);
|
| 238 |
|
| 239 |
/* Bytewise dump otherwise we have portability probs */
|
| 240 |
for (j = 0; j < 3; j++)
|
| 241 |
putint(p -> norm [j], 1, out);
|
| 242 |
|
| 243 |
#ifdef PMAP_FLOAT_FLUX
|
| 244 |
for (j = 0; j < 3; j++)
|
| 245 |
putflt(p -> flux [j], out);
|
| 246 |
#else
|
| 247 |
for (j = 0; j < 4; j++)
|
| 248 |
putint(p -> flux [j], 1, out);
|
| 249 |
#endif
|
| 250 |
|
| 251 |
putint(p -> primary, sizeof(p -> primary), out);
|
| 252 |
putint(p -> flags, 1, out);
|
| 253 |
|
| 254 |
if (ferror(out))
|
| 255 |
return -1;
|
| 256 |
}
|
| 257 |
|
| 258 |
return 0;
|
| 259 |
}
|
| 260 |
|
| 261 |
|
| 262 |
|
| 263 |
int kdT_LoadPhotons (struct PhotonMap *pmap, FILE *in)
|
| 264 |
{
|
| 265 |
unsigned long i, j;
|
| 266 |
Photon *p;
|
| 267 |
|
| 268 |
/* Allocate kd-tree based on initialised pmap -> numPhotons */
|
| 269 |
pmap -> store.nodes = calloc(sizeof(Photon), pmap -> numPhotons);
|
| 270 |
if (!pmap -> store.nodes)
|
| 271 |
error(SYSTEM, "failed kd-tree allocation in kdT_LoadPhotons");
|
| 272 |
|
| 273 |
/* Get photon attributes */
|
| 274 |
for (i = 0, p = pmap -> store.nodes; i < pmap -> numPhotons; i++, p++) {
|
| 275 |
for (j = 0; j < 3; j++)
|
| 276 |
p -> pos [j] = getflt(in);
|
| 277 |
|
| 278 |
/* Bytewise grab otherwise we have portability probs */
|
| 279 |
for (j = 0; j < 3; j++)
|
| 280 |
p -> norm [j] = getint(1, in);
|
| 281 |
|
| 282 |
#ifdef PMAP_FLOAT_FLUX
|
| 283 |
for (j = 0; j < 3; j++)
|
| 284 |
p -> flux [j] = getflt(in);
|
| 285 |
#else
|
| 286 |
for (j = 0; j < 4; j++)
|
| 287 |
p -> flux [j] = getint(1, in);
|
| 288 |
#endif
|
| 289 |
|
| 290 |
p -> primary = getint(sizeof(p -> primary), in);
|
| 291 |
p -> flags = getint(1, in);
|
| 292 |
|
| 293 |
if (feof(in))
|
| 294 |
return -1;
|
| 295 |
}
|
| 296 |
|
| 297 |
return 0;
|
| 298 |
}
|
| 299 |
|
| 300 |
|
| 301 |
|
| 302 |
void kdT_InitFindPhotons (struct PhotonMap *pmap)
|
| 303 |
{
|
| 304 |
pmap -> squeue.len = pmap -> maxGather + 1;
|
| 305 |
pmap -> squeue.node = calloc(pmap -> squeue.len,
|
| 306 |
sizeof(PhotonSearchQueueNode));
|
| 307 |
if (!pmap -> squeue.node)
|
| 308 |
error(SYSTEM, "can't allocate photon search queue");
|
| 309 |
}
|
| 310 |
|
| 311 |
|
| 312 |
|
| 313 |
static void kdT_FindNearest (PhotonMap *pmap, const float pos [3],
|
| 314 |
const float norm [3], unsigned long node)
|
| 315 |
/* Recursive part of kdT_FindPhotons(). Locate pmap -> squeue.len nearest
|
| 316 |
* neighbours to pos with similar normal and return in search queue starting
|
| 317 |
* at pmap -> squeue.node. Note that all heap and queue indices are
|
| 318 |
* 1-based, but accesses to the arrays are 0-based! */
|
| 319 |
{
|
| 320 |
Photon *p = (Photon*)pmap -> store.nodes + node - 1;
|
| 321 |
unsigned i, j;
|
| 322 |
/* Signed distance to current photon's splitting plane */
|
| 323 |
float d = pos [p -> discr] - p -> pos [p -> discr],
|
| 324 |
d2 = d * d, dv [3];
|
| 325 |
PhotonSearchQueueNode* sq = pmap -> squeue.node;
|
| 326 |
const unsigned sqSize = pmap -> squeue.len;
|
| 327 |
|
| 328 |
/* Search subtree closer to pos first; exclude other subtree if the
|
| 329 |
distance to the splitting plane is greater than maxDist */
|
| 330 |
if (d < 0) {
|
| 331 |
if (node << 1 <= pmap -> numPhotons)
|
| 332 |
kdT_FindNearest(pmap, pos, norm, node << 1);
|
| 333 |
|
| 334 |
if (d2 < pmap -> maxDist2 && node << 1 < pmap -> numPhotons)
|
| 335 |
kdT_FindNearest(pmap, pos, norm, (node << 1) + 1);
|
| 336 |
}
|
| 337 |
else {
|
| 338 |
if (node << 1 < pmap -> numPhotons)
|
| 339 |
kdT_FindNearest(pmap, pos, norm, (node << 1) + 1);
|
| 340 |
|
| 341 |
if (d2 < pmap -> maxDist2 && node << 1 <= pmap -> numPhotons)
|
| 342 |
kdT_FindNearest(pmap, pos, norm, node << 1);
|
| 343 |
}
|
| 344 |
|
| 345 |
/* Reject photon if normal faces away (ignored for volume photons) with
|
| 346 |
* tolerance to account for perturbation; note photon normal is coded
|
| 347 |
* in range [-127,127], hence we factor this in */
|
| 348 |
if (norm && DOT(norm, p -> norm) <= PMAP_NORM_TOL * 127 * frandom())
|
| 349 |
return;
|
| 350 |
|
| 351 |
if (isContribPmap(pmap)) {
|
| 352 |
/* Lookup in contribution photon map; filter according to emitting
|
| 353 |
* light source if contrib list set, else accept all */
|
| 354 |
|
| 355 |
if (pmap -> srcContrib) {
|
| 356 |
OBJREC *srcMod;
|
| 357 |
const int srcIdx = photonSrcIdx(pmap, p);
|
| 358 |
|
| 359 |
if (srcIdx < 0 || srcIdx >= nsources)
|
| 360 |
error(INTERNAL, "invalid light source index in photon map");
|
| 361 |
|
| 362 |
srcMod = findmaterial(source [srcIdx].so);
|
| 363 |
|
| 364 |
/* Reject photon if contributions from light source which emitted it
|
| 365 |
* are not sought */
|
| 366 |
if (!lu_find(pmap -> srcContrib, srcMod -> oname) -> data)
|
| 367 |
return;
|
| 368 |
}
|
| 369 |
|
| 370 |
/* Reject non-caustic photon if lookup for caustic contribs */
|
| 371 |
if (pmap -> lookupCaustic & !p -> caustic)
|
| 372 |
return;
|
| 373 |
}
|
| 374 |
|
| 375 |
/* Squared distance to current photon (note dist2() requires doubles) */
|
| 376 |
VSUB(dv, pos, p -> pos);
|
| 377 |
d2 = DOT(dv, dv);
|
| 378 |
|
| 379 |
/* Accept photon if closer than current max dist & add to priority queue */
|
| 380 |
if (d2 < pmap -> maxDist2) {
|
| 381 |
if (pmap -> squeue.tail < sqSize) {
|
| 382 |
/* Priority queue not full; append photon and restore heap */
|
| 383 |
i = ++pmap -> squeue.tail;
|
| 384 |
|
| 385 |
while (i > 1 && sq [(i >> 1) - 1].dist2 <= d2) {
|
| 386 |
sq [i - 1].idx = sq [(i >> 1) - 1].idx;
|
| 387 |
sq [i - 1].dist2 = sq [(i >> 1) - 1].dist2;
|
| 388 |
i >>= 1;
|
| 389 |
}
|
| 390 |
|
| 391 |
sq [--i].idx = (PhotonIdx)p;
|
| 392 |
sq [i].dist2 = d2;
|
| 393 |
/* Update maxDist if we've just filled the queue */
|
| 394 |
if (pmap -> squeue.tail >= pmap -> squeue.len)
|
| 395 |
pmap -> maxDist2 = sq [0].dist2;
|
| 396 |
}
|
| 397 |
else {
|
| 398 |
/* Priority queue full; replace maximum, restore heap, and
|
| 399 |
update maxDist */
|
| 400 |
i = 1;
|
| 401 |
|
| 402 |
while (i <= sqSize >> 1) {
|
| 403 |
j = i << 1;
|
| 404 |
if (j < sqSize && sq [j - 1].dist2 < sq [j].dist2)
|
| 405 |
j++;
|
| 406 |
if (d2 >= sq [j - 1].dist2)
|
| 407 |
break;
|
| 408 |
sq [i - 1].idx = sq [j - 1].idx;
|
| 409 |
sq [i - 1].dist2 = sq [j - 1].dist2;
|
| 410 |
i = j;
|
| 411 |
}
|
| 412 |
|
| 413 |
sq [--i].idx = (PhotonIdx)p;
|
| 414 |
sq [i].dist2 = d2;
|
| 415 |
pmap -> maxDist2 = sq [0].dist2;
|
| 416 |
}
|
| 417 |
}
|
| 418 |
}
|
| 419 |
|
| 420 |
|
| 421 |
|
| 422 |
int kdT_FindPhotons (struct PhotonMap *pmap, const FVECT pos,
|
| 423 |
const FVECT norm)
|
| 424 |
{
|
| 425 |
float p [3], n [3];
|
| 426 |
|
| 427 |
/* Photon pos & normal stored at lower precision */
|
| 428 |
VCOPY(p, pos);
|
| 429 |
if (norm)
|
| 430 |
VCOPY(n, norm);
|
| 431 |
kdT_FindNearest(pmap, p, norm ? n : NULL, 1);
|
| 432 |
|
| 433 |
/* Return success or failure (empty queue => none found) */
|
| 434 |
return pmap -> squeue.tail ? 0 : -1;
|
| 435 |
}
|
| 436 |
|
| 437 |
|
| 438 |
|
| 439 |
static void kdT_Find1Nearest (PhotonMap *pmap, const float pos [3],
|
| 440 |
const float norm [3], Photon **photon,
|
| 441 |
unsigned long node)
|
| 442 |
/* Recursive part of kdT_Find1Photon(). Locate single nearest neighbour to
|
| 443 |
* pos with similar normal. Note that all heap and queue indices are
|
| 444 |
* 1-based, but accesses to the arrays are 0-based! */
|
| 445 |
{
|
| 446 |
Photon *p = (Photon*)pmap -> store.nodes + node - 1;
|
| 447 |
/* Signed distance to current photon's splitting plane */
|
| 448 |
float d = pos [p -> discr] - p -> pos [p -> discr], d2 = d * d,
|
| 449 |
dv [3];
|
| 450 |
|
| 451 |
/* Search subtree closer to pos first; exclude other subtree if the
|
| 452 |
distance to the splitting plane is greater than maxDist */
|
| 453 |
if (d < 0) {
|
| 454 |
if (node << 1 <= pmap -> numPhotons)
|
| 455 |
kdT_Find1Nearest(pmap, pos, norm, photon, node << 1);
|
| 456 |
|
| 457 |
if (d2 < pmap -> maxDist2 && node << 1 < pmap -> numPhotons)
|
| 458 |
kdT_Find1Nearest(pmap, pos, norm, photon, (node << 1) + 1);
|
| 459 |
}
|
| 460 |
else {
|
| 461 |
if (node << 1 < pmap -> numPhotons)
|
| 462 |
kdT_Find1Nearest(pmap, pos, norm, photon, (node << 1) + 1);
|
| 463 |
|
| 464 |
if (d2 < pmap -> maxDist2 && node << 1 <= pmap -> numPhotons)
|
| 465 |
kdT_Find1Nearest(pmap, pos, norm, photon, node << 1);
|
| 466 |
}
|
| 467 |
|
| 468 |
/* Squared distance to current photon */
|
| 469 |
VSUB(dv, pos, p -> pos);
|
| 470 |
d2 = DOT(dv, dv);
|
| 471 |
|
| 472 |
if (d2 < pmap -> maxDist2 &&
|
| 473 |
(!norm || DOT(norm, p -> norm) > PMAP_NORM_TOL * 127 * frandom())) {
|
| 474 |
/* Closest photon so far with similar normal. We allow for tolerance
|
| 475 |
* to account for perturbation in the latter; note the photon normal
|
| 476 |
* is coded in the range [-127,127], hence we factor this in */
|
| 477 |
pmap -> maxDist2 = d2;
|
| 478 |
*photon = p;
|
| 479 |
}
|
| 480 |
}
|
| 481 |
|
| 482 |
|
| 483 |
|
| 484 |
int kdT_Find1Photon (struct PhotonMap *pmap, const FVECT pos,
|
| 485 |
const FVECT norm, Photon *photon)
|
| 486 |
{
|
| 487 |
float p [3], n [3];
|
| 488 |
Photon *pnn = NULL;
|
| 489 |
|
| 490 |
/* Photon pos & normal stored at lower precision */
|
| 491 |
VCOPY(p, pos);
|
| 492 |
if (norm)
|
| 493 |
VCOPY(n, norm);
|
| 494 |
kdT_Find1Nearest(pmap, p, norm ? n : NULL, &pnn, 1);
|
| 495 |
if (!pnn)
|
| 496 |
/* No photon found => failed */
|
| 497 |
return -1;
|
| 498 |
else {
|
| 499 |
/* Copy found photon => successs */
|
| 500 |
memcpy(photon, pnn, sizeof(Photon));
|
| 501 |
return 0;
|
| 502 |
}
|
| 503 |
}
|
| 504 |
|
| 505 |
|
| 506 |
|
| 507 |
int kdT_GetPhoton (const struct PhotonMap *pmap, PhotonIdx idx,
|
| 508 |
Photon *photon)
|
| 509 |
{
|
| 510 |
memcpy(photon, idx, sizeof(Photon));
|
| 511 |
return 0;
|
| 512 |
}
|
| 513 |
|
| 514 |
|
| 515 |
|
| 516 |
Photon *kdT_GetNearestPhoton (const PhotonSearchQueue *squeue, PhotonIdx idx)
|
| 517 |
{
|
| 518 |
return idx;
|
| 519 |
}
|
| 520 |
|
| 521 |
|
| 522 |
|
| 523 |
PhotonIdx kdT_FirstPhoton (const struct PhotonMap* pmap)
|
| 524 |
{
|
| 525 |
return pmap -> store.nodes;
|
| 526 |
}
|
| 527 |
|
| 528 |
|
| 529 |
|
| 530 |
void kdT_Delete (PhotonKdTree *kdt)
|
| 531 |
{
|
| 532 |
free(kdt -> nodes);
|
| 533 |
kdt -> nodes = NULL;
|
| 534 |
}
|