| 1 |
|
#ifndef lint |
| 2 |
|
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 4 |
+ |
|
| 5 |
|
/* |
| 6 |
< |
================================================================== |
| 7 |
< |
Photon map data structures and kd-tree handling |
| 6 |
> |
========================================================================= |
| 7 |
> |
Photon map types and interface to nearest neighbour lookups in underlying |
| 8 |
> |
point cloud data structure. |
| 9 |
> |
|
| 10 |
> |
The default data structure is an in-core kd-tree (see pmapkdt.{h,c}). |
| 11 |
> |
This can be overriden with the PMAP_OOC compiletime switch, which enables |
| 12 |
> |
an out-of-core octree (see oococt.{h,c}). |
| 13 |
|
|
| 14 |
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
| 15 |
|
(c) Fraunhofer Institute for Solar Energy Systems, |
| 16 |
|
(c) Lucerne University of Applied Sciences and Arts, |
| 17 |
< |
supported by the Swiss National Science Foundation (SNSF, #147053) |
| 18 |
< |
================================================================== |
| 17 |
> |
supported by the Swiss National Science Foundation (SNSF, #147053) |
| 18 |
> |
========================================================================== |
| 19 |
|
|
| 20 |
|
$Id$ |
| 21 |
|
*/ |
| 38 |
|
|
| 39 |
|
|
| 40 |
|
|
| 41 |
+ |
/* Include routines to handle underlying point cloud data structure */ |
| 42 |
+ |
#ifdef PMAP_OOC |
| 43 |
+ |
#include "pmapooc.c" |
| 44 |
+ |
#else |
| 45 |
+ |
#include "pmapkdt.c" |
| 46 |
+ |
#endif |
| 47 |
+ |
|
| 48 |
+ |
|
| 49 |
+ |
|
| 50 |
|
void initPhotonMap (PhotonMap *pmap, PhotonMapType t) |
| 51 |
|
/* Init photon map 'n' stuff... */ |
| 52 |
|
{ |
| 53 |
|
if (!pmap) |
| 54 |
|
return; |
| 55 |
|
|
| 56 |
< |
pmap -> heapSize = pmap -> heapEnd = 0; |
| 42 |
< |
pmap -> heap = NULL; |
| 43 |
< |
pmap -> squeue = NULL; |
| 56 |
> |
pmap -> numPhotons = 0; |
| 57 |
|
pmap -> biasCompHist = NULL; |
| 58 |
|
pmap -> maxPos [0] = pmap -> maxPos [1] = pmap -> maxPos [2] = -FHUGE; |
| 59 |
|
pmap -> minPos [0] = pmap -> minPos [1] = pmap -> minPos [2] = FHUGE; |
| 63 |
|
pmap -> numDensity = 0; |
| 64 |
|
pmap -> distribRatio = 1; |
| 65 |
|
pmap -> type = t; |
| 66 |
+ |
pmap -> squeue.node = NULL; |
| 67 |
+ |
pmap -> squeue.len = 0; |
| 68 |
|
|
| 69 |
|
/* Init local RNG state */ |
| 70 |
|
pmap -> randState [0] = 10243; |
| 76 |
|
/* Set up type-specific photon lookup callback */ |
| 77 |
|
pmap -> lookup = pmapLookup [t]; |
| 78 |
|
|
| 79 |
< |
pmap -> primary = NULL; |
| 80 |
< |
pmap -> primarySize = pmap -> primaryEnd = 0; |
| 79 |
> |
/* Mark primary photon ray as unused */ |
| 80 |
> |
pmap -> lastPrimary.srcIdx = -1; |
| 81 |
> |
pmap -> numPrimary = 0; |
| 82 |
> |
pmap -> primaries = NULL; |
| 83 |
> |
|
| 84 |
> |
/* Init storage */ |
| 85 |
> |
pmap -> heap = NULL; |
| 86 |
> |
pmap -> heapBuf = NULL; |
| 87 |
> |
pmap -> heapBufLen = 0; |
| 88 |
> |
#ifdef PMAP_OOC |
| 89 |
> |
OOC_Null(&pmap -> store); |
| 90 |
> |
#else |
| 91 |
> |
kdT_Null(&pmap -> store); |
| 92 |
> |
#endif |
| 93 |
|
} |
| 94 |
|
|
| 95 |
|
|
| 96 |
|
|
| 97 |
< |
const PhotonPrimary* addPhotonPrimary (PhotonMap *pmap, const RAY *ray) |
| 97 |
> |
void initPhotonHeap (PhotonMap *pmap) |
| 98 |
|
{ |
| 99 |
< |
PhotonPrimary *prim = NULL; |
| 73 |
< |
FVECT dvec; |
| 99 |
> |
int fdFlags; |
| 100 |
|
|
| 101 |
< |
if (!pmap || !ray) |
| 102 |
< |
return NULL; |
| 101 |
> |
if (!pmap) |
| 102 |
> |
error(INTERNAL, "undefined photon map in initPhotonHeap"); |
| 103 |
|
|
| 104 |
< |
/* Check if last primary ray has spawned photons (srcIdx >= 0, see |
| 105 |
< |
* addPhoton()), in which case we keep it and allocate a new one; |
| 106 |
< |
* otherwise we overwrite the unused entry */ |
| 107 |
< |
if (pmap -> primary && pmap -> primary [pmap -> primaryEnd].srcIdx >= 0) |
| 108 |
< |
pmap -> primaryEnd++; |
| 109 |
< |
|
| 110 |
< |
if (!pmap -> primarySize || pmap -> primaryEnd >= pmap -> primarySize) { |
| 85 |
< |
/* Allocate/enlarge array */ |
| 86 |
< |
pmap -> primarySize += pmap -> heapSizeInc; |
| 87 |
< |
|
| 88 |
< |
/* Counter wraparound? */ |
| 89 |
< |
if (pmap -> primarySize < pmap -> heapSizeInc) |
| 90 |
< |
error(INTERNAL, "photon primary overflow"); |
| 91 |
< |
|
| 92 |
< |
pmap -> primary = (PhotonPrimary *)realloc(pmap -> primary, |
| 93 |
< |
sizeof(PhotonPrimary) * |
| 94 |
< |
pmap -> primarySize); |
| 95 |
< |
if (!pmap -> primary) |
| 96 |
< |
error(USER, "can't allocate photon primaries"); |
| 104 |
> |
if (!pmap -> heap) { |
| 105 |
> |
/* Open heap file */ |
| 106 |
> |
if (!(pmap -> heap = tmpfile())) |
| 107 |
> |
error(SYSTEM, "failed opening heap file in initPhotonHeap"); |
| 108 |
> |
fdFlags = fcntl(fileno(pmap -> heap), F_GETFL); |
| 109 |
> |
fcntl(fileno(pmap -> heap), F_SETFL, fdFlags | O_APPEND); |
| 110 |
> |
/* ftruncate(fileno(pmap -> heap), 0); */ |
| 111 |
|
} |
| 112 |
+ |
} |
| 113 |
+ |
|
| 114 |
+ |
|
| 115 |
+ |
|
| 116 |
+ |
void flushPhotonHeap (PhotonMap *pmap) |
| 117 |
+ |
{ |
| 118 |
+ |
int fd; |
| 119 |
+ |
const unsigned long len = pmap -> heapBufLen * sizeof(Photon); |
| 120 |
|
|
| 121 |
< |
prim = pmap -> primary + pmap -> primaryEnd; |
| 121 |
> |
if (!pmap) |
| 122 |
> |
error(INTERNAL, "undefined photon map in flushPhotonHeap"); |
| 123 |
> |
|
| 124 |
> |
if (!pmap -> heap || !pmap -> heapBuf) |
| 125 |
> |
error(INTERNAL, "undefined heap in flushPhotonHeap"); |
| 126 |
> |
|
| 127 |
> |
/* Atomically seek and write block to heap */ |
| 128 |
> |
/* !!! Unbuffered I/O via pwrite() avoids potential race conditions |
| 129 |
> |
* !!! and buffer corruption which can occur with lseek()/fseek() |
| 130 |
> |
* !!! followed by write()/fwrite(). */ |
| 131 |
> |
fd = fileno(pmap -> heap); |
| 132 |
|
|
| 133 |
< |
/* Mark unused with negative source index until path spawns a photon (see |
| 134 |
< |
* addPhoton()) */ |
| 135 |
< |
prim -> srcIdx = -1; |
| 133 |
> |
#ifdef DEBUG_PMAP |
| 134 |
> |
sprintf(errmsg, "Proc %d: flushing %ld photons from pos %ld\n", getpid(), |
| 135 |
> |
pmap -> heapBufLen, lseek(fd, 0, SEEK_END) / sizeof(Photon)); |
| 136 |
> |
eputs(errmsg); |
| 137 |
> |
#endif |
| 138 |
> |
|
| 139 |
> |
/*if (pwrite(fd, pmap -> heapBuf, len, lseek(fd, 0, SEEK_END)) != len) */ |
| 140 |
> |
if (write(fd, pmap -> heapBuf, len) != len) |
| 141 |
> |
error(SYSTEM, "failed append to heap file in flushPhotonHeap"); |
| 142 |
> |
|
| 143 |
> |
if (fsync(fd)) |
| 144 |
> |
error(SYSTEM, "failed fsync in flushPhotonHeap"); |
| 145 |
|
|
| 146 |
< |
/* Reverse incident direction to point to light source */ |
| 147 |
< |
dvec [0] = -ray -> rdir [0]; |
| 107 |
< |
dvec [1] = -ray -> rdir [1]; |
| 108 |
< |
dvec [2] = -ray -> rdir [2]; |
| 109 |
< |
prim -> dir = encodedir(dvec); |
| 146 |
> |
pmap -> heapBufLen = 0; |
| 147 |
> |
} |
| 148 |
|
|
| 149 |
< |
VCOPY(prim -> pos, ray -> rop); |
| 149 |
> |
|
| 150 |
> |
|
| 151 |
> |
#ifdef DEBUG_OOC |
| 152 |
> |
static int checkPhotonHeap (FILE *file) |
| 153 |
> |
/* Check heap for nonsensical or duplicate photons */ |
| 154 |
> |
{ |
| 155 |
> |
Photon p, lastp; |
| 156 |
> |
int i, dup; |
| 157 |
|
|
| 158 |
< |
return prim; |
| 158 |
> |
rewind(file); |
| 159 |
> |
memset(&lastp, 0, sizeof(lastp)); |
| 160 |
> |
|
| 161 |
> |
while (fread(&p, sizeof(p), 1, file)) { |
| 162 |
> |
dup = 1; |
| 163 |
> |
|
| 164 |
> |
for (i = 0; i <= 2; i++) { |
| 165 |
> |
if (p.pos [i] < thescene.cuorg [i] || |
| 166 |
> |
p.pos [i] > thescene.cuorg [i] + thescene.cusize) { |
| 167 |
> |
|
| 168 |
> |
sprintf(errmsg, "corrupt photon in heap at [%f, %f, %f]\n", |
| 169 |
> |
p.pos [0], p.pos [1], p.pos [2]); |
| 170 |
> |
error(WARNING, errmsg); |
| 171 |
> |
} |
| 172 |
> |
|
| 173 |
> |
dup &= p.pos [i] == lastp.pos [i]; |
| 174 |
> |
} |
| 175 |
> |
|
| 176 |
> |
if (dup) { |
| 177 |
> |
sprintf(errmsg, |
| 178 |
> |
"consecutive duplicate photon in heap at [%f, %f, %f]\n", |
| 179 |
> |
p.pos [0], p.pos [1], p.pos [2]); |
| 180 |
> |
error(WARNING, errmsg); |
| 181 |
> |
} |
| 182 |
> |
} |
| 183 |
> |
|
| 184 |
> |
return 0; |
| 185 |
|
} |
| 186 |
+ |
#endif |
| 187 |
|
|
| 188 |
|
|
| 189 |
|
|
| 190 |
< |
const Photon* addPhoton (PhotonMap* pmap, const RAY* ray) |
| 190 |
> |
int newPhoton (PhotonMap* pmap, const RAY* ray) |
| 191 |
|
{ |
| 192 |
|
unsigned i; |
| 193 |
< |
Photon* photon = NULL; |
| 193 |
> |
Photon photon; |
| 194 |
|
COLOR photonFlux; |
| 195 |
|
|
| 196 |
|
/* Account for distribution ratio */ |
| 197 |
|
if (!pmap || pmapRandom(pmap -> randState) > pmap -> distribRatio) |
| 198 |
< |
return NULL; |
| 198 |
> |
return -1; |
| 199 |
|
|
| 200 |
|
/* Don't store on sources */ |
| 201 |
|
if (ray -> robj > -1 && islight(objptr(ray -> ro -> omod) -> otype)) |
| 202 |
< |
return NULL; |
| 202 |
> |
return -1; |
| 203 |
|
|
| 132 |
– |
#if 0 |
| 133 |
– |
if (inContribPmap(pmap)) { |
| 134 |
– |
/* Adding contribution photon */ |
| 135 |
– |
if (ray -> parent && ray -> parent -> rtype & PRIMARY) |
| 136 |
– |
/* Add primary photon ray if parent is primary; by putting this |
| 137 |
– |
* here and checking the ray's immediate parent, we only add |
| 138 |
– |
* primaries that actually contribute photons, and we only add them |
| 139 |
– |
* once. */ |
| 140 |
– |
addPhotonPrimary(pmap, ray -> parent); |
| 141 |
– |
|
| 142 |
– |
/* Save index to primary ray (remains unchanged if primary already in |
| 143 |
– |
* array) */ |
| 144 |
– |
primary = pmap -> primaryEnd; |
| 145 |
– |
} |
| 146 |
– |
#endif |
| 147 |
– |
|
| 204 |
|
#ifdef PMAP_ROI |
| 205 |
< |
/* Store photon if within region of interest -- for egg-spurtz only! */ |
| 205 |
> |
/* Store photon if within region of interest -- for Ze Eckspertz only! */ |
| 206 |
|
if (ray -> rop [0] >= pmapROI [0] && ray -> rop [0] <= pmapROI [1] && |
| 207 |
|
ray -> rop [1] >= pmapROI [2] && ray -> rop [1] <= pmapROI [3] && |
| 208 |
|
ray -> rop [2] >= pmapROI [4] && ray -> rop [2] <= pmapROI [5]) |
| 209 |
|
#endif |
| 210 |
|
{ |
| 155 |
– |
if (pmap -> heapEnd >= pmap -> heapSize) { |
| 156 |
– |
/* Enlarge heap */ |
| 157 |
– |
pmap -> heapSize += pmap -> heapSizeInc; |
| 158 |
– |
|
| 159 |
– |
/* Counter wraparound? */ |
| 160 |
– |
if (pmap -> heapSize < pmap -> heapSizeInc) |
| 161 |
– |
error(INTERNAL, "photon heap overflow"); |
| 162 |
– |
|
| 163 |
– |
pmap -> heap = (Photon *)realloc(pmap -> heap, |
| 164 |
– |
sizeof(Photon) * pmap -> heapSize); |
| 165 |
– |
if (!pmap -> heap) |
| 166 |
– |
error(USER, "can't allocate photon heap"); |
| 167 |
– |
} |
| 168 |
– |
|
| 169 |
– |
photon = pmap -> heap + pmap -> heapEnd++; |
| 170 |
– |
|
| 211 |
|
/* Adjust flux according to distribution ratio and ray weight */ |
| 212 |
|
copycolor(photonFlux, ray -> rcol); |
| 213 |
|
scalecolor(photonFlux, |
| 214 |
|
ray -> rweight / (pmap -> distribRatio ? pmap -> distribRatio |
| 215 |
|
: 1)); |
| 216 |
< |
setPhotonFlux(photon, photonFlux); |
| 216 |
> |
setPhotonFlux(&photon, photonFlux); |
| 217 |
|
|
| 218 |
|
/* Set photon position and flags */ |
| 219 |
< |
VCOPY(photon -> pos, ray -> rop); |
| 220 |
< |
photon -> flags = PMAP_CAUSTICRAY(ray) ? PMAP_CAUST_BIT : 0; |
| 219 |
> |
VCOPY(photon.pos, ray -> rop); |
| 220 |
> |
photon.flags = 0; |
| 221 |
> |
photon.caustic = PMAP_CAUSTICRAY(ray); |
| 222 |
|
|
| 223 |
< |
/* Set primary ray index and mark as used for contrib photons */ |
| 223 |
> |
/* Set contrib photon's primary ray and subprocess index (the latter |
| 224 |
> |
* to linearise the primary ray indices after photon distribution is |
| 225 |
> |
* complete). Also set primary ray's source index, thereby marking it |
| 226 |
> |
* as used. */ |
| 227 |
|
if (isContribPmap(pmap)) { |
| 228 |
< |
photon -> primary = pmap -> primaryEnd; |
| 229 |
< |
pmap -> primary [pmap -> primaryEnd].srcIdx = ray -> rsrc; |
| 228 |
> |
photon.primary = pmap -> numPrimary; |
| 229 |
> |
photon.proc = PMAP_GETRAYPROC(ray); |
| 230 |
> |
pmap -> lastPrimary.srcIdx = ray -> rsrc; |
| 231 |
|
} |
| 232 |
< |
else photon -> primary = 0; |
| 232 |
> |
else photon.primary = 0; |
| 233 |
|
|
| 234 |
< |
/* Update min and max positions & set normal */ |
| 235 |
< |
for (i = 0; i <= 2; i++) { |
| 236 |
< |
if (photon -> pos [i] < pmap -> minPos [i]) |
| 237 |
< |
pmap -> minPos [i] = photon -> pos [i]; |
| 238 |
< |
if (photon -> pos [i] > pmap -> maxPos [i]) |
| 239 |
< |
pmap -> maxPos [i] = photon -> pos [i]; |
| 240 |
< |
photon -> norm [i] = 127.0 * (isVolumePmap(pmap) ? ray -> rdir [i] |
| 241 |
< |
: ray -> ron [i]); |
| 234 |
> |
/* Set normal */ |
| 235 |
> |
for (i = 0; i <= 2; i++) |
| 236 |
> |
photon.norm [i] = 127.0 * (isVolumePmap(pmap) ? ray -> rdir [i] |
| 237 |
> |
: ray -> ron [i]); |
| 238 |
> |
|
| 239 |
> |
if (!pmap -> heapBuf) { |
| 240 |
> |
/* Lazily allocate heap buffa */ |
| 241 |
> |
#if 1 |
| 242 |
> |
/* Randomise buffa size to temporally decorellate buffa flushes */ |
| 243 |
> |
srandom(randSeed + getpid()); |
| 244 |
> |
pmap -> heapBufSize = PMAP_HEAPBUFSIZE * (0.5 + frandom()); |
| 245 |
> |
#else |
| 246 |
> |
/* Randomisation disabled for reproducability during debugging */ |
| 247 |
> |
pmap -> heapBufSize = PMAP_HEAPBUFSIZE; |
| 248 |
> |
#endif |
| 249 |
> |
if (!(pmap -> heapBuf = calloc(pmap -> heapBufSize, sizeof(Photon)))) |
| 250 |
> |
error(SYSTEM, "failed heap buffer allocation in newPhoton"); |
| 251 |
> |
pmap -> heapBufLen = 0; |
| 252 |
|
} |
| 253 |
+ |
|
| 254 |
+ |
/* Photon initialised; now append to heap buffa */ |
| 255 |
+ |
memcpy(pmap -> heapBuf + pmap -> heapBufLen, &photon, sizeof(Photon)); |
| 256 |
+ |
|
| 257 |
+ |
if (++pmap -> heapBufLen >= pmap -> heapBufSize) |
| 258 |
+ |
/* Heap buffa full, flush to heap file */ |
| 259 |
+ |
flushPhotonHeap(pmap); |
| 260 |
+ |
|
| 261 |
+ |
pmap -> numPhotons++; |
| 262 |
|
} |
| 263 |
|
|
| 264 |
< |
return photon; |
| 264 |
> |
return 0; |
| 265 |
|
} |
| 266 |
|
|
| 267 |
|
|
| 268 |
|
|
| 269 |
< |
static void nearestNeighbours (PhotonMap* pmap, const float pos [3], |
| 270 |
< |
const float norm [3], unsigned long node) |
| 207 |
< |
/* Recursive part of findPhotons(..). |
| 208 |
< |
Note that all heap and priority queue index handling is 1-based, but |
| 209 |
< |
accesses to the arrays are 0-based! */ |
| 269 |
> |
void buildPhotonMap (PhotonMap *pmap, double *photonFlux, |
| 270 |
> |
PhotonPrimaryIdx *primaryOfs, unsigned nproc) |
| 271 |
|
{ |
| 272 |
< |
Photon* p = &pmap -> heap [node - 1]; |
| 273 |
< |
unsigned i, j; |
| 274 |
< |
/* Signed distance to current photon's splitting plane */ |
| 275 |
< |
float d = pos [photonDiscr(*p)] - p -> pos [photonDiscr(*p)], |
| 276 |
< |
d2 = d * d; |
| 277 |
< |
PhotonSQNode* sq = pmap -> squeue; |
| 278 |
< |
const unsigned sqSize = pmap -> squeueSize; |
| 279 |
< |
float dv [3]; |
| 272 |
> |
unsigned long n, nCheck = 0; |
| 273 |
> |
unsigned i; |
| 274 |
> |
Photon *p; |
| 275 |
> |
COLOR flux; |
| 276 |
> |
FILE *nuHeap; |
| 277 |
> |
/* Need double here to reduce summation errors */ |
| 278 |
> |
double avgFlux [3] = {0, 0, 0}, CoG [3] = {0, 0, 0}, CoGdist = 0; |
| 279 |
> |
FVECT d; |
| 280 |
|
|
| 281 |
< |
/* Search subtree closer to pos first; exclude other subtree if the |
| 282 |
< |
distance to the splitting plane is greater than maxDist */ |
| 222 |
< |
if (d < 0) { |
| 223 |
< |
if (node << 1 <= pmap -> heapSize) |
| 224 |
< |
nearestNeighbours(pmap, pos, norm, node << 1); |
| 225 |
< |
if (d2 < pmap -> maxDist && node << 1 < pmap -> heapSize) |
| 226 |
< |
nearestNeighbours(pmap, pos, norm, (node << 1) + 1); |
| 227 |
< |
} |
| 228 |
< |
else { |
| 229 |
< |
if (node << 1 < pmap -> heapSize) |
| 230 |
< |
nearestNeighbours(pmap, pos, norm, (node << 1) + 1); |
| 231 |
< |
if (d2 < pmap -> maxDist && node << 1 <= pmap -> heapSize) |
| 232 |
< |
nearestNeighbours(pmap, pos, norm, node << 1); |
| 233 |
< |
} |
| 234 |
< |
|
| 235 |
< |
/* Reject photon if normal faces away (ignored for volume photons) */ |
| 236 |
< |
if (norm && DOT(norm, p -> norm) <= 0.5 * frandom()) |
| 237 |
< |
return; |
| 281 |
> |
if (!pmap) |
| 282 |
> |
error(INTERNAL, "undefined photon map in buildPhotonMap"); |
| 283 |
|
|
| 284 |
< |
if (isContribPmap(pmap) && pmap -> srcContrib) { |
| 285 |
< |
/* Lookup in contribution photon map */ |
| 286 |
< |
OBJREC *srcMod; |
| 287 |
< |
const int srcIdx = photonSrcIdx(pmap, p); |
| 288 |
< |
|
| 289 |
< |
if (srcIdx < 0 || srcIdx >= nsources) |
| 245 |
< |
error(INTERNAL, "invalid light source index in photon map"); |
| 246 |
< |
|
| 247 |
< |
srcMod = findmaterial(source [srcIdx].so); |
| 284 |
> |
/* Get number of photons from heapfile size */ |
| 285 |
> |
fseek(pmap -> heap, 0, SEEK_END); |
| 286 |
> |
pmap -> numPhotons = ftell(pmap -> heap) / sizeof(Photon); |
| 287 |
> |
|
| 288 |
> |
if (!pmap -> numPhotons) |
| 289 |
> |
error(INTERNAL, "empty photon map in buildPhotonMap"); |
| 290 |
|
|
| 291 |
< |
/* Reject photon if contributions from light source which emitted it |
| 292 |
< |
* are not sought */ |
| 251 |
< |
if (!lu_find(pmap -> srcContrib, srcMod -> oname) -> data) |
| 252 |
< |
return; |
| 291 |
> |
if (!pmap -> heap) |
| 292 |
> |
error(INTERNAL, "no heap in buildPhotonMap"); |
| 293 |
|
|
| 294 |
< |
/* Reject non-caustic photon if lookup for caustic contribs */ |
| 295 |
< |
if (pmap -> lookupFlags & PMAP_CAUST_BIT & ~p -> flags) |
| 296 |
< |
return; |
| 294 |
> |
#ifdef DEBUG_PMAP |
| 295 |
> |
eputs("Checking photon heap consistency...\n"); |
| 296 |
> |
checkPhotonHeap(pmap -> heap); |
| 297 |
> |
|
| 298 |
> |
sprintf(errmsg, "Heap contains %ld photons\n", pmap -> numPhotons); |
| 299 |
> |
eputs(errmsg); |
| 300 |
> |
#endif |
| 301 |
> |
|
| 302 |
> |
/* Allocate heap buffa */ |
| 303 |
> |
if (!pmap -> heapBuf) { |
| 304 |
> |
pmap -> heapBufSize = PMAP_HEAPBUFSIZE; |
| 305 |
> |
pmap -> heapBuf = calloc(pmap -> heapBufSize, sizeof(Photon)); |
| 306 |
> |
if (!pmap -> heapBuf) |
| 307 |
> |
error(SYSTEM, "failed to allocate postprocessed photon heap in" |
| 308 |
> |
"buildPhotonMap"); |
| 309 |
|
} |
| 310 |
+ |
|
| 311 |
+ |
/* We REALLY don't need yet another @%&*! heap just to hold the scaled |
| 312 |
+ |
* photons, but can't think of a quicker fix... */ |
| 313 |
+ |
if (!(nuHeap = tmpfile())) |
| 314 |
+ |
error(SYSTEM, "failed to open postprocessed photon heap in " |
| 315 |
+ |
"buildPhotonMap"); |
| 316 |
+ |
|
| 317 |
+ |
rewind(pmap -> heap); |
| 318 |
+ |
|
| 319 |
+ |
#ifdef DEBUG_PMAP |
| 320 |
+ |
eputs("Postprocessing photons...\n"); |
| 321 |
+ |
#endif |
| 322 |
|
|
| 323 |
< |
/* Squared distance to current photon */ |
| 324 |
< |
dv [0] = pos [0] - p -> pos [0]; |
| 325 |
< |
dv [1] = pos [1] - p -> pos [1]; |
| 326 |
< |
dv [2] = pos [2] - p -> pos [2]; |
| 327 |
< |
d2 = DOT(dv, dv); |
| 323 |
> |
while (!feof(pmap -> heap)) { |
| 324 |
> |
pmap -> heapBufLen = fread(pmap -> heapBuf, sizeof(Photon), |
| 325 |
> |
PMAP_HEAPBUFSIZE, pmap -> heap); |
| 326 |
> |
|
| 327 |
> |
if (pmap -> heapBufLen) { |
| 328 |
> |
for (n = pmap -> heapBufLen, p = pmap -> heapBuf; n; n--, p++) { |
| 329 |
> |
/* Update min and max pos and set photon flux */ |
| 330 |
> |
for (i = 0; i <= 2; i++) { |
| 331 |
> |
if (p -> pos [i] < pmap -> minPos [i]) |
| 332 |
> |
pmap -> minPos [i] = p -> pos [i]; |
| 333 |
> |
else if (p -> pos [i] > pmap -> maxPos [i]) |
| 334 |
> |
pmap -> maxPos [i] = p -> pos [i]; |
| 335 |
|
|
| 336 |
< |
/* Accept photon if closer than current max dist & add to priority queue */ |
| 337 |
< |
if (d2 < pmap -> maxDist) { |
| 338 |
< |
if (pmap -> squeueEnd < sqSize) { |
| 339 |
< |
/* Priority queue not full; append photon and restore heap */ |
| 340 |
< |
i = ++pmap -> squeueEnd; |
| 341 |
< |
|
| 342 |
< |
while (i > 1 && sq [(i >> 1) - 1].dist <= d2) { |
| 343 |
< |
sq [i - 1].photon = sq [(i >> 1) - 1].photon; |
| 344 |
< |
sq [i - 1].dist = sq [(i >> 1) - 1].dist; |
| 345 |
< |
i >>= 1; |
| 336 |
> |
/* Update centre of gravity with photon position */ |
| 337 |
> |
CoG [i] += p -> pos [i]; |
| 338 |
> |
} |
| 339 |
> |
|
| 340 |
> |
if (primaryOfs) |
| 341 |
> |
/* Linearise photon primary index from subprocess index using the |
| 342 |
> |
* per-subprocess offsets in primaryOfs */ |
| 343 |
> |
p -> primary += primaryOfs [p -> proc]; |
| 344 |
> |
|
| 345 |
> |
/* Scale photon's flux (hitherto normalised to 1 over RGB); in |
| 346 |
> |
* case of a contrib photon map, this is done per light source, |
| 347 |
> |
* and photonFlux is assumed to be an array */ |
| 348 |
> |
getPhotonFlux(p, flux); |
| 349 |
> |
|
| 350 |
> |
if (photonFlux) { |
| 351 |
> |
scalecolor(flux, photonFlux [isContribPmap(pmap) ? |
| 352 |
> |
photonSrcIdx(pmap, p) : 0]); |
| 353 |
> |
setPhotonFlux(p, flux); |
| 354 |
> |
} |
| 355 |
> |
|
| 356 |
> |
/* Update average photon flux; need a double here */ |
| 357 |
> |
addcolor(avgFlux, flux); |
| 358 |
|
} |
| 359 |
|
|
| 360 |
< |
sq [--i].photon = p; |
| 361 |
< |
sq [i].dist = d2; |
| 362 |
< |
/* Update maxDist if we've just filled the queue */ |
| 363 |
< |
if (pmap -> squeueEnd >= pmap -> squeueSize) |
| 364 |
< |
pmap -> maxDist = sq [0].dist; |
| 360 |
> |
/* Write modified photons to new heap */ |
| 361 |
> |
fwrite(pmap -> heapBuf, sizeof(Photon), pmap -> heapBufLen, nuHeap); |
| 362 |
> |
|
| 363 |
> |
if (ferror(nuHeap)) |
| 364 |
> |
error(SYSTEM, "failed postprocessing photon flux in " |
| 365 |
> |
"buildPhotonMap"); |
| 366 |
|
} |
| 367 |
< |
else { |
| 368 |
< |
/* Priority queue full; replace maximum, restore heap, and |
| 285 |
< |
update maxDist */ |
| 286 |
< |
i = 1; |
| 287 |
< |
|
| 288 |
< |
while (i <= sqSize >> 1) { |
| 289 |
< |
j = i << 1; |
| 290 |
< |
if (j < sqSize && sq [j - 1].dist < sq [j].dist) |
| 291 |
< |
j++; |
| 292 |
< |
if (d2 >= sq [j - 1].dist) |
| 293 |
< |
break; |
| 294 |
< |
sq [i - 1].photon = sq [j - 1].photon; |
| 295 |
< |
sq [i - 1].dist = sq [j - 1].dist; |
| 296 |
< |
i = j; |
| 297 |
< |
} |
| 298 |
< |
|
| 299 |
< |
sq [--i].photon = p; |
| 300 |
< |
sq [i].dist = d2; |
| 301 |
< |
pmap -> maxDist = sq [0].dist; |
| 302 |
< |
} |
| 367 |
> |
|
| 368 |
> |
nCheck += pmap -> heapBufLen; |
| 369 |
|
} |
| 370 |
+ |
|
| 371 |
+ |
#ifdef DEBUG_PMAP |
| 372 |
+ |
if (nCheck < pmap -> numPhotons) |
| 373 |
+ |
error(INTERNAL, "truncated photon heap in buildPhotonMap"); |
| 374 |
+ |
#endif |
| 375 |
+ |
|
| 376 |
+ |
/* Finalise average photon flux */ |
| 377 |
+ |
scalecolor(avgFlux, 1.0 / pmap -> numPhotons); |
| 378 |
+ |
copycolor(pmap -> photonFlux, avgFlux); |
| 379 |
+ |
|
| 380 |
+ |
/* Average photon positions to get centre of gravity */ |
| 381 |
+ |
for (i = 0; i < 3; i++) |
| 382 |
+ |
pmap -> CoG [i] = CoG [i] /= pmap -> numPhotons; |
| 383 |
+ |
|
| 384 |
+ |
rewind(pmap -> heap); |
| 385 |
+ |
|
| 386 |
+ |
/* Compute average photon distance to centre of gravity */ |
| 387 |
+ |
while (!feof(pmap -> heap)) { |
| 388 |
+ |
pmap -> heapBufLen = fread(pmap -> heapBuf, sizeof(Photon), |
| 389 |
+ |
PMAP_HEAPBUFSIZE, pmap -> heap); |
| 390 |
+ |
|
| 391 |
+ |
if (pmap -> heapBufLen) |
| 392 |
+ |
for (n = pmap -> heapBufLen, p = pmap -> heapBuf; n; n--, p++) { |
| 393 |
+ |
VSUB(d, p -> pos, CoG); |
| 394 |
+ |
CoGdist += DOT(d, d); |
| 395 |
+ |
} |
| 396 |
+ |
} |
| 397 |
+ |
|
| 398 |
+ |
pmap -> CoGdist = CoGdist /= pmap -> numPhotons; |
| 399 |
+ |
|
| 400 |
+ |
/* Swap heaps */ |
| 401 |
+ |
fclose(pmap -> heap); |
| 402 |
+ |
pmap -> heap = nuHeap; |
| 403 |
+ |
|
| 404 |
+ |
#ifdef PMAP_OOC |
| 405 |
+ |
OOC_BuildPhotonMap(pmap, nproc); |
| 406 |
+ |
#else |
| 407 |
+ |
/* kd-tree not parallelised */ |
| 408 |
+ |
kdT_BuildPhotonMap(pmap); |
| 409 |
+ |
#endif |
| 410 |
+ |
|
| 411 |
+ |
/* Trash heap and its buffa */ |
| 412 |
+ |
free(pmap -> heapBuf); |
| 413 |
+ |
fclose(pmap -> heap); |
| 414 |
+ |
pmap -> heap = NULL; |
| 415 |
+ |
pmap -> heapBuf = NULL; |
| 416 |
|
} |
| 417 |
|
|
| 418 |
|
|
| 430 |
|
/* Coefficient for adaptive maximum search radius */ |
| 431 |
|
#define PMAP_MAXDIST_COEFF 100 |
| 432 |
|
|
| 321 |
– |
|
| 433 |
|
void findPhotons (PhotonMap* pmap, const RAY* ray) |
| 434 |
|
{ |
| 324 |
– |
float pos [3], norm [3]; |
| 435 |
|
int redo = 0; |
| 436 |
|
|
| 437 |
< |
if (!pmap -> squeue) { |
| 437 |
> |
if (!pmap -> squeue.len) { |
| 438 |
|
/* Lazy init priority queue */ |
| 439 |
< |
pmap -> squeueSize = pmap -> maxGather + 1; |
| 440 |
< |
pmap -> squeue = (PhotonSQNode*)malloc(pmap -> squeueSize * |
| 441 |
< |
sizeof(PhotonSQNode)); |
| 442 |
< |
if (!pmap -> squeue) |
| 443 |
< |
error(USER, "can't allocate photon priority queue"); |
| 334 |
< |
|
| 439 |
> |
#ifdef PMAP_OOC |
| 440 |
> |
OOC_InitFindPhotons(pmap); |
| 441 |
> |
#else |
| 442 |
> |
kdT_InitFindPhotons(pmap); |
| 443 |
> |
#endif |
| 444 |
|
pmap -> minGathered = pmap -> maxGather; |
| 445 |
|
pmap -> maxGathered = pmap -> minGather; |
| 446 |
|
pmap -> totalGathered = 0; |
| 451 |
|
pmap -> rmsError = 0; |
| 452 |
|
/* SQUARED max search radius limit is based on avg photon distance to |
| 453 |
|
* centre of gravity, unless fixed by user (maxDistFix > 0) */ |
| 454 |
< |
pmap -> maxDist0 = pmap -> maxDistLimit = |
| 454 |
> |
pmap -> maxDist0 = pmap -> maxDist2Limit = |
| 455 |
|
maxDistFix > 0 ? maxDistFix * maxDistFix |
| 456 |
< |
: PMAP_MAXDIST_COEFF * pmap -> squeueSize * |
| 457 |
< |
pmap -> CoGdist / pmap -> heapSize; |
| 456 |
> |
: PMAP_MAXDIST_COEFF * pmap -> squeue.len * |
| 457 |
> |
pmap -> CoGdist / pmap -> numPhotons; |
| 458 |
|
} |
| 459 |
|
|
| 460 |
|
do { |
| 461 |
< |
pmap -> squeueEnd = 0; |
| 462 |
< |
pmap -> maxDist = pmap -> maxDist0; |
| 461 |
> |
pmap -> squeue.tail = 0; |
| 462 |
> |
pmap -> maxDist2 = pmap -> maxDist0; |
| 463 |
|
|
| 464 |
|
/* Search position is ray -> rorg for volume photons, since we have no |
| 465 |
|
intersection point. Normals are ignored -- these are incident |
| 466 |
|
directions). */ |
| 467 |
|
if (isVolumePmap(pmap)) { |
| 468 |
< |
VCOPY(pos, ray -> rorg); |
| 469 |
< |
nearestNeighbours(pmap, pos, NULL, 1); |
| 468 |
> |
#ifdef PMAP_OOC |
| 469 |
> |
OOC_FindPhotons(pmap, ray -> rorg, NULL); |
| 470 |
> |
#else |
| 471 |
> |
kdT_FindPhotons(pmap, ray -> rorg, NULL); |
| 472 |
> |
#endif |
| 473 |
|
} |
| 474 |
|
else { |
| 475 |
< |
VCOPY(pos, ray -> rop); |
| 476 |
< |
VCOPY(norm, ray -> ron); |
| 477 |
< |
nearestNeighbours(pmap, pos, norm, 1); |
| 475 |
> |
#ifdef PMAP_OOC |
| 476 |
> |
OOC_FindPhotons(pmap, ray -> rop, ray -> ron); |
| 477 |
> |
#else |
| 478 |
> |
kdT_FindPhotons(pmap, ray -> rop, ray -> ron); |
| 479 |
> |
#endif |
| 480 |
|
} |
| 481 |
|
|
| 482 |
< |
if (pmap -> maxDist < FTINY) { |
| 483 |
< |
sprintf(errmsg, "itsy bitsy teeny weeny photon search radius %e", |
| 484 |
< |
sqrt(pmap -> maxDist)); |
| 485 |
< |
error(WARNING, errmsg); |
| 486 |
< |
} |
| 487 |
< |
|
| 488 |
< |
if (pmap -> squeueEnd < pmap -> squeueSize * pmap -> gatherTolerance) { |
| 482 |
> |
#ifdef PMAP_LOOKUP_INFO |
| 483 |
> |
fprintf(stderr, "%d/%d %s photons found within radius %.3f " |
| 484 |
> |
"at (%.2f,%.2f,%.2f) on %s\n", pmap -> squeue.tail, |
| 485 |
> |
pmap -> squeue.len, pmapName [pmap -> type], sqrt(pmap -> maxDist2), |
| 486 |
> |
ray -> rop [0], ray -> rop [1], ray -> rop [2], |
| 487 |
> |
ray -> ro ? ray -> ro -> oname : "<null>"); |
| 488 |
> |
#endif |
| 489 |
> |
|
| 490 |
> |
if (pmap -> squeue.tail < pmap -> squeue.len * pmap -> gatherTolerance) { |
| 491 |
|
/* Short lookup; too few photons found */ |
| 492 |
< |
if (pmap -> squeueEnd > PMAP_SHORT_LOOKUP_THRESH) { |
| 492 |
> |
if (pmap -> squeue.tail > PMAP_SHORT_LOOKUP_THRESH) { |
| 493 |
|
/* Ignore short lookups which return fewer than |
| 494 |
|
* PMAP_SHORT_LOOKUP_THRESH photons under the assumption there |
| 495 |
|
* really are no photons in the vicinity, and increasing the max |
| 497 |
|
#ifdef PMAP_LOOKUP_WARN |
| 498 |
|
sprintf(errmsg, |
| 499 |
|
"%d/%d %s photons found at (%.2f,%.2f,%.2f) on %s", |
| 500 |
< |
pmap -> squeueEnd, pmap -> squeueSize, |
| 501 |
< |
pmapName [pmap -> type], pos [0], pos [1], pos [2], |
| 500 |
> |
pmap -> squeue.tail, pmap -> squeue.len, |
| 501 |
> |
pmapName [pmap -> type], |
| 502 |
> |
ray -> rop [0], ray -> rop [1], ray -> rop [2], |
| 503 |
|
ray -> ro ? ray -> ro -> oname : "<null>"); |
| 504 |
|
error(WARNING, errmsg); |
| 505 |
|
#endif |
| 508 |
|
if (maxDistFix > 0) |
| 509 |
|
return; |
| 510 |
|
|
| 511 |
< |
if (pmap -> maxDist0 < pmap -> maxDistLimit) { |
| 511 |
> |
if (pmap -> maxDist0 < pmap -> maxDist2Limit) { |
| 512 |
|
/* Increase max search radius if below limit & redo search */ |
| 513 |
|
pmap -> maxDist0 *= PMAP_MAXDIST_INC; |
| 514 |
|
#ifdef PMAP_LOOKUP_REDO |
| 518 |
|
sprintf(errmsg, |
| 519 |
|
redo ? "restarting photon lookup with max radius %.1e" |
| 520 |
|
: "max photon lookup radius adjusted to %.1e", |
| 521 |
< |
sqrt(pmap -> maxDist0)); |
| 521 |
> |
pmap -> maxDist0); |
| 522 |
|
error(WARNING, errmsg); |
| 523 |
|
#endif |
| 524 |
|
} |
| 525 |
|
#ifdef PMAP_LOOKUP_REDO |
| 526 |
|
else { |
| 527 |
|
sprintf(errmsg, "max photon lookup radius clamped to %.1e", |
| 528 |
< |
sqrt(pmap -> maxDist0)); |
| 528 |
> |
pmap -> maxDist0); |
| 529 |
|
error(WARNING, errmsg); |
| 530 |
|
} |
| 531 |
|
#endif |
| 553 |
|
|
| 554 |
|
|
| 555 |
|
|
| 556 |
< |
static void nearest1Neighbour (PhotonMap *pmap, const float pos [3], |
| 440 |
< |
const float norm [3], Photon **photon, |
| 441 |
< |
unsigned long node) |
| 442 |
< |
/* Recursive part of find1Photon(..). |
| 443 |
< |
Note that all heap index handling is 1-based, but accesses to the |
| 444 |
< |
arrays are 0-based! */ |
| 556 |
> |
void find1Photon (PhotonMap *pmap, const RAY* ray, Photon *photon) |
| 557 |
|
{ |
| 558 |
< |
Photon *p = pmap -> heap + node - 1; |
| 447 |
< |
/* Signed distance to current photon's splitting plane */ |
| 448 |
< |
float d = pos [photonDiscr(*p)] - p -> pos [photonDiscr(*p)], |
| 449 |
< |
d2 = d * d; |
| 450 |
< |
float dv [3]; |
| 558 |
> |
pmap -> maxDist2 = thescene.cusize; /* ? */ |
| 559 |
|
|
| 560 |
< |
/* Search subtree closer to pos first; exclude other subtree if the |
| 561 |
< |
distance to the splitting plane is greater than maxDist */ |
| 562 |
< |
if (d < 0) { |
| 563 |
< |
if (node << 1 <= pmap -> heapSize) |
| 564 |
< |
nearest1Neighbour(pmap, pos, norm, photon, node << 1); |
| 457 |
< |
if (d2 < pmap -> maxDist && node << 1 < pmap -> heapSize) |
| 458 |
< |
nearest1Neighbour(pmap, pos, norm, photon, (node << 1) + 1); |
| 459 |
< |
} |
| 460 |
< |
else { |
| 461 |
< |
if (node << 1 < pmap -> heapSize) |
| 462 |
< |
nearest1Neighbour(pmap, pos, norm, photon, (node << 1) + 1); |
| 463 |
< |
if (d2 < pmap -> maxDist && node << 1 <= pmap -> heapSize) |
| 464 |
< |
nearest1Neighbour(pmap, pos, norm, photon, node << 1); |
| 465 |
< |
} |
| 466 |
< |
|
| 467 |
< |
/* Squared distance to current photon */ |
| 468 |
< |
dv [0] = pos [0] - p -> pos [0]; |
| 469 |
< |
dv [1] = pos [1] - p -> pos [1]; |
| 470 |
< |
dv [2] = pos [2] - p -> pos [2]; |
| 471 |
< |
d2 = DOT(dv, dv); |
| 472 |
< |
|
| 473 |
< |
if (d2 < pmap -> maxDist && DOT(norm, p -> norm) > 0.5 * frandom()) { |
| 474 |
< |
/* Closest photon so far with similar normal */ |
| 475 |
< |
pmap -> maxDist = d2; |
| 476 |
< |
*photon = p; |
| 477 |
< |
} |
| 560 |
> |
#ifdef PMAP_OOC |
| 561 |
> |
OOC_Find1Photon(pmap, ray -> rop, ray -> ron, photon); |
| 562 |
> |
#else |
| 563 |
> |
kdT_Find1Photon(pmap, ray -> rop, ray -> ron, photon); |
| 564 |
> |
#endif |
| 565 |
|
} |
| 566 |
|
|
| 567 |
|
|
| 568 |
|
|
| 569 |
< |
Photon* find1Photon (PhotonMap *pmap, const RAY* ray) |
| 569 |
> |
void getPhoton (PhotonMap *pmap, PhotonIdx idx, Photon *photon) |
| 570 |
|
{ |
| 571 |
< |
float fpos [3], norm [3]; |
| 572 |
< |
Photon* photon = NULL; |
| 486 |
< |
|
| 487 |
< |
VCOPY(fpos, ray -> rop); |
| 488 |
< |
VCOPY(norm, ray -> ron); |
| 489 |
< |
pmap -> maxDist = thescene.cusize; |
| 490 |
< |
nearest1Neighbour(pmap, fpos, norm, &photon, 1); |
| 491 |
< |
|
| 492 |
< |
return photon; |
| 493 |
< |
} |
| 494 |
< |
|
| 495 |
< |
|
| 496 |
< |
|
| 497 |
< |
static unsigned long medianPartition (const Photon* heap, |
| 498 |
< |
unsigned long* heapIdx, |
| 499 |
< |
unsigned long* heapXdi, |
| 500 |
< |
unsigned long left, |
| 501 |
< |
unsigned long right, unsigned dim) |
| 502 |
< |
/* Returns index to median in heap from indices left to right |
| 503 |
< |
(inclusive) in dimension dim. The heap is partitioned relative to |
| 504 |
< |
median using a quicksort algorithm. The heap indices in heapIdx are |
| 505 |
< |
sorted rather than the heap itself. */ |
| 506 |
< |
{ |
| 507 |
< |
register const float* p; |
| 508 |
< |
const unsigned long n = right - left + 1; |
| 509 |
< |
register unsigned long l, r, lg2, n2, m; |
| 510 |
< |
register unsigned d; |
| 511 |
< |
|
| 512 |
< |
/* Round down n to nearest power of 2 */ |
| 513 |
< |
for (lg2 = 0, n2 = n; n2 > 1; n2 >>= 1, ++lg2); |
| 514 |
< |
n2 = 1 << lg2; |
| 515 |
< |
|
| 516 |
< |
/* Determine median position; this takes into account the fact that |
| 517 |
< |
only the last level in the heap can be partially empty, and that |
| 518 |
< |
it fills from left to right */ |
| 519 |
< |
m = left + ((n - n2) > (n2 >> 1) - 1 ? n2 - 1 : n - (n2 >> 1)); |
| 520 |
< |
|
| 521 |
< |
while (right > left) { |
| 522 |
< |
/* Pivot node */ |
| 523 |
< |
p = heap [heapIdx [right]].pos; |
| 524 |
< |
l = left; |
| 525 |
< |
r = right - 1; |
| 571 |
> |
#ifdef PMAP_OOC |
| 572 |
> |
if (OOC_GetPhoton(pmap, idx, photon)) |
| 573 |
|
|
| 574 |
< |
/* l & r converge, swapping elements out of order with respect to |
| 575 |
< |
pivot node. Identical keys are resolved by cycling through |
| 576 |
< |
dim. The convergence point is then the pivot's position. */ |
| 577 |
< |
do { |
| 531 |
< |
while (l <= r) { |
| 532 |
< |
d = dim; |
| 533 |
< |
|
| 534 |
< |
while (heap [heapIdx [l]].pos [d] == p [d]) { |
| 535 |
< |
d = (d + 1) % 3; |
| 536 |
< |
|
| 537 |
< |
if (d == dim) { |
| 538 |
< |
/* Ignore dupes? */ |
| 539 |
< |
error(WARNING, "duplicate keys in photon heap"); |
| 540 |
< |
l++; |
| 541 |
< |
break; |
| 542 |
< |
} |
| 543 |
< |
} |
| 544 |
< |
|
| 545 |
< |
if (heap [heapIdx [l]].pos [d] < p [d]) |
| 546 |
< |
l++; |
| 547 |
< |
else break; |
| 548 |
< |
} |
| 549 |
< |
|
| 550 |
< |
while (r > l) { |
| 551 |
< |
d = dim; |
| 552 |
< |
|
| 553 |
< |
while (heap [heapIdx [r]].pos [d] == p [d]) { |
| 554 |
< |
d = (d + 1) % 3; |
| 555 |
< |
|
| 556 |
< |
if (d == dim) { |
| 557 |
< |
/* Ignore dupes? */ |
| 558 |
< |
error(WARNING, "duplicate keys in photon heap"); |
| 559 |
< |
r--; |
| 560 |
< |
break; |
| 561 |
< |
} |
| 562 |
< |
} |
| 563 |
< |
|
| 564 |
< |
if (heap [heapIdx [r]].pos [d] > p [d]) |
| 565 |
< |
r--; |
| 566 |
< |
else break; |
| 567 |
< |
} |
| 568 |
< |
|
| 569 |
< |
/* Swap indices (not the nodes they point to) */ |
| 570 |
< |
n2 = heapIdx [l]; |
| 571 |
< |
heapIdx [l] = heapIdx [r]; |
| 572 |
< |
heapIdx [r] = n2; |
| 573 |
< |
/* Update reverse indices */ |
| 574 |
< |
heapXdi [heapIdx [l]] = l; |
| 575 |
< |
heapXdi [n2] = r; |
| 576 |
< |
} while (l < r); |
| 577 |
< |
|
| 578 |
< |
/* Swap indices of convergence and pivot nodes */ |
| 579 |
< |
heapIdx [r] = heapIdx [l]; |
| 580 |
< |
heapIdx [l] = heapIdx [right]; |
| 581 |
< |
heapIdx [right] = n2; |
| 582 |
< |
/* Update reverse indices */ |
| 583 |
< |
heapXdi [heapIdx [r]] = r; |
| 584 |
< |
heapXdi [heapIdx [l]] = l; |
| 585 |
< |
heapXdi [n2] = right; |
| 586 |
< |
if (l >= m) right = l - 1; |
| 587 |
< |
if (l <= m) left = l + 1; |
| 588 |
< |
} |
| 589 |
< |
|
| 590 |
< |
/* Once left & right have converged at m, we have found the median */ |
| 591 |
< |
return m; |
| 574 |
> |
#else |
| 575 |
> |
if (kdT_GetPhoton(pmap, idx, photon)) |
| 576 |
> |
#endif |
| 577 |
> |
error(INTERNAL, "failed photon lookup"); |
| 578 |
|
} |
| 579 |
|
|
| 580 |
|
|
| 581 |
|
|
| 582 |
< |
void buildHeap (Photon* heap, unsigned long* heapIdx, |
| 597 |
< |
unsigned long* heapXdi, const float min [3], |
| 598 |
< |
const float max [3], unsigned long left, |
| 599 |
< |
unsigned long right, unsigned long root) |
| 600 |
< |
/* Recursive part of balancePhotons(..). Builds heap from subarray |
| 601 |
< |
defined by indices left and right. min and max are the minimum resp. |
| 602 |
< |
maximum photon positions in the array. root is the index of the |
| 603 |
< |
current subtree's root, which corresponds to the median's 1-based |
| 604 |
< |
index in the heap. heapIdx are the balanced heap indices. The heap |
| 605 |
< |
is accessed indirectly through these. heapXdi are the reverse indices |
| 606 |
< |
from the heap to heapIdx so that heapXdi [heapIdx [i]] = i. */ |
| 582 |
> |
Photon *getNearestPhoton (const PhotonSearchQueue *squeue, PhotonIdx idx) |
| 583 |
|
{ |
| 584 |
< |
float maxLeft [3], minRight [3]; |
| 585 |
< |
Photon rootNode; |
| 586 |
< |
unsigned d; |
| 587 |
< |
|
| 588 |
< |
/* Choose median for dimension with largest spread and partition |
| 613 |
< |
accordingly */ |
| 614 |
< |
const float d0 = max [0] - min [0], |
| 615 |
< |
d1 = max [1] - min [1], |
| 616 |
< |
d2 = max [2] - min [2]; |
| 617 |
< |
const unsigned char dim = d0 > d1 ? d0 > d2 ? 0 : 2 |
| 618 |
< |
: d1 > d2 ? 1 : 2; |
| 619 |
< |
const unsigned long median = |
| 620 |
< |
left == right ? left |
| 621 |
< |
: medianPartition(heap, heapIdx, heapXdi, left, right, dim); |
| 622 |
< |
|
| 623 |
< |
/* Place median at root of current subtree. This consists of swapping |
| 624 |
< |
the median and the root nodes and updating the heap indices */ |
| 625 |
< |
memcpy(&rootNode, heap + heapIdx [median], sizeof(Photon)); |
| 626 |
< |
memcpy(heap + heapIdx [median], heap + root - 1, sizeof(Photon)); |
| 627 |
< |
setPhotonDiscr(rootNode, dim); |
| 628 |
< |
memcpy(heap + root - 1, &rootNode, sizeof(Photon)); |
| 629 |
< |
heapIdx [heapXdi [root - 1]] = heapIdx [median]; |
| 630 |
< |
heapXdi [heapIdx [median]] = heapXdi [root - 1]; |
| 631 |
< |
heapIdx [median] = root - 1; |
| 632 |
< |
heapXdi [root - 1] = median; |
| 633 |
< |
|
| 634 |
< |
/* Update bounds for left and right subtrees and recurse on them */ |
| 635 |
< |
for (d = 0; d <= 2; d++) |
| 636 |
< |
if (d == dim) |
| 637 |
< |
maxLeft [d] = minRight [d] = rootNode.pos [d]; |
| 638 |
< |
else { |
| 639 |
< |
maxLeft [d] = max [d]; |
| 640 |
< |
minRight [d] = min [d]; |
| 641 |
< |
} |
| 642 |
< |
|
| 643 |
< |
if (left < median) |
| 644 |
< |
buildHeap(heap, heapIdx, heapXdi, min, maxLeft, |
| 645 |
< |
left, median - 1, root << 1); |
| 646 |
< |
|
| 647 |
< |
if (right > median) |
| 648 |
< |
buildHeap(heap, heapIdx, heapXdi, minRight, max, |
| 649 |
< |
median + 1, right, (root << 1) + 1); |
| 584 |
> |
#ifdef PMAP_OOC |
| 585 |
> |
return OOC_GetNearestPhoton(squeue, idx); |
| 586 |
> |
#else |
| 587 |
> |
return kdT_GetNearestPhoton(squeue, idx); |
| 588 |
> |
#endif |
| 589 |
|
} |
| 590 |
|
|
| 591 |
|
|
| 592 |
|
|
| 593 |
< |
void balancePhotons (PhotonMap* pmap, double *photonFlux) |
| 593 |
> |
PhotonIdx firstPhoton (const PhotonMap *pmap) |
| 594 |
|
{ |
| 595 |
< |
Photon *heap = pmap -> heap; |
| 596 |
< |
unsigned long i; |
| 597 |
< |
unsigned long *heapIdx; /* Photon index array */ |
| 598 |
< |
unsigned long *heapXdi; /* Reverse index to heapIdx */ |
| 599 |
< |
unsigned j; |
| 661 |
< |
COLOR flux; |
| 662 |
< |
/* Need doubles here to reduce errors from increment */ |
| 663 |
< |
double avgFlux [3] = {0, 0, 0}, CoG [3] = {0, 0, 0}, CoGdist = 0; |
| 664 |
< |
FVECT d; |
| 665 |
< |
|
| 666 |
< |
if (pmap -> heapEnd) { |
| 667 |
< |
pmap -> heapSize = pmap -> heapEnd; |
| 668 |
< |
heapIdx = (unsigned long*)malloc(pmap -> heapSize * |
| 669 |
< |
sizeof(unsigned long)); |
| 670 |
< |
heapXdi = (unsigned long*)malloc(pmap -> heapSize * |
| 671 |
< |
sizeof(unsigned long)); |
| 672 |
< |
if (!heapIdx || !heapXdi) |
| 673 |
< |
error(USER, "can't allocate heap index"); |
| 674 |
< |
|
| 675 |
< |
for (i = 0; i < pmap -> heapSize; i++) { |
| 676 |
< |
/* Initialize index arrays */ |
| 677 |
< |
heapXdi [i] = heapIdx [i] = i; |
| 678 |
< |
getPhotonFlux(heap + i, flux); |
| 679 |
< |
|
| 680 |
< |
/* Scale photon's flux (hitherto normalised to 1 over RGB); in case |
| 681 |
< |
* of a contrib photon map, this is done per light source, and |
| 682 |
< |
* photonFlux is assumed to be an array */ |
| 683 |
< |
if (photonFlux) { |
| 684 |
< |
scalecolor(flux, photonFlux [isContribPmap(pmap) ? |
| 685 |
< |
photonSrcIdx(pmap, heap + i) : 0]); |
| 686 |
< |
setPhotonFlux(heap + i, flux); |
| 687 |
< |
} |
| 688 |
< |
|
| 689 |
< |
/* Need a double here */ |
| 690 |
< |
addcolor(avgFlux, flux); |
| 691 |
< |
|
| 692 |
< |
/* Add photon position to centre of gravity */ |
| 693 |
< |
for (j = 0; j < 3; j++) |
| 694 |
< |
CoG [j] += heap [i].pos [j]; |
| 695 |
< |
} |
| 696 |
< |
|
| 697 |
< |
/* Average photon positions to get centre of gravity */ |
| 698 |
< |
for (j = 0; j < 3; j++) |
| 699 |
< |
pmap -> CoG [j] = CoG [j] /= pmap -> heapSize; |
| 700 |
< |
|
| 701 |
< |
/* Compute average photon distance to CoG */ |
| 702 |
< |
for (i = 0; i < pmap -> heapSize; i++) { |
| 703 |
< |
VSUB(d, heap [i].pos, CoG); |
| 704 |
< |
CoGdist += DOT(d, d); |
| 705 |
< |
} |
| 706 |
< |
|
| 707 |
< |
pmap -> CoGdist = CoGdist /= pmap -> heapSize; |
| 708 |
< |
|
| 709 |
< |
/* Average photon flux based on RGBE representation */ |
| 710 |
< |
scalecolor(avgFlux, 1.0 / pmap -> heapSize); |
| 711 |
< |
copycolor(pmap -> photonFlux, avgFlux); |
| 712 |
< |
|
| 713 |
< |
/* Build kd-tree */ |
| 714 |
< |
buildHeap(pmap -> heap, heapIdx, heapXdi, pmap -> minPos, |
| 715 |
< |
pmap -> maxPos, 0, pmap -> heapSize - 1, 1); |
| 716 |
< |
|
| 717 |
< |
free(heapIdx); |
| 718 |
< |
free(heapXdi); |
| 719 |
< |
} |
| 595 |
> |
#ifdef PMAP_OOC |
| 596 |
> |
return OOC_FirstPhoton(pmap); |
| 597 |
> |
#else |
| 598 |
> |
return kdT_FirstPhoton(pmap); |
| 599 |
> |
#endif |
| 600 |
|
} |
| 601 |
|
|
| 602 |
|
|
| 603 |
|
|
| 604 |
|
void deletePhotons (PhotonMap* pmap) |
| 605 |
|
{ |
| 606 |
< |
free(pmap -> heap); |
| 607 |
< |
free(pmap -> squeue); |
| 606 |
> |
#ifdef PMAP_OOC |
| 607 |
> |
OOC_Delete(&pmap -> store); |
| 608 |
> |
#else |
| 609 |
> |
kdT_Delete(&pmap -> store); |
| 610 |
> |
#endif |
| 611 |
> |
|
| 612 |
> |
free(pmap -> squeue.node); |
| 613 |
|
free(pmap -> biasCompHist); |
| 614 |
|
|
| 615 |
< |
pmap -> heapSize = 0; |
| 616 |
< |
pmap -> minGather = pmap -> maxGather = |
| 732 |
< |
pmap -> squeueSize = pmap -> squeueEnd = 0; |
| 615 |
> |
pmap -> numPhotons = pmap -> minGather = pmap -> maxGather = |
| 616 |
> |
pmap -> squeue.len = pmap -> squeue.tail = 0; |
| 617 |
|
} |