1 |
greg |
2.1 |
/* |
2 |
|
|
================================================================== |
3 |
|
|
Photon map data structures and kd-tree handling |
4 |
|
|
|
5 |
|
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
6 |
|
|
(c) Fraunhofer Institute for Solar Energy Systems, |
7 |
rschregle |
2.3 |
(c) Lucerne University of Applied Sciences and Arts, |
8 |
|
|
supported by the Swiss National Science Foundation (SNSF, #147053) |
9 |
greg |
2.1 |
================================================================== |
10 |
|
|
|
11 |
rschregle |
2.9 |
$Id: pmapdata.c,v 2.8 2015/05/26 13:31:19 rschregle Exp $ |
12 |
greg |
2.1 |
*/ |
13 |
|
|
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
#include "pmap.h" |
17 |
|
|
#include "pmaprand.h" |
18 |
|
|
#include "pmapmat.h" |
19 |
|
|
#include "otypes.h" |
20 |
|
|
#include "source.h" |
21 |
|
|
#include "rcontrib.h" |
22 |
rschregle |
2.7 |
#include "random.h" |
23 |
greg |
2.1 |
|
24 |
|
|
|
25 |
|
|
|
26 |
|
|
PhotonMap *photonMaps [NUM_PMAP_TYPES] = { |
27 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL |
28 |
|
|
}; |
29 |
|
|
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
void initPhotonMap (PhotonMap *pmap, PhotonMapType t) |
33 |
|
|
/* Init photon map 'n' stuff... */ |
34 |
|
|
{ |
35 |
|
|
if (!pmap) |
36 |
|
|
return; |
37 |
|
|
|
38 |
|
|
pmap -> heapSize = pmap -> heapEnd = 0; |
39 |
|
|
pmap -> heap = NULL; |
40 |
|
|
pmap -> squeue = NULL; |
41 |
|
|
pmap -> biasCompHist = NULL; |
42 |
|
|
pmap -> maxPos [0] = pmap -> maxPos [1] = pmap -> maxPos [2] = -FHUGE; |
43 |
|
|
pmap -> minPos [0] = pmap -> minPos [1] = pmap -> minPos [2] = FHUGE; |
44 |
|
|
pmap -> minGathered = pmap -> maxGathered = pmap -> totalGathered = 0; |
45 |
|
|
pmap -> gatherTolerance = gatherTolerance; |
46 |
|
|
pmap -> minError = pmap -> maxError = pmap -> rmsError = 0; |
47 |
|
|
pmap -> numDensity = 0; |
48 |
|
|
pmap -> distribRatio = 1; |
49 |
|
|
pmap -> type = t; |
50 |
|
|
|
51 |
|
|
/* Init local RNG state */ |
52 |
|
|
pmap -> randState [0] = 10243; |
53 |
|
|
pmap -> randState [1] = 39829; |
54 |
|
|
pmap -> randState [2] = 9433; |
55 |
|
|
/* pmapSeed(25999, pmap -> randState); */ |
56 |
|
|
pmapSeed(randSeed, pmap -> randState); |
57 |
|
|
|
58 |
|
|
/* Set up type-specific photon lookup callback */ |
59 |
|
|
pmap -> lookup = pmapLookup [t]; |
60 |
|
|
|
61 |
|
|
pmap -> primary = NULL; |
62 |
|
|
pmap -> primarySize = pmap -> primaryEnd = 0; |
63 |
|
|
} |
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
const PhotonPrimary* addPhotonPrimary (PhotonMap *pmap, const RAY *ray) |
68 |
|
|
{ |
69 |
|
|
PhotonPrimary *prim = NULL; |
70 |
greg |
2.5 |
FVECT dvec; |
71 |
greg |
2.1 |
|
72 |
|
|
if (!pmap || !ray) |
73 |
|
|
return NULL; |
74 |
|
|
|
75 |
|
|
/* Check if last primary ray has spawned photons (srcIdx >= 0, see |
76 |
|
|
* addPhoton()), in which case we keep it and allocate a new one; |
77 |
|
|
* otherwise we overwrite the unused entry */ |
78 |
|
|
if (pmap -> primary && pmap -> primary [pmap -> primaryEnd].srcIdx >= 0) |
79 |
|
|
pmap -> primaryEnd++; |
80 |
|
|
|
81 |
|
|
if (!pmap -> primarySize || pmap -> primaryEnd >= pmap -> primarySize) { |
82 |
|
|
/* Allocate/enlarge array */ |
83 |
|
|
pmap -> primarySize += pmap -> heapSizeInc; |
84 |
|
|
|
85 |
|
|
/* Counter wraparound? */ |
86 |
|
|
if (pmap -> primarySize < pmap -> heapSizeInc) |
87 |
|
|
error(INTERNAL, "photon primary overflow"); |
88 |
|
|
|
89 |
|
|
pmap -> primary = (PhotonPrimary *)realloc(pmap -> primary, |
90 |
|
|
sizeof(PhotonPrimary) * |
91 |
|
|
pmap -> primarySize); |
92 |
|
|
if (!pmap -> primary) |
93 |
|
|
error(USER, "can't allocate photon primaries"); |
94 |
|
|
} |
95 |
|
|
|
96 |
|
|
prim = pmap -> primary + pmap -> primaryEnd; |
97 |
|
|
|
98 |
|
|
/* Mark unused with negative source index until path spawns a photon (see |
99 |
|
|
* addPhoton()) */ |
100 |
|
|
prim -> srcIdx = -1; |
101 |
|
|
|
102 |
|
|
/* Reverse incident direction to point to light source */ |
103 |
greg |
2.5 |
dvec [0] = -ray -> rdir [0]; |
104 |
|
|
dvec [1] = -ray -> rdir [1]; |
105 |
|
|
dvec [2] = -ray -> rdir [2]; |
106 |
|
|
prim -> dir = encodedir(dvec); |
107 |
greg |
2.1 |
|
108 |
greg |
2.4 |
VCOPY(prim -> pos, ray -> rop); |
109 |
greg |
2.1 |
|
110 |
|
|
return prim; |
111 |
|
|
} |
112 |
|
|
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
const Photon* addPhoton (PhotonMap* pmap, const RAY* ray) |
116 |
|
|
{ |
117 |
|
|
unsigned i; |
118 |
|
|
Photon* photon = NULL; |
119 |
|
|
COLOR photonFlux; |
120 |
|
|
|
121 |
|
|
/* Account for distribution ratio */ |
122 |
|
|
if (!pmap || pmapRandom(pmap -> randState) > pmap -> distribRatio) |
123 |
|
|
return NULL; |
124 |
|
|
|
125 |
|
|
/* Don't store on sources */ |
126 |
|
|
if (ray -> robj > -1 && islight(objptr(ray -> ro -> omod) -> otype)) |
127 |
|
|
return NULL; |
128 |
|
|
|
129 |
|
|
#if 0 |
130 |
|
|
if (inContribPmap(pmap)) { |
131 |
|
|
/* Adding contribution photon */ |
132 |
|
|
if (ray -> parent && ray -> parent -> rtype & PRIMARY) |
133 |
|
|
/* Add primary photon ray if parent is primary; by putting this |
134 |
|
|
* here and checking the ray's immediate parent, we only add |
135 |
|
|
* primaries that actually contribute photons, and we only add them |
136 |
|
|
* once. */ |
137 |
|
|
addPhotonPrimary(pmap, ray -> parent); |
138 |
|
|
|
139 |
|
|
/* Save index to primary ray (remains unchanged if primary already in |
140 |
|
|
* array) */ |
141 |
|
|
primary = pmap -> primaryEnd; |
142 |
|
|
} |
143 |
|
|
#endif |
144 |
|
|
|
145 |
|
|
#ifdef PMAP_ROI |
146 |
|
|
/* Store photon if within region of interest -- for egg-spurtz only! */ |
147 |
|
|
if (ray -> rop [0] >= pmapROI [0] && ray -> rop [0] <= pmapROI [1] && |
148 |
|
|
ray -> rop [1] >= pmapROI [2] && ray -> rop [1] <= pmapROI [3] && |
149 |
|
|
ray -> rop [2] >= pmapROI [4] && ray -> rop [2] <= pmapROI [5]) |
150 |
|
|
#endif |
151 |
|
|
{ |
152 |
|
|
if (pmap -> heapEnd >= pmap -> heapSize) { |
153 |
|
|
/* Enlarge heap */ |
154 |
|
|
pmap -> heapSize += pmap -> heapSizeInc; |
155 |
|
|
|
156 |
|
|
/* Counter wraparound? */ |
157 |
|
|
if (pmap -> heapSize < pmap -> heapSizeInc) |
158 |
|
|
error(INTERNAL, "photon heap overflow"); |
159 |
|
|
|
160 |
|
|
pmap -> heap = (Photon *)realloc(pmap -> heap, |
161 |
|
|
sizeof(Photon) * pmap -> heapSize); |
162 |
|
|
if (!pmap -> heap) |
163 |
|
|
error(USER, "can't allocate photon heap"); |
164 |
|
|
} |
165 |
|
|
|
166 |
|
|
photon = pmap -> heap + pmap -> heapEnd++; |
167 |
|
|
|
168 |
|
|
/* Adjust flux according to distribution ratio and ray weight */ |
169 |
|
|
copycolor(photonFlux, ray -> rcol); |
170 |
|
|
scalecolor(photonFlux, |
171 |
|
|
ray -> rweight / (pmap -> distribRatio ? pmap -> distribRatio |
172 |
|
|
: 1)); |
173 |
|
|
setPhotonFlux(photon, photonFlux); |
174 |
|
|
|
175 |
|
|
/* Set photon position and flags */ |
176 |
|
|
VCOPY(photon -> pos, ray -> rop); |
177 |
|
|
photon -> flags = PMAP_CAUSTICRAY(ray) ? PMAP_CAUST_BIT : 0; |
178 |
|
|
|
179 |
|
|
/* Set primary ray index and mark as used for contrib photons */ |
180 |
|
|
if (isContribPmap(pmap)) { |
181 |
|
|
photon -> primary = pmap -> primaryEnd; |
182 |
|
|
pmap -> primary [pmap -> primaryEnd].srcIdx = ray -> rsrc; |
183 |
|
|
} |
184 |
|
|
else photon -> primary = 0; |
185 |
|
|
|
186 |
|
|
/* Update min and max positions & set normal */ |
187 |
|
|
for (i = 0; i <= 2; i++) { |
188 |
|
|
if (photon -> pos [i] < pmap -> minPos [i]) |
189 |
|
|
pmap -> minPos [i] = photon -> pos [i]; |
190 |
|
|
if (photon -> pos [i] > pmap -> maxPos [i]) |
191 |
|
|
pmap -> maxPos [i] = photon -> pos [i]; |
192 |
|
|
photon -> norm [i] = 127.0 * (isVolumePmap(pmap) ? ray -> rdir [i] |
193 |
|
|
: ray -> ron [i]); |
194 |
|
|
} |
195 |
|
|
} |
196 |
|
|
|
197 |
|
|
return photon; |
198 |
|
|
} |
199 |
|
|
|
200 |
|
|
|
201 |
|
|
|
202 |
|
|
static void nearestNeighbours (PhotonMap* pmap, const float pos [3], |
203 |
|
|
const float norm [3], unsigned long node) |
204 |
|
|
/* Recursive part of findPhotons(..). |
205 |
|
|
Note that all heap and priority queue index handling is 1-based, but |
206 |
|
|
accesses to the arrays are 0-based! */ |
207 |
|
|
{ |
208 |
|
|
Photon* p = &pmap -> heap [node - 1]; |
209 |
|
|
unsigned i, j; |
210 |
|
|
/* Signed distance to current photon's splitting plane */ |
211 |
|
|
float d = pos [photonDiscr(*p)] - p -> pos [photonDiscr(*p)], |
212 |
|
|
d2 = d * d; |
213 |
|
|
PhotonSQNode* sq = pmap -> squeue; |
214 |
|
|
const unsigned sqSize = pmap -> squeueSize; |
215 |
|
|
float dv [3]; |
216 |
|
|
|
217 |
|
|
/* Search subtree closer to pos first; exclude other subtree if the |
218 |
|
|
distance to the splitting plane is greater than maxDist */ |
219 |
|
|
if (d < 0) { |
220 |
|
|
if (node << 1 <= pmap -> heapSize) |
221 |
|
|
nearestNeighbours(pmap, pos, norm, node << 1); |
222 |
|
|
if (d2 < pmap -> maxDist && node << 1 < pmap -> heapSize) |
223 |
|
|
nearestNeighbours(pmap, pos, norm, (node << 1) + 1); |
224 |
|
|
} |
225 |
|
|
else { |
226 |
|
|
if (node << 1 < pmap -> heapSize) |
227 |
|
|
nearestNeighbours(pmap, pos, norm, (node << 1) + 1); |
228 |
|
|
if (d2 < pmap -> maxDist && node << 1 <= pmap -> heapSize) |
229 |
|
|
nearestNeighbours(pmap, pos, norm, node << 1); |
230 |
|
|
} |
231 |
|
|
|
232 |
|
|
/* Reject photon if normal faces away (ignored for volume photons) */ |
233 |
rschregle |
2.7 |
if (norm && DOT(norm, p -> norm) <= 0.5 * frandom()) |
234 |
greg |
2.1 |
return; |
235 |
|
|
|
236 |
|
|
if (isContribPmap(pmap) && pmap -> srcContrib) { |
237 |
|
|
/* Lookup in contribution photon map */ |
238 |
|
|
OBJREC *srcMod; |
239 |
|
|
const int srcIdx = photonSrcIdx(pmap, p); |
240 |
|
|
|
241 |
|
|
if (srcIdx < 0 || srcIdx >= nsources) |
242 |
|
|
error(INTERNAL, "invalid light source index in photon map"); |
243 |
|
|
|
244 |
greg |
2.6 |
srcMod = findmaterial(source [srcIdx].so); |
245 |
greg |
2.1 |
|
246 |
|
|
/* Reject photon if contributions from light source which emitted it |
247 |
|
|
* are not sought */ |
248 |
|
|
if (!lu_find(pmap -> srcContrib, srcMod -> oname) -> data) |
249 |
|
|
return; |
250 |
|
|
|
251 |
|
|
/* Reject non-caustic photon if lookup for caustic contribs */ |
252 |
|
|
if (pmap -> lookupFlags & PMAP_CAUST_BIT & ~p -> flags) |
253 |
|
|
return; |
254 |
|
|
} |
255 |
|
|
|
256 |
|
|
/* Squared distance to current photon */ |
257 |
|
|
dv [0] = pos [0] - p -> pos [0]; |
258 |
|
|
dv [1] = pos [1] - p -> pos [1]; |
259 |
|
|
dv [2] = pos [2] - p -> pos [2]; |
260 |
|
|
d2 = DOT(dv, dv); |
261 |
|
|
|
262 |
|
|
/* Accept photon if closer than current max dist & add to priority queue */ |
263 |
|
|
if (d2 < pmap -> maxDist) { |
264 |
|
|
if (pmap -> squeueEnd < sqSize) { |
265 |
|
|
/* Priority queue not full; append photon and restore heap */ |
266 |
|
|
i = ++pmap -> squeueEnd; |
267 |
|
|
|
268 |
|
|
while (i > 1 && sq [(i >> 1) - 1].dist <= d2) { |
269 |
|
|
sq [i - 1].photon = sq [(i >> 1) - 1].photon; |
270 |
|
|
sq [i - 1].dist = sq [(i >> 1) - 1].dist; |
271 |
|
|
i >>= 1; |
272 |
|
|
} |
273 |
|
|
|
274 |
|
|
sq [--i].photon = p; |
275 |
|
|
sq [i].dist = d2; |
276 |
|
|
/* Update maxDist if we've just filled the queue */ |
277 |
|
|
if (pmap -> squeueEnd >= pmap -> squeueSize) |
278 |
|
|
pmap -> maxDist = sq [0].dist; |
279 |
|
|
} |
280 |
|
|
else { |
281 |
|
|
/* Priority queue full; replace maximum, restore heap, and |
282 |
|
|
update maxDist */ |
283 |
|
|
i = 1; |
284 |
|
|
|
285 |
|
|
while (i <= sqSize >> 1) { |
286 |
|
|
j = i << 1; |
287 |
|
|
if (j < sqSize && sq [j - 1].dist < sq [j].dist) |
288 |
|
|
j++; |
289 |
|
|
if (d2 >= sq [j - 1].dist) |
290 |
|
|
break; |
291 |
|
|
sq [i - 1].photon = sq [j - 1].photon; |
292 |
|
|
sq [i - 1].dist = sq [j - 1].dist; |
293 |
|
|
i = j; |
294 |
|
|
} |
295 |
|
|
|
296 |
|
|
sq [--i].photon = p; |
297 |
|
|
sq [i].dist = d2; |
298 |
|
|
pmap -> maxDist = sq [0].dist; |
299 |
|
|
} |
300 |
|
|
} |
301 |
|
|
} |
302 |
|
|
|
303 |
|
|
|
304 |
|
|
|
305 |
|
|
/* Dynamic max photon search radius increase and reduction factors */ |
306 |
|
|
#define PMAP_MAXDIST_INC 4 |
307 |
|
|
#define PMAP_MAXDIST_DEC 0.9 |
308 |
|
|
|
309 |
|
|
/* Num successful lookups before reducing in max search radius */ |
310 |
|
|
#define PMAP_MAXDIST_CNT 1000 |
311 |
|
|
|
312 |
|
|
/* Threshold below which we assume increasing max radius won't help */ |
313 |
|
|
#define PMAP_SHORT_LOOKUP_THRESH 1 |
314 |
|
|
|
315 |
rschregle |
2.8 |
/* Coefficient for adaptive maximum search radius */ |
316 |
|
|
#define PMAP_MAXDIST_COEFF 100 |
317 |
|
|
|
318 |
|
|
|
319 |
greg |
2.1 |
void findPhotons (PhotonMap* pmap, const RAY* ray) |
320 |
|
|
{ |
321 |
|
|
float pos [3], norm [3]; |
322 |
|
|
int redo = 0; |
323 |
|
|
|
324 |
|
|
if (!pmap -> squeue) { |
325 |
|
|
/* Lazy init priority queue */ |
326 |
|
|
pmap -> squeueSize = pmap -> maxGather + 1; |
327 |
|
|
pmap -> squeue = (PhotonSQNode*)malloc(pmap -> squeueSize * |
328 |
|
|
sizeof(PhotonSQNode)); |
329 |
|
|
if (!pmap -> squeue) |
330 |
|
|
error(USER, "can't allocate photon priority queue"); |
331 |
|
|
|
332 |
|
|
pmap -> minGathered = pmap -> maxGather; |
333 |
|
|
pmap -> maxGathered = pmap -> minGather; |
334 |
|
|
pmap -> totalGathered = 0; |
335 |
|
|
pmap -> numLookups = pmap -> numShortLookups = 0; |
336 |
|
|
pmap -> shortLookupPct = 0; |
337 |
|
|
pmap -> minError = FHUGE; |
338 |
|
|
pmap -> maxError = -FHUGE; |
339 |
|
|
pmap -> rmsError = 0; |
340 |
rschregle |
2.9 |
/* SQUARED max search radius limit is based on avg photon distance to |
341 |
rschregle |
2.8 |
* centre of gravity, unless fixed by user (maxDistFix > 0) */ |
342 |
greg |
2.1 |
pmap -> maxDist0 = pmap -> maxDistLimit = |
343 |
rschregle |
2.9 |
maxDistFix > 0 ? maxDistFix * maxDistFix |
344 |
rschregle |
2.8 |
: PMAP_MAXDIST_COEFF * pmap -> squeueSize * |
345 |
|
|
pmap -> CoGdist / pmap -> heapSize; |
346 |
greg |
2.1 |
} |
347 |
|
|
|
348 |
|
|
do { |
349 |
|
|
pmap -> squeueEnd = 0; |
350 |
|
|
pmap -> maxDist = pmap -> maxDist0; |
351 |
|
|
|
352 |
|
|
/* Search position is ray -> rorg for volume photons, since we have no |
353 |
|
|
intersection point. Normals are ignored -- these are incident |
354 |
|
|
directions). */ |
355 |
|
|
if (isVolumePmap(pmap)) { |
356 |
|
|
VCOPY(pos, ray -> rorg); |
357 |
|
|
nearestNeighbours(pmap, pos, NULL, 1); |
358 |
|
|
} |
359 |
|
|
else { |
360 |
|
|
VCOPY(pos, ray -> rop); |
361 |
|
|
VCOPY(norm, ray -> ron); |
362 |
|
|
nearestNeighbours(pmap, pos, norm, 1); |
363 |
|
|
} |
364 |
rschregle |
2.3 |
|
365 |
greg |
2.1 |
if (pmap -> squeueEnd < pmap -> squeueSize * pmap -> gatherTolerance) { |
366 |
|
|
/* Short lookup; too few photons found */ |
367 |
|
|
if (pmap -> squeueEnd > PMAP_SHORT_LOOKUP_THRESH) { |
368 |
|
|
/* Ignore short lookups which return fewer than |
369 |
|
|
* PMAP_SHORT_LOOKUP_THRESH photons under the assumption there |
370 |
|
|
* really are no photons in the vicinity, and increasing the max |
371 |
|
|
* search radius therefore won't help */ |
372 |
rschregle |
2.8 |
#ifdef PMAP_LOOKUP_WARN |
373 |
greg |
2.1 |
sprintf(errmsg, |
374 |
|
|
"%d/%d %s photons found at (%.2f,%.2f,%.2f) on %s", |
375 |
|
|
pmap -> squeueEnd, pmap -> squeueSize, |
376 |
|
|
pmapName [pmap -> type], pos [0], pos [1], pos [2], |
377 |
|
|
ray -> ro ? ray -> ro -> oname : "<null>"); |
378 |
|
|
error(WARNING, errmsg); |
379 |
rschregle |
2.8 |
#endif |
380 |
rschregle |
2.3 |
|
381 |
rschregle |
2.8 |
/* Bail out after warning if maxDist is fixed */ |
382 |
|
|
if (maxDistFix > 0) |
383 |
|
|
return; |
384 |
|
|
|
385 |
greg |
2.1 |
if (pmap -> maxDist0 < pmap -> maxDistLimit) { |
386 |
|
|
/* Increase max search radius if below limit & redo search */ |
387 |
|
|
pmap -> maxDist0 *= PMAP_MAXDIST_INC; |
388 |
rschregle |
2.8 |
#ifdef PMAP_LOOKUP_REDO |
389 |
greg |
2.1 |
redo = 1; |
390 |
rschregle |
2.8 |
#endif |
391 |
|
|
#ifdef PMAP_LOOKUP_WARN |
392 |
greg |
2.1 |
sprintf(errmsg, |
393 |
|
|
redo ? "restarting photon lookup with max radius %.1e" |
394 |
|
|
: "max photon lookup radius adjusted to %.1e", |
395 |
|
|
pmap -> maxDist0); |
396 |
|
|
error(WARNING, errmsg); |
397 |
rschregle |
2.8 |
#endif |
398 |
greg |
2.1 |
} |
399 |
rschregle |
2.8 |
#ifdef PMAP_LOOKUP_REDO |
400 |
greg |
2.1 |
else { |
401 |
|
|
sprintf(errmsg, "max photon lookup radius clamped to %.1e", |
402 |
|
|
pmap -> maxDist0); |
403 |
|
|
error(WARNING, errmsg); |
404 |
|
|
} |
405 |
rschregle |
2.8 |
#endif |
406 |
greg |
2.1 |
} |
407 |
|
|
|
408 |
|
|
/* Reset successful lookup counter */ |
409 |
|
|
pmap -> numLookups = 0; |
410 |
rschregle |
2.3 |
} |
411 |
greg |
2.1 |
else { |
412 |
rschregle |
2.8 |
/* Bail out after warning if maxDist is fixed */ |
413 |
|
|
if (maxDistFix > 0) |
414 |
|
|
return; |
415 |
|
|
|
416 |
greg |
2.1 |
/* Increment successful lookup counter and reduce max search radius if |
417 |
|
|
* wraparound */ |
418 |
|
|
pmap -> numLookups = (pmap -> numLookups + 1) % PMAP_MAXDIST_CNT; |
419 |
|
|
if (!pmap -> numLookups) |
420 |
|
|
pmap -> maxDist0 *= PMAP_MAXDIST_DEC; |
421 |
|
|
|
422 |
|
|
redo = 0; |
423 |
|
|
} |
424 |
rschregle |
2.8 |
|
425 |
greg |
2.1 |
} while (redo); |
426 |
|
|
} |
427 |
|
|
|
428 |
|
|
|
429 |
|
|
|
430 |
|
|
static void nearest1Neighbour (PhotonMap *pmap, const float pos [3], |
431 |
|
|
const float norm [3], Photon **photon, |
432 |
|
|
unsigned long node) |
433 |
|
|
/* Recursive part of find1Photon(..). |
434 |
|
|
Note that all heap index handling is 1-based, but accesses to the |
435 |
|
|
arrays are 0-based! */ |
436 |
|
|
{ |
437 |
|
|
Photon *p = pmap -> heap + node - 1; |
438 |
|
|
/* Signed distance to current photon's splitting plane */ |
439 |
|
|
float d = pos [photonDiscr(*p)] - p -> pos [photonDiscr(*p)], |
440 |
|
|
d2 = d * d; |
441 |
|
|
float dv [3]; |
442 |
|
|
|
443 |
|
|
/* Search subtree closer to pos first; exclude other subtree if the |
444 |
|
|
distance to the splitting plane is greater than maxDist */ |
445 |
|
|
if (d < 0) { |
446 |
|
|
if (node << 1 <= pmap -> heapSize) |
447 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, node << 1); |
448 |
|
|
if (d2 < pmap -> maxDist && node << 1 < pmap -> heapSize) |
449 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, (node << 1) + 1); |
450 |
|
|
} |
451 |
|
|
else { |
452 |
|
|
if (node << 1 < pmap -> heapSize) |
453 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, (node << 1) + 1); |
454 |
|
|
if (d2 < pmap -> maxDist && node << 1 <= pmap -> heapSize) |
455 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, node << 1); |
456 |
|
|
} |
457 |
|
|
|
458 |
|
|
/* Squared distance to current photon */ |
459 |
|
|
dv [0] = pos [0] - p -> pos [0]; |
460 |
|
|
dv [1] = pos [1] - p -> pos [1]; |
461 |
|
|
dv [2] = pos [2] - p -> pos [2]; |
462 |
|
|
d2 = DOT(dv, dv); |
463 |
|
|
|
464 |
rschregle |
2.7 |
if (d2 < pmap -> maxDist && DOT(norm, p -> norm) > 0.5 * frandom()) { |
465 |
greg |
2.1 |
/* Closest photon so far with similar normal */ |
466 |
|
|
pmap -> maxDist = d2; |
467 |
|
|
*photon = p; |
468 |
|
|
} |
469 |
|
|
} |
470 |
|
|
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
Photon* find1Photon (PhotonMap *pmap, const RAY* ray) |
474 |
|
|
{ |
475 |
|
|
float fpos [3], norm [3]; |
476 |
|
|
Photon* photon = NULL; |
477 |
|
|
|
478 |
|
|
VCOPY(fpos, ray -> rop); |
479 |
|
|
VCOPY(norm, ray -> ron); |
480 |
|
|
pmap -> maxDist = thescene.cusize; |
481 |
|
|
nearest1Neighbour(pmap, fpos, norm, &photon, 1); |
482 |
|
|
|
483 |
|
|
return photon; |
484 |
|
|
} |
485 |
|
|
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
static unsigned long medianPartition (const Photon* heap, |
489 |
|
|
unsigned long* heapIdx, |
490 |
|
|
unsigned long* heapXdi, |
491 |
|
|
unsigned long left, |
492 |
|
|
unsigned long right, unsigned dim) |
493 |
|
|
/* Returns index to median in heap from indices left to right |
494 |
|
|
(inclusive) in dimension dim. The heap is partitioned relative to |
495 |
|
|
median using a quicksort algorithm. The heap indices in heapIdx are |
496 |
|
|
sorted rather than the heap itself. */ |
497 |
|
|
{ |
498 |
|
|
register const float* p; |
499 |
|
|
const unsigned long n = right - left + 1; |
500 |
|
|
register unsigned long l, r, lg2, n2, m; |
501 |
|
|
register unsigned d; |
502 |
|
|
|
503 |
|
|
/* Round down n to nearest power of 2 */ |
504 |
|
|
for (lg2 = 0, n2 = n; n2 > 1; n2 >>= 1, ++lg2); |
505 |
|
|
n2 = 1 << lg2; |
506 |
|
|
|
507 |
|
|
/* Determine median position; this takes into account the fact that |
508 |
|
|
only the last level in the heap can be partially empty, and that |
509 |
|
|
it fills from left to right */ |
510 |
|
|
m = left + ((n - n2) > (n2 >> 1) - 1 ? n2 - 1 : n - (n2 >> 1)); |
511 |
|
|
|
512 |
|
|
while (right > left) { |
513 |
|
|
/* Pivot node */ |
514 |
|
|
p = heap [heapIdx [right]].pos; |
515 |
|
|
l = left; |
516 |
|
|
r = right - 1; |
517 |
|
|
|
518 |
|
|
/* l & r converge, swapping elements out of order with respect to |
519 |
|
|
pivot node. Identical keys are resolved by cycling through |
520 |
|
|
dim. The convergence point is then the pivot's position. */ |
521 |
|
|
do { |
522 |
|
|
while (l <= r) { |
523 |
|
|
d = dim; |
524 |
|
|
|
525 |
|
|
while (heap [heapIdx [l]].pos [d] == p [d]) { |
526 |
|
|
d = (d + 1) % 3; |
527 |
|
|
|
528 |
|
|
if (d == dim) { |
529 |
|
|
/* Ignore dupes? */ |
530 |
|
|
error(WARNING, "duplicate keys in photon heap"); |
531 |
|
|
l++; |
532 |
|
|
break; |
533 |
|
|
} |
534 |
|
|
} |
535 |
|
|
|
536 |
|
|
if (heap [heapIdx [l]].pos [d] < p [d]) |
537 |
|
|
l++; |
538 |
|
|
else break; |
539 |
|
|
} |
540 |
|
|
|
541 |
|
|
while (r > l) { |
542 |
|
|
d = dim; |
543 |
|
|
|
544 |
|
|
while (heap [heapIdx [r]].pos [d] == p [d]) { |
545 |
|
|
d = (d + 1) % 3; |
546 |
|
|
|
547 |
|
|
if (d == dim) { |
548 |
|
|
/* Ignore dupes? */ |
549 |
|
|
error(WARNING, "duplicate keys in photon heap"); |
550 |
|
|
r--; |
551 |
|
|
break; |
552 |
|
|
} |
553 |
|
|
} |
554 |
|
|
|
555 |
|
|
if (heap [heapIdx [r]].pos [d] > p [d]) |
556 |
|
|
r--; |
557 |
|
|
else break; |
558 |
|
|
} |
559 |
|
|
|
560 |
|
|
/* Swap indices (not the nodes they point to) */ |
561 |
|
|
n2 = heapIdx [l]; |
562 |
|
|
heapIdx [l] = heapIdx [r]; |
563 |
|
|
heapIdx [r] = n2; |
564 |
|
|
/* Update reverse indices */ |
565 |
|
|
heapXdi [heapIdx [l]] = l; |
566 |
|
|
heapXdi [n2] = r; |
567 |
|
|
} while (l < r); |
568 |
|
|
|
569 |
|
|
/* Swap indices of convergence and pivot nodes */ |
570 |
|
|
heapIdx [r] = heapIdx [l]; |
571 |
|
|
heapIdx [l] = heapIdx [right]; |
572 |
|
|
heapIdx [right] = n2; |
573 |
|
|
/* Update reverse indices */ |
574 |
|
|
heapXdi [heapIdx [r]] = r; |
575 |
|
|
heapXdi [heapIdx [l]] = l; |
576 |
|
|
heapXdi [n2] = right; |
577 |
|
|
if (l >= m) right = l - 1; |
578 |
|
|
if (l <= m) left = l + 1; |
579 |
|
|
} |
580 |
|
|
|
581 |
|
|
/* Once left & right have converged at m, we have found the median */ |
582 |
|
|
return m; |
583 |
|
|
} |
584 |
|
|
|
585 |
|
|
|
586 |
|
|
|
587 |
|
|
void buildHeap (Photon* heap, unsigned long* heapIdx, |
588 |
|
|
unsigned long* heapXdi, const float min [3], |
589 |
|
|
const float max [3], unsigned long left, |
590 |
|
|
unsigned long right, unsigned long root) |
591 |
|
|
/* Recursive part of balancePhotons(..). Builds heap from subarray |
592 |
|
|
defined by indices left and right. min and max are the minimum resp. |
593 |
|
|
maximum photon positions in the array. root is the index of the |
594 |
|
|
current subtree's root, which corresponds to the median's 1-based |
595 |
|
|
index in the heap. heapIdx are the balanced heap indices. The heap |
596 |
|
|
is accessed indirectly through these. heapXdi are the reverse indices |
597 |
|
|
from the heap to heapIdx so that heapXdi [heapIdx [i]] = i. */ |
598 |
|
|
{ |
599 |
|
|
float maxLeft [3], minRight [3]; |
600 |
|
|
Photon rootNode; |
601 |
|
|
unsigned d; |
602 |
|
|
|
603 |
|
|
/* Choose median for dimension with largest spread and partition |
604 |
|
|
accordingly */ |
605 |
|
|
const float d0 = max [0] - min [0], |
606 |
|
|
d1 = max [1] - min [1], |
607 |
|
|
d2 = max [2] - min [2]; |
608 |
|
|
const unsigned char dim = d0 > d1 ? d0 > d2 ? 0 : 2 |
609 |
|
|
: d1 > d2 ? 1 : 2; |
610 |
|
|
const unsigned long median = |
611 |
|
|
left == right ? left |
612 |
|
|
: medianPartition(heap, heapIdx, heapXdi, left, right, dim); |
613 |
|
|
|
614 |
|
|
/* Place median at root of current subtree. This consists of swapping |
615 |
|
|
the median and the root nodes and updating the heap indices */ |
616 |
|
|
memcpy(&rootNode, heap + heapIdx [median], sizeof(Photon)); |
617 |
|
|
memcpy(heap + heapIdx [median], heap + root - 1, sizeof(Photon)); |
618 |
|
|
setPhotonDiscr(rootNode, dim); |
619 |
|
|
memcpy(heap + root - 1, &rootNode, sizeof(Photon)); |
620 |
|
|
heapIdx [heapXdi [root - 1]] = heapIdx [median]; |
621 |
|
|
heapXdi [heapIdx [median]] = heapXdi [root - 1]; |
622 |
|
|
heapIdx [median] = root - 1; |
623 |
|
|
heapXdi [root - 1] = median; |
624 |
|
|
|
625 |
|
|
/* Update bounds for left and right subtrees and recurse on them */ |
626 |
|
|
for (d = 0; d <= 2; d++) |
627 |
|
|
if (d == dim) |
628 |
|
|
maxLeft [d] = minRight [d] = rootNode.pos [d]; |
629 |
|
|
else { |
630 |
|
|
maxLeft [d] = max [d]; |
631 |
|
|
minRight [d] = min [d]; |
632 |
|
|
} |
633 |
|
|
|
634 |
|
|
if (left < median) |
635 |
|
|
buildHeap(heap, heapIdx, heapXdi, min, maxLeft, |
636 |
|
|
left, median - 1, root << 1); |
637 |
|
|
|
638 |
|
|
if (right > median) |
639 |
|
|
buildHeap(heap, heapIdx, heapXdi, minRight, max, |
640 |
|
|
median + 1, right, (root << 1) + 1); |
641 |
|
|
} |
642 |
|
|
|
643 |
|
|
|
644 |
|
|
|
645 |
|
|
void balancePhotons (PhotonMap* pmap, double *photonFlux) |
646 |
|
|
{ |
647 |
|
|
Photon *heap = pmap -> heap; |
648 |
|
|
unsigned long i; |
649 |
|
|
unsigned long *heapIdx; /* Photon index array */ |
650 |
|
|
unsigned long *heapXdi; /* Reverse index to heapIdx */ |
651 |
|
|
unsigned j; |
652 |
|
|
COLOR flux; |
653 |
|
|
/* Need doubles here to reduce errors from increment */ |
654 |
|
|
double avgFlux [3] = {0, 0, 0}, CoG [3] = {0, 0, 0}, CoGdist = 0; |
655 |
|
|
FVECT d; |
656 |
|
|
|
657 |
|
|
if (pmap -> heapEnd) { |
658 |
|
|
pmap -> heapSize = pmap -> heapEnd; |
659 |
|
|
heapIdx = (unsigned long*)malloc(pmap -> heapSize * |
660 |
|
|
sizeof(unsigned long)); |
661 |
|
|
heapXdi = (unsigned long*)malloc(pmap -> heapSize * |
662 |
|
|
sizeof(unsigned long)); |
663 |
|
|
if (!heapIdx || !heapXdi) |
664 |
|
|
error(USER, "can't allocate heap index"); |
665 |
|
|
|
666 |
|
|
for (i = 0; i < pmap -> heapSize; i++) { |
667 |
|
|
/* Initialize index arrays */ |
668 |
|
|
heapXdi [i] = heapIdx [i] = i; |
669 |
|
|
getPhotonFlux(heap + i, flux); |
670 |
|
|
|
671 |
|
|
/* Scale photon's flux (hitherto normalised to 1 over RGB); in case |
672 |
|
|
* of a contrib photon map, this is done per light source, and |
673 |
|
|
* photonFlux is assumed to be an array */ |
674 |
|
|
if (photonFlux) { |
675 |
|
|
scalecolor(flux, photonFlux [isContribPmap(pmap) ? |
676 |
|
|
photonSrcIdx(pmap, heap + i) : 0]); |
677 |
|
|
setPhotonFlux(heap + i, flux); |
678 |
|
|
} |
679 |
|
|
|
680 |
|
|
/* Need a double here */ |
681 |
|
|
addcolor(avgFlux, flux); |
682 |
|
|
|
683 |
|
|
/* Add photon position to centre of gravity */ |
684 |
|
|
for (j = 0; j < 3; j++) |
685 |
|
|
CoG [j] += heap [i].pos [j]; |
686 |
|
|
} |
687 |
|
|
|
688 |
|
|
/* Average photon positions to get centre of gravity */ |
689 |
|
|
for (j = 0; j < 3; j++) |
690 |
|
|
pmap -> CoG [j] = CoG [j] /= pmap -> heapSize; |
691 |
|
|
|
692 |
|
|
/* Compute average photon distance to CoG */ |
693 |
|
|
for (i = 0; i < pmap -> heapSize; i++) { |
694 |
|
|
VSUB(d, heap [i].pos, CoG); |
695 |
|
|
CoGdist += DOT(d, d); |
696 |
|
|
} |
697 |
|
|
|
698 |
|
|
pmap -> CoGdist = CoGdist /= pmap -> heapSize; |
699 |
|
|
|
700 |
|
|
/* Average photon flux based on RGBE representation */ |
701 |
|
|
scalecolor(avgFlux, 1.0 / pmap -> heapSize); |
702 |
|
|
copycolor(pmap -> photonFlux, avgFlux); |
703 |
|
|
|
704 |
|
|
/* Build kd-tree */ |
705 |
|
|
buildHeap(pmap -> heap, heapIdx, heapXdi, pmap -> minPos, |
706 |
|
|
pmap -> maxPos, 0, pmap -> heapSize - 1, 1); |
707 |
|
|
|
708 |
|
|
free(heapIdx); |
709 |
|
|
free(heapXdi); |
710 |
|
|
} |
711 |
|
|
} |
712 |
|
|
|
713 |
|
|
|
714 |
|
|
|
715 |
|
|
void deletePhotons (PhotonMap* pmap) |
716 |
|
|
{ |
717 |
|
|
free(pmap -> heap); |
718 |
|
|
free(pmap -> squeue); |
719 |
|
|
free(pmap -> biasCompHist); |
720 |
|
|
|
721 |
|
|
pmap -> heapSize = 0; |
722 |
|
|
pmap -> minGather = pmap -> maxGather = |
723 |
|
|
pmap -> squeueSize = pmap -> squeueEnd = 0; |
724 |
|
|
} |