1 |
|
#ifndef lint |
2 |
|
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
+ |
|
5 |
|
/* |
6 |
< |
================================================================== |
7 |
< |
Photon map support for light source contributions |
6 |
> |
====================================================================== |
7 |
> |
Photon map support for building light source contributions |
8 |
|
|
9 |
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
10 |
|
(c) Lucerne University of Applied Sciences and Arts, |
11 |
< |
supported by the Swiss National Science Foundation (SNSF, #147053) |
12 |
< |
================================================================== |
11 |
> |
supported by the Swiss National Science Foundation (SNSF, #147053) |
12 |
> |
====================================================================== |
13 |
|
|
14 |
+ |
$Id$ |
15 |
|
*/ |
16 |
|
|
17 |
|
|
18 |
|
#include "pmapcontrib.h" |
17 |
– |
#include "pmap.h" |
19 |
|
#include "pmapmat.h" |
20 |
|
#include "pmapsrc.h" |
21 |
|
#include "pmaprand.h" |
23 |
|
#include "pmapdiag.h" |
24 |
|
#include "rcontrib.h" |
25 |
|
#include "otypes.h" |
26 |
+ |
#include <sys/mman.h> |
27 |
+ |
#include <sys/wait.h> |
28 |
|
|
29 |
|
|
30 |
|
|
31 |
< |
static void setPmapContribParams (PhotonMap *pmap, LUTAB *srcContrib) |
32 |
< |
/* Set parameters for light source contributions */ |
31 |
> |
static PhotonPrimaryIdx newPhotonPrimary (PhotonMap *pmap, |
32 |
> |
const RAY *primRay, |
33 |
> |
FILE *primHeap) |
34 |
> |
/* Add primary ray for emitted photon and save light source index, origin on |
35 |
> |
* source, and emitted direction; used by contrib photons. The current |
36 |
> |
* primary is stored in pmap -> lastPrimary. If the previous primary |
37 |
> |
* contributed photons (has srcIdx >= 0), it's appended to primHeap. If |
38 |
> |
* primRay == NULL, the current primary is still flushed, but no new primary |
39 |
> |
* is set. Returns updated primary counter pmap -> numPrimary. */ |
40 |
|
{ |
41 |
< |
/* Set light source modifier list and appropriate callback to extract |
42 |
< |
* their contributions from the photon map */ |
43 |
< |
if (pmap) { |
44 |
< |
pmap -> srcContrib = srcContrib; |
45 |
< |
pmap -> lookup = photonContrib; |
46 |
< |
/* Ensure we get all requested photon contribs during lookups */ |
47 |
< |
pmap -> gatherTolerance = 1.0; |
41 |
> |
if (!pmap || !primHeap) |
42 |
> |
return 0; |
43 |
> |
|
44 |
> |
/* Check if last primary ray has spawned photons (srcIdx >= 0, see |
45 |
> |
* newPhoton()), in which case we write it to the primary heap file |
46 |
> |
* before overwriting it */ |
47 |
> |
if (pmap -> lastPrimary.srcIdx >= 0) { |
48 |
> |
if (!fwrite(&pmap -> lastPrimary, sizeof(PhotonPrimary), 1, primHeap)) |
49 |
> |
error(SYSTEM, "failed writing photon primary in newPhotonPrimary"); |
50 |
> |
|
51 |
> |
pmap -> numPrimary++; |
52 |
> |
if (pmap -> numPrimary > PMAP_MAXPRIMARY) |
53 |
> |
error(INTERNAL, "photon primary overflow in newPhotonPrimary"); |
54 |
|
} |
39 |
– |
} |
55 |
|
|
56 |
< |
|
57 |
< |
|
58 |
< |
static void checkPmapContribs (const PhotonMap *pmap, LUTAB *srcContrib) |
59 |
< |
/* Check modifiers for light source contributions */ |
60 |
< |
{ |
61 |
< |
const PhotonPrimary *primary = pmap -> primary; |
62 |
< |
OBJREC *srcMod; |
63 |
< |
unsigned long i, found = 0; |
64 |
< |
|
65 |
< |
/* Make sure at least one of the modifiers is actually in the pmap, |
66 |
< |
* otherwise findPhotons() winds up in an infinite loop! */ |
67 |
< |
for (i = pmap -> primarySize; i; --i, ++primary) { |
68 |
< |
if (primary -> srcIdx < 0 || primary -> srcIdx >= nsources) |
69 |
< |
error(INTERNAL, "invalid light source index in photon map"); |
70 |
< |
|
56 |
< |
srcMod = findmaterial(source [primary -> srcIdx].so); |
57 |
< |
if ((MODCONT*)lu_find(srcContrib, srcMod -> oname) -> data) |
58 |
< |
++found; |
56 |
> |
/* Mark unused with negative source index until path spawns a photon (see |
57 |
> |
* newPhoton()) */ |
58 |
> |
pmap -> lastPrimary.srcIdx = -1; |
59 |
> |
|
60 |
> |
if (primRay) { |
61 |
> |
FVECT dvec; |
62 |
> |
|
63 |
> |
/* Reverse incident direction to point to light source */ |
64 |
> |
dvec [0] = -primRay -> rdir [0]; |
65 |
> |
dvec [1] = -primRay -> rdir [1]; |
66 |
> |
dvec [2] = -primRay -> rdir [2]; |
67 |
> |
pmap -> lastPrimary.dir = encodedir(dvec); |
68 |
> |
#ifdef PMAP_PRIMARYPOS |
69 |
> |
VCOPY(pmap -> lastPrimary.pos, primRay -> rop); |
70 |
> |
#endif |
71 |
|
} |
72 |
|
|
73 |
< |
if (!found) |
62 |
< |
error(USER, "modifiers not in photon map"); |
73 |
> |
return pmap -> numPrimary; |
74 |
|
} |
64 |
– |
|
65 |
– |
|
75 |
|
|
76 |
< |
void initPmapContrib (LUTAB *srcContrib, unsigned numSrcContrib) |
76 |
> |
|
77 |
> |
|
78 |
> |
#ifdef DEBUG_PMAP_CONTRIB |
79 |
> |
static int checkPrimaryHeap (FILE *file) |
80 |
> |
/* Check heap for ordered primaries */ |
81 |
|
{ |
82 |
< |
unsigned t; |
82 |
> |
Photon p, lastp; |
83 |
> |
int i, dup; |
84 |
|
|
85 |
< |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
86 |
< |
if (photonMaps [t] && t != PMAP_TYPE_CONTRIB) { |
73 |
< |
sprintf(errmsg, "%s photon map does not support contributions", |
74 |
< |
pmapName [t]); |
75 |
< |
error(USER, errmsg); |
76 |
< |
} |
85 |
> |
rewind(file); |
86 |
> |
memset(&lastp, 0, sizeof(lastp)); |
87 |
|
|
88 |
< |
/* Get params */ |
89 |
< |
setPmapContribParams(contribPmap, srcContrib); |
90 |
< |
|
91 |
< |
if (contribPhotonMapping) { |
92 |
< |
if (contribPmap -> maxGather < numSrcContrib) { |
93 |
< |
/* Adjust density estimate bandwidth if lower than modifier |
94 |
< |
* count, otherwise contributions are missing */ |
95 |
< |
error(WARNING, "contrib density estimate bandwidth too low, " |
96 |
< |
"adjusting to modifier count"); |
97 |
< |
contribPmap -> maxGather = numSrcContrib; |
88 |
> |
while (fread(&p, sizeof(p), 1, file)) { |
89 |
> |
dup = 1; |
90 |
> |
|
91 |
> |
for (i = 0; i <= 2; i++) { |
92 |
> |
if (p.pos [i] < thescene.cuorg [i] || |
93 |
> |
p.pos [i] > thescene.cuorg [i] + thescene.cusize) { |
94 |
> |
|
95 |
> |
sprintf(errmsg, "corrupt photon in heap at [%f, %f, %f]\n", |
96 |
> |
p.pos [0], p.pos [1], p.pos [2]); |
97 |
> |
error(WARNING, errmsg); |
98 |
> |
} |
99 |
> |
|
100 |
> |
dup &= p.pos [i] == lastp.pos [i]; |
101 |
|
} |
102 |
|
|
103 |
< |
/* Sanity check */ |
104 |
< |
checkPmapContribs(contribPmap, srcContrib); |
103 |
> |
if (dup) { |
104 |
> |
sprintf(errmsg, |
105 |
> |
"consecutive duplicate photon in heap at [%f, %f, %f]\n", |
106 |
> |
p.pos [0], p.pos [1], p.pos [2]); |
107 |
> |
error(WARNING, errmsg); |
108 |
> |
} |
109 |
|
} |
110 |
+ |
|
111 |
+ |
return 0; |
112 |
|
} |
113 |
+ |
#endif |
114 |
|
|
115 |
|
|
116 |
|
|
117 |
< |
void photonContrib (PhotonMap *pmap, RAY *ray, COLOR irrad) |
118 |
< |
/* Sum up light source contributions from photons in pmap->srcContrib */ |
117 |
> |
static PhotonPrimaryIdx buildPrimaries (PhotonMap *pmap, FILE **primaryHeap, |
118 |
> |
PhotonPrimaryIdx *primaryOfs, |
119 |
> |
unsigned numHeaps) |
120 |
> |
/* Consolidate per-subprocess photon primary heaps into the primary array |
121 |
> |
* pmap -> primaries. Returns offset for primary index linearisation in |
122 |
> |
* numPrimary. The heap files in primaryHeap are closed on return. */ |
123 |
|
{ |
124 |
< |
unsigned i; |
125 |
< |
PhotonSQNode *sq; |
126 |
< |
float r, invArea; |
127 |
< |
RREAL rayCoeff [3]; |
128 |
< |
|
105 |
< |
setcolor(irrad, 0, 0, 0); |
106 |
< |
|
107 |
< |
if (!pmap -> maxGather) |
108 |
< |
return; |
124 |
> |
PhotonPrimaryIdx heapLen; |
125 |
> |
unsigned heap; |
126 |
> |
|
127 |
> |
if (!pmap || !primaryHeap || !primaryOfs || !numHeaps) |
128 |
> |
return 0; |
129 |
|
|
130 |
< |
/* Ignore sources */ |
131 |
< |
if (ray -> ro) |
132 |
< |
if (islight(objptr(ray -> ro -> omod) -> otype)) |
133 |
< |
return; |
130 |
> |
pmap -> numPrimary = 0; |
131 |
> |
|
132 |
> |
for (heap = 0; heap < numHeaps; heap++) { |
133 |
> |
primaryOfs [heap] = pmap -> numPrimary; |
134 |
> |
|
135 |
> |
if (fseek(primaryHeap [heap], 0, SEEK_END)) |
136 |
> |
error(SYSTEM, "failed photon primary seek in buildPrimaries"); |
137 |
> |
pmap -> numPrimary += heapLen = ftell(primaryHeap [heap]) / |
138 |
> |
sizeof(PhotonPrimary); |
139 |
|
|
140 |
< |
/* Get cumulative path |
141 |
< |
* coefficient up to photon lookup point */ |
142 |
< |
raycontrib(rayCoeff, ray, PRIMARY); |
140 |
> |
pmap -> primaries = realloc(pmap -> primaries, |
141 |
> |
pmap -> numPrimary * |
142 |
> |
sizeof(PhotonPrimary)); |
143 |
> |
if (!pmap -> primaries) |
144 |
> |
error(SYSTEM, "failed photon primary alloc in buildPrimaries"); |
145 |
|
|
146 |
< |
/* Lookup photons */ |
147 |
< |
pmap -> squeueEnd = 0; |
148 |
< |
findPhotons(pmap, ray); |
149 |
< |
|
123 |
< |
/* Need at least 2 photons */ |
124 |
< |
if (pmap -> squeueEnd < 2) { |
125 |
< |
#ifdef PMAP_NONEFOUND |
126 |
< |
sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", |
127 |
< |
ray -> ro ? ray -> ro -> oname : "<null>", |
128 |
< |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
129 |
< |
error(WARNING, errmsg); |
130 |
< |
#endif |
146 |
> |
rewind(primaryHeap [heap]); |
147 |
> |
if (fread(pmap -> primaries + primaryOfs [heap], sizeof(PhotonPrimary), |
148 |
> |
heapLen, primaryHeap [heap]) != heapLen) |
149 |
> |
error(SYSTEM, "failed reading photon primaries in buildPrimaries"); |
150 |
|
|
151 |
< |
return; |
151 |
> |
fclose(primaryHeap [heap]); |
152 |
|
} |
134 |
– |
|
135 |
– |
/* Average (squared) radius between furthest two photons to improve |
136 |
– |
* accuracy and get inverse search area 1 / (PI * r^2), with extra |
137 |
– |
* normalisation factor 1 / PI for ambient calculation */ |
138 |
– |
sq = pmap -> squeue + 1; |
139 |
– |
r = max(sq -> dist, (sq + 1) -> dist); |
140 |
– |
r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r)); |
141 |
– |
invArea = 1 / (PI * PI * r); |
153 |
|
|
154 |
< |
/* Skip the extra photon */ |
155 |
< |
for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) { |
145 |
< |
COLOR flux; |
146 |
< |
|
147 |
< |
/* Get photon's contribution to density estimate */ |
148 |
< |
getPhotonFlux(sq -> photon, flux); |
149 |
< |
scalecolor(flux, invArea); |
150 |
< |
#ifdef PMAP_EPANECHNIKOV |
151 |
< |
/* Apply Epanechnikov kernel to photon flux (dists are squared) */ |
152 |
< |
scalecolor(flux, 2 * (1 - sq -> dist / r)); |
153 |
< |
#endif |
154 |
< |
addcolor(irrad, flux); |
155 |
< |
|
156 |
< |
if (pmap -> srcContrib) { |
157 |
< |
const PhotonPrimary *primary = pmap -> primary + |
158 |
< |
sq -> photon -> primary; |
159 |
< |
const SRCREC *sp = &source[primary -> srcIdx]; |
160 |
< |
OBJREC *srcMod = findmaterial(sp -> so); |
161 |
< |
MODCONT *srcContrib = (MODCONT*)lu_find(pmap -> srcContrib, |
162 |
< |
srcMod -> oname) -> data; |
163 |
< |
if (!srcContrib) |
164 |
< |
continue; |
154 |
> |
return pmap -> numPrimary; |
155 |
> |
} |
156 |
|
|
166 |
– |
/* Photon's emitting light source has modifier whose |
167 |
– |
* contributions are sought */ |
168 |
– |
double srcBinReal; |
169 |
– |
int srcBin; |
170 |
– |
RAY srcRay; |
157 |
|
|
172 |
– |
if (srcContrib -> binv -> type != NUM) { |
173 |
– |
/* Use intersection function to set shadow ray parameters |
174 |
– |
* if it's not simply a constant |
175 |
– |
*/ |
176 |
– |
rayorigin(&srcRay, SHADOW, NULL, NULL); |
177 |
– |
srcRay.rsrc = primary -> srcIdx; |
178 |
– |
VCOPY(srcRay.rorg, primary -> pos); |
179 |
– |
decodedir(srcRay.rdir, primary -> dir); |
158 |
|
|
159 |
< |
if (!(sp->sflags & SDISTANT ? sourcehit(&srcRay) |
160 |
< |
: (*ofun[sp -> so -> otype].funp)(sp -> so, &srcRay))) |
161 |
< |
continue; /* XXX shouldn't happen! */ |
159 |
> |
/* Defs for photon emission counter array passed by sub-processes to parent |
160 |
> |
* via shared memory */ |
161 |
> |
typedef unsigned long PhotonContribCnt; |
162 |
|
|
163 |
< |
worldfunc(RCCONTEXT, &srcRay); |
164 |
< |
set_eparams((char *)srcContrib -> params); |
165 |
< |
} |
163 |
> |
/* Indices for photon emission counter array: num photons stored and num |
164 |
> |
* emitted per source */ |
165 |
> |
#define PHOTONCNT_NUMPHOT 0 |
166 |
> |
#define PHOTONCNT_NUMEMIT(n) (1 + n) |
167 |
|
|
189 |
– |
if ((srcBinReal = evalue(srcContrib -> binv)) < -.5) |
190 |
– |
continue; /* silently ignore negative bins */ |
191 |
– |
|
192 |
– |
if ((srcBin = srcBinReal + .5) >= srcContrib -> nbins) { |
193 |
– |
error(WARNING, "bad bin number (ignored)"); |
194 |
– |
continue; |
195 |
– |
} |
196 |
– |
|
197 |
– |
if (!contrib) { |
198 |
– |
/* Ray coefficient mode; normalise by light source radiance |
199 |
– |
* after applying distrib pattern */ |
200 |
– |
int j; |
201 |
– |
raytexture(ray, srcMod -> omod); |
202 |
– |
setcolor(ray -> rcol, srcMod -> oargs.farg [0], |
203 |
– |
srcMod -> oargs.farg [1], srcMod -> oargs.farg [2]); |
204 |
– |
multcolor(ray -> rcol, ray -> pcol); |
205 |
– |
for (j = 0; j < 3; j++) |
206 |
– |
flux [j] = ray -> rcol [j] ? flux [j] / ray -> rcol [j] |
207 |
– |
: 0; |
208 |
– |
} |
209 |
– |
|
210 |
– |
multcolor(flux, rayCoeff); |
211 |
– |
addcolor(srcContrib -> cbin [srcBin], flux); |
212 |
– |
} |
213 |
– |
} |
214 |
– |
|
215 |
– |
return; |
216 |
– |
} |
168 |
|
|
169 |
|
|
170 |
< |
|
220 |
< |
void distribPhotonContrib (PhotonMap* pm) |
170 |
> |
void distribPhotonContrib (PhotonMap* pm, unsigned numProc) |
171 |
|
{ |
172 |
< |
EmissionMap emap; |
173 |
< |
char errmsg2 [128]; |
174 |
< |
unsigned srcIdx; |
175 |
< |
double *srcFlux; /* Emitted flux per light source */ |
176 |
< |
const double srcDistribTarget = /* Target photon count per source */ |
177 |
< |
nsources ? (double)pm -> distribTarget / nsources : 0; |
178 |
< |
|
172 |
> |
EmissionMap emap; |
173 |
> |
char errmsg2 [128], shmFname [255]; |
174 |
> |
unsigned srcIdx, proc; |
175 |
> |
int shmFile, stat, pid; |
176 |
> |
double *srcFlux, /* Emitted flux per light source */ |
177 |
> |
srcDistribTarget; /* Target photon count per source */ |
178 |
> |
PhotonContribCnt *photonCnt; /* Photon emission counter array */ |
179 |
> |
const unsigned photonCntSize = sizeof(PhotonContribCnt) * |
180 |
> |
PHOTONCNT_NUMEMIT(nsources); |
181 |
> |
FILE *primaryHeap [numProc]; |
182 |
> |
PhotonPrimaryIdx primaryOfs [numProc]; |
183 |
> |
|
184 |
|
if (!pm) |
185 |
< |
error(USER, "no photon map defined"); |
185 |
> |
error(USER, "no photon map defined in distribPhotonContrib"); |
186 |
|
|
187 |
|
if (!nsources) |
188 |
< |
error(USER, "no light sources"); |
189 |
< |
|
188 |
> |
error(USER, "no light sources in distribPhotonContrib"); |
189 |
> |
|
190 |
> |
if (nsources > MAXMODLIST) |
191 |
> |
error(USER, "too many light sources in distribPhotonContrib"); |
192 |
> |
|
193 |
|
/* Allocate photon flux per light source; this differs for every |
194 |
|
* source as all sources contribute the same number of distributed |
195 |
|
* photons (srcDistribTarget), hence the number of photons emitted per |
196 |
|
* source does not correlate with its emitted flux. The resulting flux |
197 |
|
* per photon is therefore adjusted individually for each source. */ |
198 |
|
if (!(srcFlux = calloc(nsources, sizeof(double)))) |
199 |
< |
error(SYSTEM, "cannot allocate source flux"); |
199 |
> |
error(SYSTEM, "can't allocate source flux in distribPhotonContrib"); |
200 |
|
|
201 |
< |
/* ================================================================ |
202 |
< |
* INITIALISASHUNN - Set up emisshunn and scattering funcs |
203 |
< |
* ================================================================ */ |
201 |
> |
/* =================================================================== |
202 |
> |
* INITIALISATION - Set up emission and scattering funcs |
203 |
> |
* =================================================================== */ |
204 |
|
emap.samples = NULL; |
205 |
|
emap.src = NULL; |
206 |
|
emap.maxPartitions = MAXSPART; |
207 |
|
emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1); |
208 |
|
if (!emap.partitions) |
209 |
< |
error(USER, "can't allocate source partitions"); |
209 |
> |
error(USER, "can't allocate source partitions in distribPhotonContrib"); |
210 |
|
|
211 |
+ |
/* Initialise contrib photon map */ |
212 |
|
initPhotonMap(pm, PMAP_TYPE_CONTRIB); |
213 |
+ |
initPhotonHeap(pm); |
214 |
|
initPhotonEmissionFuncs(); |
215 |
|
initPhotonScatterFuncs(); |
216 |
|
|
217 |
+ |
/* Per-subprocess / per-source target counts */ |
218 |
+ |
pm -> distribTarget /= numProc; |
219 |
+ |
srcDistribTarget = nsources ? (double)pm -> distribTarget / nsources : 0; |
220 |
+ |
|
221 |
|
/* Get photon ports if specified */ |
222 |
|
if (ambincl == 1) |
223 |
|
getPhotonPorts(); |
225 |
|
/* Get photon sensor modifiers */ |
226 |
|
getPhotonSensors(photonSensorList); |
227 |
|
|
228 |
< |
/* Seed RNGs for photon distribution */ |
229 |
< |
pmapSeed(randSeed, partState); |
230 |
< |
pmapSeed(randSeed, emitState); |
231 |
< |
pmapSeed(randSeed, cntState); |
232 |
< |
pmapSeed(randSeed, mediumState); |
233 |
< |
pmapSeed(randSeed, scatterState); |
234 |
< |
pmapSeed(randSeed, rouletteState); |
235 |
< |
|
272 |
< |
/* Record start time and enable progress report signal handler */ |
273 |
< |
repStartTime = time(NULL); |
274 |
< |
#ifdef SIGCONT |
275 |
< |
signal(SIGCONT, pmapDistribReport); |
276 |
< |
#endif |
228 |
> |
/* Set up shared mem for photon counters (zeroed by ftruncate) */ |
229 |
> |
#if 0 |
230 |
> |
snprintf(shmFname, 255, PMAP_SHMFNAME, getpid()); |
231 |
> |
shmFile = shm_open(shmFname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); |
232 |
> |
#else |
233 |
> |
strcpy(shmFname, PMAP_SHMFNAME); |
234 |
> |
shmFile = mkstemp(shmFname); |
235 |
> |
#endif |
236 |
|
|
237 |
< |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
238 |
< |
unsigned portCnt = 0, passCnt = 0, prePassCnt = 0; |
280 |
< |
double srcNumEmit = 0; /* # photons to emit from source */ |
281 |
< |
unsigned long srcNumDistrib = pm -> heapEnd; /* # photons stored */ |
237 |
> |
if (shmFile < 0 || ftruncate(shmFile, photonCntSize) < 0) |
238 |
> |
error(SYSTEM, "failed shared mem init in distribPhotonContrib"); |
239 |
|
|
240 |
< |
srcFlux [srcIdx] = repProgress = 0; |
240 |
> |
photonCnt = mmap(NULL, photonCntSize, PROT_READ | PROT_WRITE, |
241 |
> |
MAP_SHARED, shmFile, 0); |
242 |
> |
|
243 |
> |
if (photonCnt == MAP_FAILED) |
244 |
> |
error(SYSTEM, "failed shared mem mapping in distribPhotonContrib"); |
245 |
> |
|
246 |
> |
/* ============================================================= |
247 |
> |
* FLUX INTEGRATION - Get total flux emitted from light source |
248 |
> |
* ============================================================= */ |
249 |
> |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
250 |
> |
unsigned portCnt = 0; |
251 |
> |
|
252 |
> |
srcFlux [srcIdx] = 0; |
253 |
|
emap.src = source + srcIdx; |
254 |
|
|
255 |
|
if (photonRepTime) |
256 |
|
eputs("\n"); |
257 |
< |
|
258 |
< |
/* ============================================================= |
259 |
< |
* FLUX INTEGRATION - Get total flux emitted from light source |
260 |
< |
* ============================================================= */ |
292 |
< |
do { |
293 |
< |
emap.port = emap.src -> sflags & SDISTANT |
294 |
< |
? photonPorts + portCnt : NULL; |
257 |
> |
|
258 |
> |
do { /* Need at least one iteration if no ports! */ |
259 |
> |
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
260 |
> |
: NULL; |
261 |
|
photonPartition [emap.src -> so -> otype] (&emap); |
262 |
|
|
263 |
|
if (photonRepTime) { |
271 |
|
strcat(errmsg, errmsg2); |
272 |
|
} |
273 |
|
|
274 |
< |
sprintf(errmsg2, "(%lu partitions)...\n", |
309 |
< |
emap.numPartitions); |
274 |
> |
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
275 |
|
strcat(errmsg, errmsg2); |
276 |
|
eputs(errmsg); |
277 |
|
fflush(stderr); |
278 |
|
} |
279 |
|
|
280 |
< |
for (emap.partitionCnt = 0; |
316 |
< |
emap.partitionCnt < emap.numPartitions; |
280 |
> |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
281 |
|
emap.partitionCnt++) { |
282 |
|
initPhotonEmission(&emap, pdfSamples); |
283 |
|
srcFlux [srcIdx] += colorAvg(emap.partFlux); |
284 |
|
} |
285 |
|
|
286 |
|
portCnt++; |
287 |
< |
} while (portCnt < numPhotonPorts); |
288 |
< |
|
287 |
> |
} while (portCnt < numPhotonPorts); |
288 |
> |
|
289 |
|
if (srcFlux [srcIdx] < FTINY) { |
290 |
|
sprintf(errmsg, "source %s has zero emission", |
291 |
|
source [srcIdx].so -> oname); |
292 |
|
error(WARNING, errmsg); |
293 |
|
} |
294 |
< |
else { |
295 |
< |
/* ========================================================== |
294 |
> |
} |
295 |
> |
|
296 |
> |
if (photonRepTime) |
297 |
> |
eputs("\n"); |
298 |
> |
|
299 |
> |
/* Init per-subprocess primary heap files */ |
300 |
> |
for (proc = 0; proc < numProc; proc++) |
301 |
> |
if (!(primaryHeap [proc] = tmpfile())) |
302 |
> |
error(SYSTEM, "failed opening primary heap file in " |
303 |
> |
"distribPhotonContrib"); |
304 |
> |
|
305 |
> |
/* MAIN LOOP */ |
306 |
> |
for (proc = 0; proc < numProc; proc++) { |
307 |
> |
if (!(pid = fork())) { |
308 |
> |
/* SUBPROCESS ENTERS HERE; |
309 |
> |
* all opened and memory mapped files are inherited */ |
310 |
> |
|
311 |
> |
/* Local photon counters for this subprocess */ |
312 |
> |
unsigned long lastNumPhotons = 0, localNumEmitted = 0; |
313 |
> |
double photonFluxSum = 0; /* Running photon flux sum */ |
314 |
> |
|
315 |
> |
/* Seed RNGs from PID for decorellated photon distribution */ |
316 |
> |
pmapSeed(randSeed + proc, partState); |
317 |
> |
pmapSeed(randSeed + proc, emitState); |
318 |
> |
pmapSeed(randSeed + proc, cntState); |
319 |
> |
pmapSeed(randSeed + proc, mediumState); |
320 |
> |
pmapSeed(randSeed + proc, scatterState); |
321 |
> |
pmapSeed(randSeed + proc, rouletteState); |
322 |
> |
|
323 |
> |
/* ============================================================= |
324 |
|
* 2-PASS PHOTON DISTRIBUTION |
325 |
|
* Pass 1 (pre): emit fraction of target photon count |
326 |
< |
* Pass 2 (main): based on outcome of pass 1, estimate |
327 |
< |
* remaining number of photons to emit to |
328 |
< |
* approximate target count |
329 |
< |
* ========================================================== */ |
330 |
< |
do { |
331 |
< |
if (!passCnt) { |
332 |
< |
/* INIT PASS 1 */ |
333 |
< |
if (++prePassCnt > maxPreDistrib) { |
334 |
< |
/* Warn if no photons contributed after sufficient |
335 |
< |
* iterations */ |
336 |
< |
sprintf(errmsg, "too many prepasses, no photons " |
337 |
< |
"from source %s", source [srcIdx].so -> oname); |
338 |
< |
error(WARNING, errmsg); |
339 |
< |
break; |
326 |
> |
* Pass 2 (main): based on outcome of pass 1, estimate remaining |
327 |
> |
* number of photons to emit to approximate target |
328 |
> |
* count |
329 |
> |
* ============================================================= */ |
330 |
> |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
331 |
> |
unsigned portCnt, passCnt = 0, prePassCnt = 0; |
332 |
> |
float srcPreDistrib = preDistrib; |
333 |
> |
double srcNumEmit = 0; /* # to emit from source */ |
334 |
> |
unsigned long srcNumDistrib = pm -> numPhotons; /* # stored */ |
335 |
> |
|
336 |
> |
if (srcFlux [srcIdx] < FTINY) |
337 |
> |
continue; |
338 |
> |
|
339 |
> |
while (passCnt < 2) { |
340 |
> |
if (!passCnt) { |
341 |
> |
/* INIT PASS 1 */ |
342 |
> |
if (++prePassCnt > maxPreDistrib) { |
343 |
> |
/* Warn if no photons contributed after sufficient |
344 |
> |
* iterations */ |
345 |
> |
sprintf(errmsg, "proc %d, source %s: " |
346 |
> |
"too many prepasses, skipped", |
347 |
> |
proc, source [srcIdx].so -> oname); |
348 |
> |
error(WARNING, errmsg); |
349 |
> |
break; |
350 |
> |
} |
351 |
> |
|
352 |
> |
/* Num to emit is fraction of target count */ |
353 |
> |
srcNumEmit = srcPreDistrib * srcDistribTarget; |
354 |
|
} |
355 |
< |
|
356 |
< |
/* Num to emit is fraction of target count */ |
357 |
< |
srcNumEmit = preDistrib * srcDistribTarget; |
358 |
< |
} |
355 |
> |
else { |
356 |
> |
/* INIT PASS 2 */ |
357 |
> |
double srcPhotonFlux, avgPhotonFlux; |
358 |
> |
|
359 |
> |
/* Based on the outcome of the predistribution we can now |
360 |
> |
* figure out how many more photons we have to emit from |
361 |
> |
* the current source to meet the target count, |
362 |
> |
* srcDistribTarget. This value is clamped to 0 in case |
363 |
> |
* the target has already been exceeded in pass 1. |
364 |
> |
* srcNumEmit and srcNumDistrib is the number of photons |
365 |
> |
* emitted and distributed (stored) from the current |
366 |
> |
* source in pass 1, respectively. */ |
367 |
> |
srcNumDistrib = pm -> numPhotons - srcNumDistrib; |
368 |
> |
srcNumEmit *= srcNumDistrib |
369 |
> |
? max(srcDistribTarget/srcNumDistrib, 1) - 1 |
370 |
> |
: 0; |
371 |
|
|
372 |
< |
else { |
373 |
< |
/* INIT PASS 2 */ |
374 |
< |
/* Based on the outcome of the predistribution we can now |
357 |
< |
* figure out how many more photons we have to emit from |
358 |
< |
* the current source to meet the target count, |
359 |
< |
* srcDistribTarget. This value is clamped to 0 in case |
360 |
< |
* the target has already been exceeded in pass 1. |
361 |
< |
* srcNumEmit and srcNumDistrib is the number of photons |
362 |
< |
* emitted and distributed (stored) from the current |
363 |
< |
* source in pass 1, respectively. */ |
364 |
< |
srcNumDistrib = pm -> heapEnd - srcNumDistrib; |
365 |
< |
srcNumEmit *= srcNumDistrib |
366 |
< |
? max(srcDistribTarget/srcNumDistrib, 1) - 1 |
367 |
< |
: 0; |
368 |
< |
|
369 |
< |
if (!srcNumEmit) |
370 |
< |
/* No photons left to distribute in main pass */ |
371 |
< |
break; |
372 |
< |
} |
373 |
< |
|
374 |
< |
/* Set completion count for progress report */ |
375 |
< |
repComplete = srcNumEmit + repProgress; |
376 |
< |
portCnt = 0; |
372 |
> |
if (!srcNumEmit) |
373 |
> |
/* No photons left to distribute in main pass */ |
374 |
> |
break; |
375 |
|
|
376 |
< |
do { |
377 |
< |
emap.port = emap.src -> sflags & SDISTANT |
380 |
< |
? photonPorts + portCnt : NULL; |
381 |
< |
photonPartition [emap.src -> so -> otype] (&emap); |
382 |
< |
|
383 |
< |
if (photonRepTime) { |
384 |
< |
if (!passCnt) |
385 |
< |
sprintf(errmsg, "PREPASS %d on source %s (mod %s) ", |
386 |
< |
prePassCnt, source [srcIdx].so -> oname, |
387 |
< |
objptr(source[srcIdx].so->omod) -> oname); |
388 |
< |
else |
389 |
< |
sprintf(errmsg, "MAIN PASS on source %s (mod %s) ", |
390 |
< |
source [srcIdx].so -> oname, |
391 |
< |
objptr(source[srcIdx].so->omod) -> oname); |
392 |
< |
|
393 |
< |
if (emap.port) { |
394 |
< |
sprintf(errmsg2, "via port %s ", |
395 |
< |
photonPorts [portCnt].so -> oname); |
396 |
< |
strcat(errmsg, errmsg2); |
397 |
< |
} |
376 |
> |
srcPhotonFlux = srcFlux [srcIdx] / srcNumEmit; |
377 |
> |
avgPhotonFlux = photonFluxSum / (srcIdx + 1); |
378 |
|
|
379 |
< |
sprintf(errmsg2, "(%lu partitions)...\n", |
380 |
< |
emap.numPartitions); |
381 |
< |
strcat(errmsg, errmsg2); |
382 |
< |
eputs(errmsg); |
383 |
< |
fflush(stderr); |
379 |
> |
if (avgPhotonFlux > 0 && |
380 |
> |
srcPhotonFlux / avgPhotonFlux < FTINY) { |
381 |
> |
/* Skip source if its photon flux is grossly below the |
382 |
> |
* running average, indicating negligible contribs at |
383 |
> |
* the expense of excessive distribution time */ |
384 |
> |
sprintf(errmsg, "proc %d, source %s: " |
385 |
> |
"itsy bitsy photon flux, skipped", |
386 |
> |
proc, source [srcIdx].so -> oname); |
387 |
> |
error(WARNING, errmsg); |
388 |
> |
srcNumEmit = 0; |
389 |
> |
} |
390 |
> |
|
391 |
> |
/* Update sum of photon flux per light source */ |
392 |
> |
photonFluxSum += srcPhotonFlux; |
393 |
|
} |
394 |
|
|
395 |
< |
for (emap.partitionCnt = 0; |
396 |
< |
emap.partitionCnt < emap.numPartitions; |
397 |
< |
emap.partitionCnt++) { |
398 |
< |
double partNumEmit; |
399 |
< |
unsigned long partEmitCnt; |
395 |
> |
portCnt = 0; |
396 |
> |
do { /* Need at least one iteration if no ports! */ |
397 |
> |
emap.src = source + srcIdx; |
398 |
> |
emap.port = emap.src -> sflags & SDISTANT |
399 |
> |
? photonPorts + portCnt : NULL; |
400 |
> |
photonPartition [emap.src -> so -> otype] (&emap); |
401 |
|
|
402 |
< |
/* Get photon origin within current source partishunn |
403 |
< |
* and build emission map */ |
404 |
< |
photonOrigin [emap.src -> so -> otype] (&emap); |
405 |
< |
initPhotonEmission(&emap, pdfSamples); |
406 |
< |
|
407 |
< |
/* Number of photons to emit from ziss partishunn; |
408 |
< |
* scale according to its normalised contribushunn to |
409 |
< |
* the emitted source flux */ |
410 |
< |
partNumEmit = srcNumEmit * colorAvg(emap.partFlux) / |
411 |
< |
srcFlux [srcIdx]; |
412 |
< |
partEmitCnt = (unsigned long)partNumEmit; |
413 |
< |
|
414 |
< |
/* Probabilistically account for fractional photons */ |
415 |
< |
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
416 |
< |
partEmitCnt++; |
402 |
> |
if (photonRepTime && !proc) { |
403 |
> |
if (!passCnt) |
404 |
> |
sprintf(errmsg, "PREPASS %d on source %s (mod %s) ", |
405 |
> |
prePassCnt, source [srcIdx].so -> oname, |
406 |
> |
objptr(source[srcIdx].so->omod) -> oname); |
407 |
> |
else |
408 |
> |
sprintf(errmsg, "MAIN PASS on source %s (mod %s) ", |
409 |
> |
source [srcIdx].so -> oname, |
410 |
> |
objptr(source[srcIdx].so->omod) -> oname); |
411 |
> |
|
412 |
> |
if (emap.port) { |
413 |
> |
sprintf(errmsg2, "via port %s ", |
414 |
> |
photonPorts [portCnt].so -> oname); |
415 |
> |
strcat(errmsg, errmsg2); |
416 |
> |
} |
417 |
|
|
418 |
< |
/* Integer counter avoids FP rounding errors */ |
419 |
< |
while (partEmitCnt--) { |
420 |
< |
RAY photonRay; |
418 |
> |
sprintf(errmsg2, "(%lu partitions)\n", |
419 |
> |
emap.numPartitions); |
420 |
> |
strcat(errmsg, errmsg2); |
421 |
> |
eputs(errmsg); |
422 |
> |
fflush(stderr); |
423 |
> |
} |
424 |
|
|
425 |
< |
/* Emit photon according to PDF (if any), allocate |
426 |
< |
* associated primary ray, and trace through scene |
427 |
< |
* until absorbed/leaked */ |
428 |
< |
emitPhoton(&emap, &photonRay); |
436 |
< |
addPhotonPrimary(pm, &photonRay); |
437 |
< |
tracePhoton(&photonRay); |
425 |
> |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
426 |
> |
emap.partitionCnt++) { |
427 |
> |
double partNumEmit; |
428 |
> |
unsigned long partEmitCnt; |
429 |
|
|
430 |
< |
/* Record progress */ |
431 |
< |
repProgress++; |
430 |
> |
/* Get photon origin within current source partishunn |
431 |
> |
* and build emission map */ |
432 |
> |
photonOrigin [emap.src -> so -> otype] (&emap); |
433 |
> |
initPhotonEmission(&emap, pdfSamples); |
434 |
|
|
435 |
< |
if (photonRepTime > 0 && |
436 |
< |
time(NULL) >= repLastTime + photonRepTime) |
437 |
< |
pmapDistribReport(); |
438 |
< |
#ifdef SIGCONT |
439 |
< |
else signal(SIGCONT, pmapDistribReport); |
440 |
< |
#endif |
435 |
> |
/* Number of photons to emit from ziss partishunn; |
436 |
> |
* scale according to its normalised contribushunn to |
437 |
> |
* the emitted source flux */ |
438 |
> |
partNumEmit = srcNumEmit * colorAvg(emap.partFlux) / |
439 |
> |
srcFlux [srcIdx]; |
440 |
> |
partEmitCnt = (unsigned long)partNumEmit; |
441 |
> |
|
442 |
> |
/* Probabilistically account for fractional photons */ |
443 |
> |
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
444 |
> |
partEmitCnt++; |
445 |
> |
|
446 |
> |
/* Update local and shared global emission counter */ |
447 |
> |
localNumEmitted += partEmitCnt; |
448 |
> |
photonCnt [PHOTONCNT_NUMEMIT(srcIdx)] += partEmitCnt; |
449 |
> |
|
450 |
> |
/* Integer counter avoids FP rounding errors */ |
451 |
> |
while (partEmitCnt--) { |
452 |
> |
RAY photonRay; |
453 |
> |
|
454 |
> |
/* Emit photon according to PDF (if any), allocate |
455 |
> |
* associated primary ray, and trace through scene |
456 |
> |
* until absorbed/leaked; emitPhoton() sets the |
457 |
> |
* emitting light source index in photonRay */ |
458 |
> |
emitPhoton(&emap, &photonRay); |
459 |
> |
newPhotonPrimary(pm, &photonRay, primaryHeap[proc]); |
460 |
> |
/* Set subprocess index in photonRay for post- |
461 |
> |
* distrib primary index linearisation; this is |
462 |
> |
* propagated with the primary index in photonRay |
463 |
> |
* and set for photon hits by newPhoton() */ |
464 |
> |
PMAP_SETRAYPROC(&photonRay, proc); |
465 |
> |
tracePhoton(&photonRay); |
466 |
> |
} |
467 |
> |
|
468 |
> |
/* Update shared global photon count */ |
469 |
> |
photonCnt [PHOTONCNT_NUMPHOT] += pm -> numPhotons - |
470 |
> |
lastNumPhotons; |
471 |
> |
lastNumPhotons = pm -> numPhotons; |
472 |
|
} |
449 |
– |
} |
450 |
– |
|
451 |
– |
portCnt++; |
452 |
– |
} while (portCnt < numPhotonPorts); |
473 |
|
|
474 |
< |
if (pm -> heapEnd == srcNumDistrib) |
475 |
< |
/* Double preDistrib in case no photons were stored |
476 |
< |
* for this source and redo pass 1 */ |
477 |
< |
preDistrib *= 2; |
478 |
< |
else { |
479 |
< |
/* Now do pass 2 */ |
480 |
< |
passCnt++; |
481 |
< |
if (photonRepTime) |
482 |
< |
eputs("\n"); |
474 |
> |
portCnt++; |
475 |
> |
} while (portCnt < numPhotonPorts); |
476 |
> |
|
477 |
> |
if (pm -> numPhotons == srcNumDistrib) |
478 |
> |
/* Double predistrib factor in case no photons were stored |
479 |
> |
* for this source and redo pass 1 */ |
480 |
> |
srcPreDistrib *= 2; |
481 |
> |
else { |
482 |
> |
/* Now do pass 2 */ |
483 |
> |
passCnt++; |
484 |
> |
/* if (photonRepTime) |
485 |
> |
eputs("\n"); */ |
486 |
> |
} |
487 |
|
} |
488 |
< |
} while (passCnt < 2); |
488 |
> |
} |
489 |
> |
|
490 |
> |
/* Flush heap buffa one final time to prevent data corruption */ |
491 |
> |
flushPhotonHeap(pm); |
492 |
> |
fclose(pm -> heap); |
493 |
|
|
494 |
< |
/* Flux per photon emitted from this source; repProgress is the |
495 |
< |
* number of emitted photons after both passes */ |
496 |
< |
srcFlux [srcIdx] = repProgress ? srcFlux [srcIdx] / repProgress |
497 |
< |
: 0; |
494 |
> |
/* Flush final photon primary to primary heap file */ |
495 |
> |
newPhotonPrimary(pm, NULL, primaryHeap [proc]); |
496 |
> |
fclose(primaryHeap [proc]); |
497 |
> |
|
498 |
> |
#ifdef DEBUG_PMAP |
499 |
> |
sprintf(errmsg, "Proc %d exited with total %ld photons\n", proc, |
500 |
> |
pm -> numPhotons); |
501 |
> |
eputs(errmsg); |
502 |
> |
#endif |
503 |
> |
|
504 |
> |
exit(0); |
505 |
|
} |
506 |
+ |
else if (pid < 0) |
507 |
+ |
error(SYSTEM, "failed to fork subprocess in distribPhotonContrib"); |
508 |
|
} |
509 |
|
|
510 |
+ |
/* PARENT PROCESS CONTINUES HERE */ |
511 |
+ |
/* Record start time and enable progress report signal handler */ |
512 |
+ |
repStartTime = time(NULL); |
513 |
+ |
#ifdef SIGCONT |
514 |
+ |
signal(SIGCONT, pmapDistribReport); |
515 |
+ |
#endif |
516 |
+ |
/* |
517 |
+ |
if (photonRepTime) |
518 |
+ |
eputs("\n"); */ |
519 |
+ |
|
520 |
+ |
/* Wait for subprocesses to complete while reporting progress */ |
521 |
+ |
proc = numProc; |
522 |
+ |
while (proc) { |
523 |
+ |
while (waitpid(-1, &stat, WNOHANG) > 0) { |
524 |
+ |
/* Subprocess exited; check status */ |
525 |
+ |
if (!WIFEXITED(stat) || WEXITSTATUS(stat)) |
526 |
+ |
error(USER, "failed photon distribution"); |
527 |
+ |
|
528 |
+ |
--proc; |
529 |
+ |
} |
530 |
+ |
|
531 |
+ |
/* Nod off for a bit and update progress */ |
532 |
+ |
sleep(1); |
533 |
+ |
|
534 |
+ |
/* Update progress report from shared subprocess counters */ |
535 |
+ |
repComplete = pm -> distribTarget * numProc; |
536 |
+ |
repProgress = photonCnt [PHOTONCNT_NUMPHOT]; |
537 |
+ |
for (repEmitted = 0, srcIdx = 0; srcIdx < nsources; srcIdx++) |
538 |
+ |
repEmitted += photonCnt [PHOTONCNT_NUMEMIT(srcIdx)]; |
539 |
+ |
|
540 |
+ |
/* Get global photon count from shmem updated by subprocs */ |
541 |
+ |
pm -> numPhotons = photonCnt [PHOTONCNT_NUMPHOT]; |
542 |
+ |
|
543 |
+ |
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
544 |
+ |
pmapDistribReport(); |
545 |
+ |
#ifdef SIGCONT |
546 |
+ |
else signal(SIGCONT, pmapDistribReport); |
547 |
+ |
#endif |
548 |
+ |
} |
549 |
+ |
|
550 |
|
/* ================================================================ |
551 |
|
* POST-DISTRIBUTION - Set photon flux and build kd-tree, etc. |
552 |
|
* ================================================================ */ |
553 |
< |
#ifdef SIGCONT |
554 |
< |
signal(SIGCONT, SIG_DFL); |
555 |
< |
#endif |
553 |
> |
#ifdef SIGCONT |
554 |
> |
signal(SIGCONT, SIG_DFL); |
555 |
> |
#endif |
556 |
|
free(emap.samples); |
557 |
|
|
558 |
< |
if (!pm -> heapEnd) |
558 |
> |
if (!pm -> numPhotons) |
559 |
|
error(USER, "empty photon map"); |
560 |
|
|
561 |
< |
/* Check for valid primary photon rays */ |
562 |
< |
if (!pm -> primary) |
561 |
> |
/* Load per-subprocess primary rays into pm -> primary array */ |
562 |
> |
pm -> numPrimary = buildPrimaries(pm, primaryHeap, primaryOfs, numProc); |
563 |
> |
if (!pm -> numPrimary) |
564 |
|
error(INTERNAL, "no primary rays in contribution photon map"); |
487 |
– |
|
488 |
– |
if (pm -> primary [pm -> primaryEnd].srcIdx < 0) |
489 |
– |
/* Last primary ray is unused, so decrement counter */ |
490 |
– |
pm -> primaryEnd--; |
565 |
|
|
566 |
+ |
/* Set photon flux per source */ |
567 |
+ |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) |
568 |
+ |
srcFlux [srcIdx] /= photonCnt [PHOTONCNT_NUMEMIT(srcIdx)]; |
569 |
+ |
|
570 |
+ |
/* Photon counters no longer needed, unmap shared memory */ |
571 |
+ |
munmap(photonCnt, sizeof(*photonCnt)); |
572 |
+ |
close(shmFile); |
573 |
+ |
#if 0 |
574 |
+ |
shm_unlink(shmFname); |
575 |
+ |
#else |
576 |
+ |
unlink(shmFname); |
577 |
+ |
#endif |
578 |
+ |
|
579 |
|
if (photonRepTime) { |
580 |
< |
eputs("\nBuilding contrib photon heap...\n"); |
580 |
> |
eputs("\nBuilding contrib photon map...\n"); |
581 |
|
fflush(stderr); |
582 |
|
} |
583 |
< |
|
584 |
< |
balancePhotons(pm, srcFlux); |
583 |
> |
|
584 |
> |
/* Build underlying data structure; heap is destroyed */ |
585 |
> |
buildPhotonMap(pm, srcFlux, primaryOfs, numProc); |
586 |
|
} |