1 |
greg |
2.3 |
#ifndef lint |
2 |
greg |
2.4 |
static const char RCSid[] = "$Id: pmapbias.c,v 2.3 2015/08/18 18:45:55 greg Exp $"; |
3 |
greg |
2.3 |
#endif |
4 |
greg |
2.1 |
/* |
5 |
|
|
================================================================== |
6 |
|
|
Bias compensation for photon density estimates |
7 |
|
|
|
8 |
|
|
For background see: |
9 |
|
|
R. Schregle, "Bias Compensation for Photon Maps", |
10 |
|
|
Computer Graphics Forum, v22:n4, pp. 729-742, Dec. 2003. |
11 |
|
|
|
12 |
rschregle |
2.2 |
Roland Schregle ([email protected]) |
13 |
|
|
(c) Fraunhofer Institute for Solar Energy Systems |
14 |
greg |
2.1 |
================================================================== |
15 |
|
|
|
16 |
|
|
*/ |
17 |
|
|
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
#include "pmapbias.h" |
21 |
|
|
#include "pmap.h" |
22 |
|
|
#include "pmaprand.h" |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
|
26 |
|
|
void squeuePartition (PhotonSQNode* squeue, unsigned lo, |
27 |
|
|
unsigned mid, unsigned hi) |
28 |
|
|
/* REVERSE Partition squeue such that all photons in |
29 |
|
|
squeue-hi+1..squeue-mid are farther than the median at squeue-mid+1, |
30 |
|
|
and those in squeue-mid+2..squeue-lo+1 are closer than the median. |
31 |
|
|
This means that squeue points to the END of the queue, and the (1-based) |
32 |
|
|
indices are offsets relative to it. This convoluted scheme is adopted |
33 |
|
|
since the queue is initially a maxheap, so reverse sorting is expected |
34 |
|
|
to be faster. */ |
35 |
|
|
{ |
36 |
|
|
unsigned l, h, p; |
37 |
|
|
PhotonSQNode *lp, *hp, *pp; |
38 |
|
|
float pivot, dist; |
39 |
|
|
Photon* photon; |
40 |
|
|
|
41 |
|
|
while (hi > lo) { |
42 |
|
|
/* Grab pivot node in middle as an educated guess, since our |
43 |
|
|
queue is sorta sorted. */ |
44 |
|
|
l = lo; |
45 |
|
|
h = hi; |
46 |
|
|
p = mid; |
47 |
|
|
lp = squeue - lo + 1; |
48 |
|
|
hp = squeue - hi + 1; |
49 |
|
|
pp = squeue - p + 1; |
50 |
|
|
pivot = pp -> dist; |
51 |
|
|
|
52 |
|
|
/* l & h converge, swapping elements out of order with respect to |
53 |
|
|
pivot node. */ |
54 |
|
|
while (l < h) { |
55 |
|
|
while (lp -> dist <= pivot && l <= h && l < hi) |
56 |
|
|
++l, --lp; |
57 |
|
|
while (hp -> dist >= pivot && h >= l && h > lo) |
58 |
|
|
--h, ++hp; |
59 |
|
|
|
60 |
|
|
if (l < h) { |
61 |
|
|
/* Swap */ |
62 |
|
|
photon = lp -> photon; |
63 |
|
|
dist = lp -> dist; |
64 |
|
|
lp -> photon = hp -> photon; |
65 |
|
|
lp -> dist = hp -> dist; |
66 |
|
|
hp -> photon = photon; |
67 |
|
|
hp -> dist = dist; |
68 |
|
|
} |
69 |
|
|
} |
70 |
|
|
|
71 |
|
|
/* Swap convergence and pivot node */ |
72 |
|
|
if (p > h) { |
73 |
|
|
/* Need this otherwise shit happens! |
74 |
|
|
Since lp -> dist > hp -> dist, we swap either l or p depending |
75 |
|
|
on whether we're above or below p */ |
76 |
|
|
h = l; |
77 |
|
|
hp = lp; |
78 |
|
|
} |
79 |
|
|
|
80 |
|
|
photon = hp -> photon; |
81 |
|
|
dist = hp -> dist; |
82 |
|
|
hp -> photon = pp -> photon; |
83 |
|
|
hp -> dist = pivot; |
84 |
|
|
pp -> photon = photon; |
85 |
|
|
pp -> dist = dist; |
86 |
|
|
if (h >= mid) |
87 |
|
|
hi = h - 1; |
88 |
|
|
if (h <= mid) |
89 |
|
|
lo = h + 1; |
90 |
|
|
} |
91 |
|
|
|
92 |
|
|
/* Once lo & hi have converged, we have found the median! */ |
93 |
|
|
} |
94 |
|
|
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
void biasComp (PhotonMap* pmap, COLOR irrad) |
98 |
|
|
/* Photon density estimate with bias compensation -- czech dis shit out! */ |
99 |
|
|
{ |
100 |
|
|
unsigned i, numLo, numHi, numMid; |
101 |
|
|
PhotonSQNode *sq; |
102 |
|
|
PhotonBCNode *hist; |
103 |
|
|
float r, totalWeight = 0; |
104 |
|
|
PhotonSQNode *squeueEnd; |
105 |
|
|
PhotonBCNode *histEnd; |
106 |
|
|
COLOR fluxLo, fluxMid, irradVar, irradAvg, p, d; |
107 |
|
|
|
108 |
|
|
if (!pmap -> biasCompHist) { |
109 |
|
|
/* Allocate bias compensation history */ |
110 |
|
|
numHi = pmap -> maxGather - pmap -> minGather; |
111 |
|
|
for (i = pmap -> minGather + 1; numHi > 1; numHi >>= 1, ++i); |
112 |
|
|
pmap -> biasCompHist = (PhotonBCNode*)malloc(i * sizeof(PhotonBCNode)); |
113 |
|
|
if (!pmap -> biasCompHist) |
114 |
|
|
error(USER, "can't allocate bias compensation history"); |
115 |
|
|
} |
116 |
|
|
|
117 |
|
|
numLo = min(pmap -> minGather, pmap -> squeueEnd - 1); |
118 |
|
|
numHi = min(pmap -> maxGather, pmap -> squeueEnd - 1); |
119 |
|
|
sq = squeueEnd = pmap -> squeue + pmap -> squeueEnd - 1; |
120 |
|
|
histEnd = pmap -> biasCompHist; |
121 |
|
|
setcolor(fluxLo, 0, 0, 0); |
122 |
|
|
|
123 |
|
|
/* Partition to get numLo closest photons starting from END of queue */ |
124 |
|
|
squeuePartition(squeueEnd, 1, numLo + 1, numHi); |
125 |
|
|
|
126 |
|
|
/* Get irradiance estimates (ignoring 1 / PI) using 1..numLo photons |
127 |
|
|
and chuck in history. Queue is traversed BACKWARDS. */ |
128 |
|
|
for (i = 1; i <= numLo; i++, sq--) { |
129 |
|
|
/* Make sure furthest two photons are consecutive wrt distance */ |
130 |
|
|
squeuePartition(squeueEnd, i, i + 1, numLo + 1); |
131 |
|
|
getPhotonFlux(sq -> photon, irrad); |
132 |
|
|
addcolor(fluxLo, irrad); |
133 |
|
|
/* Average radius between furthest two photons to improve accuracy */ |
134 |
|
|
r = 0.25 * (sq -> dist + (sq - 1) -> dist + |
135 |
|
|
2 * sqrt(sq -> dist * (sq - 1) -> dist)); |
136 |
|
|
/* Add irradiance and weight to history. Weights should increase |
137 |
|
|
monotonically based on number of photons used for the estimate. */ |
138 |
|
|
histEnd -> irrad [0] = fluxLo [0] / r; |
139 |
|
|
histEnd -> irrad [1] = fluxLo [1] / r; |
140 |
|
|
histEnd -> irrad [2] = fluxLo [2] / r; |
141 |
|
|
totalWeight += histEnd++ -> weight = BIASCOMP_WGT((float)i); |
142 |
|
|
} |
143 |
|
|
|
144 |
|
|
/* Compute expected value (average) and variance of irradiance based on |
145 |
|
|
history for numLo photons. */ |
146 |
|
|
setcolor(irradAvg, 0, 0, 0); |
147 |
|
|
setcolor(irradVar, 0, 0, 0); |
148 |
|
|
|
149 |
|
|
for (hist = pmap -> biasCompHist; hist < histEnd; ++hist) |
150 |
|
|
for (i = 0; i <= 2; ++i) { |
151 |
|
|
irradAvg [i] += r = hist -> weight * hist -> irrad [i]; |
152 |
|
|
irradVar [i] += r * hist -> irrad [i]; |
153 |
|
|
} |
154 |
|
|
|
155 |
|
|
for (i = 0; i <= 2; ++i) { |
156 |
|
|
r = irradAvg [i] /= totalWeight; |
157 |
|
|
irradVar [i] = irradVar [i] / totalWeight - r * r; |
158 |
|
|
} |
159 |
|
|
|
160 |
|
|
/* Do binary search within interval [numLo, numHi]. numLo is towards |
161 |
|
|
the END of the queue. */ |
162 |
|
|
while (numHi - numLo > 1) { |
163 |
|
|
numMid = (numLo + numHi) >> 1; |
164 |
|
|
/* Split interval to get numMid closest photons starting from the |
165 |
|
|
END of the queue */ |
166 |
|
|
squeuePartition(squeueEnd, numLo, numMid, numHi); |
167 |
|
|
/* Make sure furthest two photons are consecutive wrt distance */ |
168 |
|
|
squeuePartition(squeueEnd, numMid, numMid + 1, numHi); |
169 |
|
|
copycolor(fluxMid, fluxLo); |
170 |
|
|
sq = squeueEnd - numLo; |
171 |
|
|
|
172 |
|
|
/* Get irradiance for numMid photons (ignoring 1 / PI) */ |
173 |
|
|
for (i = numLo; i < numMid; i++, sq--) { |
174 |
|
|
getPhotonFlux(sq -> photon, irrad); |
175 |
|
|
addcolor(fluxMid, irrad); |
176 |
|
|
} |
177 |
|
|
|
178 |
|
|
/* Average radius between furthest two photons to improve accuracy */ |
179 |
|
|
r = 0.25 * (sq -> dist + (sq + 1) -> dist + |
180 |
|
|
2 * sqrt(sq -> dist * (sq + 1) -> dist)); |
181 |
|
|
|
182 |
|
|
/* Get deviation from current average, and probability that it's due |
183 |
|
|
to noise from gaussian distribution based on current variance. Since |
184 |
|
|
we are doing this for each colour channel we can also detect |
185 |
|
|
chromatic bias. */ |
186 |
|
|
for (i = 0; i <= 2; ++i) { |
187 |
|
|
d [i] = irradAvg [i] - (irrad [i] = fluxMid [i] / r); |
188 |
|
|
p [i] = exp(-0.5 * d [i] * d [i] / irradVar [i]); |
189 |
|
|
} |
190 |
|
|
|
191 |
|
|
if (pmapRandom(pmap -> randState) < colorAvg(p)) { |
192 |
|
|
/* Deviation is probably noise, so add mid irradiance to history */ |
193 |
|
|
copycolor(histEnd -> irrad, irrad); |
194 |
|
|
totalWeight += histEnd++ -> weight = BIASCOMP_WGT((float)numMid); |
195 |
|
|
setcolor(irradAvg, 0, 0, 0); |
196 |
|
|
setcolor(irradVar, 0, 0, 0); |
197 |
|
|
|
198 |
|
|
/* Update average and variance */ |
199 |
|
|
for (hist = pmap -> biasCompHist; hist < histEnd; ++hist) |
200 |
|
|
for (i = 0; i <= 2; i++) { |
201 |
|
|
r = hist -> irrad [i]; |
202 |
|
|
irradAvg [i] += hist -> weight * r; |
203 |
|
|
irradVar [i] += hist -> weight * r * r; |
204 |
|
|
} |
205 |
|
|
|
206 |
|
|
for (i = 0; i <= 2; i++) { |
207 |
|
|
r = irradAvg [i] /= totalWeight; |
208 |
|
|
irradVar [i] = irradVar [i] / totalWeight - r * r; |
209 |
|
|
} |
210 |
|
|
|
211 |
|
|
/* Need more photons -- recurse on [numMid, numHi] */ |
212 |
|
|
numLo = numMid; |
213 |
|
|
copycolor(fluxLo, fluxMid); |
214 |
|
|
} |
215 |
|
|
else |
216 |
|
|
/* Deviation is probably bias -- need fewer photons, |
217 |
|
|
so recurse on [numLo, numMid] */ |
218 |
|
|
numHi = numMid; |
219 |
|
|
} |
220 |
|
|
|
221 |
|
|
--histEnd; |
222 |
|
|
for (i = 0; i <= 2; i++) { |
223 |
|
|
/* Estimated relative error */ |
224 |
|
|
d [i] = histEnd -> irrad [i] / irradAvg [i] - 1; |
225 |
|
|
|
226 |
|
|
#ifdef BIASCOMP_BWIDTH |
227 |
|
|
/* Return bandwidth instead of irradiance */ |
228 |
|
|
irrad [i] = numHi / PI; |
229 |
|
|
#else |
230 |
|
|
/* 1 / PI required as ambient normalisation factor */ |
231 |
|
|
irrad [i] = histEnd -> irrad [i] / (PI * PI); |
232 |
|
|
#endif |
233 |
|
|
} |
234 |
|
|
|
235 |
|
|
/* Update statistix */ |
236 |
|
|
r = colorAvg(d); |
237 |
|
|
if (r < pmap -> minError) |
238 |
|
|
pmap -> minError = r; |
239 |
|
|
if (r > pmap -> maxError) |
240 |
|
|
pmap -> maxError = r; |
241 |
|
|
pmap -> rmsError += r * r; |
242 |
|
|
|
243 |
|
|
if (numHi < pmap -> minGathered) |
244 |
|
|
pmap -> minGathered = numHi; |
245 |
|
|
if (numHi > pmap -> maxGathered) |
246 |
|
|
pmap -> maxGathered = numHi; |
247 |
|
|
|
248 |
|
|
pmap -> totalGathered += numHi; |
249 |
|
|
++pmap -> numDensity; |
250 |
|
|
} |
251 |
|
|
|
252 |
|
|
|
253 |
|
|
|
254 |
|
|
void volumeBiasComp (PhotonMap* pmap, const RAY* ray, COLOR irrad) |
255 |
|
|
/* Photon volume density estimate with bias compensation -- czech dis |
256 |
|
|
shit out! */ |
257 |
|
|
{ |
258 |
|
|
unsigned i, numLo, numHi, numMid = 0; |
259 |
|
|
PhotonSQNode *sq; |
260 |
|
|
PhotonBCNode *hist; |
261 |
|
|
const float gecc2 = ray -> gecc * ray -> gecc; |
262 |
|
|
float r, totalWeight = 0; |
263 |
|
|
PhotonSQNode *squeueEnd; |
264 |
|
|
PhotonBCNode *histEnd; |
265 |
|
|
COLOR fluxLo, fluxMid, irradVar, irradAvg, p, d; |
266 |
|
|
|
267 |
|
|
if (!pmap -> biasCompHist) { |
268 |
|
|
/* Allocate bias compensation history */ |
269 |
|
|
numHi = pmap -> maxGather - pmap -> minGather; |
270 |
|
|
for (i = pmap -> minGather + 1; numHi > 1; numHi >>= 1, ++i); |
271 |
|
|
pmap -> biasCompHist = (PhotonBCNode*)malloc(i * sizeof(PhotonBCNode)); |
272 |
|
|
if (!pmap -> biasCompHist) |
273 |
|
|
error(USER, "can't allocate bias compensation history"); |
274 |
|
|
} |
275 |
|
|
|
276 |
|
|
numLo = min(pmap -> minGather, pmap -> squeueEnd - 1); |
277 |
|
|
numHi = min(pmap -> maxGather, pmap -> squeueEnd - 1); |
278 |
|
|
sq = squeueEnd = pmap -> squeue + pmap -> squeueEnd - 1; |
279 |
|
|
histEnd = pmap -> biasCompHist; |
280 |
|
|
setcolor(fluxLo, 0, 0, 0); |
281 |
|
|
/* Partition to get numLo closest photons starting from END of queue */ |
282 |
|
|
squeuePartition(squeueEnd, 1, numLo, numHi); |
283 |
|
|
|
284 |
|
|
/* Get irradiance estimates (ignoring constants) using 1..numLo photons |
285 |
|
|
and chuck in history. Queue is traversed BACKWARDS. */ |
286 |
|
|
for (i = 1; i <= numLo; i++, sq--) { |
287 |
|
|
/* Make sure furthest two photons are consecutive wrt distance */ |
288 |
|
|
squeuePartition(squeueEnd, i, i + 1, numHi); |
289 |
|
|
|
290 |
|
|
/* Compute phase function for inscattering from photon */ |
291 |
|
|
if (gecc2 <= FTINY) |
292 |
|
|
r = 1; |
293 |
|
|
else { |
294 |
|
|
r = DOT(ray -> rdir, sq -> photon -> norm) / 127; |
295 |
|
|
r = 1 + gecc2 - 2 * ray -> gecc * r; |
296 |
|
|
r = (1 - gecc2) / (r * sqrt(r)); |
297 |
|
|
} |
298 |
|
|
|
299 |
|
|
getPhotonFlux(sq -> photon, irrad); |
300 |
|
|
scalecolor(irrad, r); |
301 |
|
|
addcolor(fluxLo, irrad); |
302 |
|
|
/* Average radius between furthest two photons to improve accuracy */ |
303 |
|
|
r = 0.25 * (sq -> dist + (sq - 1) -> dist + |
304 |
|
|
2 * sqrt(sq -> dist * (sq - 1) -> dist)); |
305 |
|
|
r *= sqrt(r); |
306 |
|
|
/* Add irradiance and weight to history. Weights should increase |
307 |
|
|
monotonically based on number of photons used for the estimate. */ |
308 |
|
|
histEnd -> irrad [0] = fluxLo [0] / r; |
309 |
|
|
histEnd -> irrad [1] = fluxLo [1] / r; |
310 |
|
|
histEnd -> irrad [2] = fluxLo [2] / r; |
311 |
|
|
totalWeight += histEnd++ -> weight = BIASCOMP_WGT((float)i); |
312 |
|
|
} |
313 |
|
|
|
314 |
|
|
/* Compute expected value (average) and variance of irradiance based on |
315 |
|
|
history for numLo photons. */ |
316 |
|
|
setcolor(irradAvg, 0, 0, 0); |
317 |
|
|
setcolor(irradVar, 0, 0, 0); |
318 |
|
|
|
319 |
|
|
for (hist = pmap -> biasCompHist; hist < histEnd; ++hist) |
320 |
|
|
for (i = 0; i <= 2; ++i) { |
321 |
|
|
irradAvg [i] += r = hist -> weight * hist -> irrad [i]; |
322 |
|
|
irradVar [i] += r * hist -> irrad [i]; |
323 |
|
|
} |
324 |
|
|
|
325 |
|
|
for (i = 0; i <= 2; ++i) { |
326 |
|
|
r = irradAvg [i] /= totalWeight; |
327 |
|
|
irradVar [i] = irradVar [i] / totalWeight - r * r; |
328 |
|
|
} |
329 |
|
|
|
330 |
|
|
/* Do binary search within interval [numLo, numHi]. numLo is towards |
331 |
|
|
the END of the queue. */ |
332 |
|
|
while (numHi - numLo > 1) { |
333 |
|
|
numMid = (numLo + numHi) >> 1; |
334 |
|
|
/* Split interval to get numMid closest photons starting from the |
335 |
|
|
END of the queue */ |
336 |
|
|
squeuePartition(squeueEnd, numLo, numMid, numHi); |
337 |
|
|
/* Make sure furthest two photons are consecutive wrt distance */ |
338 |
|
|
squeuePartition(squeueEnd, numMid, numMid + 1, numHi); |
339 |
|
|
copycolor(fluxMid, fluxLo); |
340 |
|
|
sq = squeueEnd - numLo; |
341 |
|
|
|
342 |
|
|
/* Get irradiance for numMid photons (ignoring constants) */ |
343 |
|
|
for (i = numLo; i < numMid; i++, sq--) { |
344 |
|
|
/* Compute phase function for inscattering from photon */ |
345 |
|
|
if (gecc2 <= FTINY) |
346 |
|
|
r = 1; |
347 |
|
|
else { |
348 |
|
|
r = DOT(ray -> rdir, sq -> photon -> norm) / 127; |
349 |
|
|
r = 1 + gecc2 - 2 * ray -> gecc * r; |
350 |
|
|
r = (1 - gecc2) / (r * sqrt(r)); |
351 |
|
|
} |
352 |
|
|
|
353 |
|
|
getPhotonFlux(sq -> photon, irrad); |
354 |
|
|
scalecolor(irrad, r); |
355 |
|
|
addcolor(fluxMid, irrad); |
356 |
|
|
} |
357 |
|
|
|
358 |
|
|
/* Average radius between furthest two photons to improve accuracy */ |
359 |
|
|
r = 0.25 * (sq -> dist + (sq + 1) -> dist + |
360 |
|
|
2 * sqrt(sq -> dist * (sq + 1) -> dist)); |
361 |
|
|
r *= sqrt(r); |
362 |
|
|
|
363 |
|
|
/* Get deviation from current average, and probability that it's due |
364 |
|
|
to noise from gaussian distribution based on current variance. Since |
365 |
|
|
we are doing this for each colour channel we can also detect |
366 |
|
|
chromatic bias. */ |
367 |
|
|
for (i = 0; i <= 2; ++i) { |
368 |
|
|
d [i] = irradAvg [i] - (irrad [i] = fluxMid [i] / r); |
369 |
|
|
p [i] = exp(-0.5 * d [i] * d [i] / irradVar [i]); |
370 |
|
|
} |
371 |
|
|
|
372 |
|
|
if (pmapRandom(pmap -> randState) < colorAvg(p)) { |
373 |
|
|
/* Deviation is probably noise, so add mid irradiance to history */ |
374 |
|
|
copycolor(histEnd -> irrad, irrad); |
375 |
|
|
totalWeight += histEnd++ -> weight = BIASCOMP_WGT((float)numMid); |
376 |
|
|
setcolor(irradAvg, 0, 0, 0); |
377 |
|
|
setcolor(irradVar, 0, 0, 0); |
378 |
|
|
|
379 |
|
|
/* Update average and variance */ |
380 |
|
|
for (hist = pmap -> biasCompHist; hist < histEnd; ++hist) |
381 |
|
|
for (i = 0; i <= 2; i++) { |
382 |
|
|
r = hist -> irrad [i]; |
383 |
|
|
irradAvg [i] += hist -> weight * r; |
384 |
|
|
irradVar [i] += hist -> weight * r * r; |
385 |
|
|
} |
386 |
|
|
for (i = 0; i <= 2; i++) { |
387 |
|
|
r = irradAvg [i] /= totalWeight; |
388 |
|
|
irradVar [i] = irradVar [i] / totalWeight - r * r; |
389 |
|
|
} |
390 |
|
|
|
391 |
|
|
/* Need more photons -- recurse on [numMid, numHi] */ |
392 |
|
|
numLo = numMid; |
393 |
|
|
copycolor(fluxLo, fluxMid); |
394 |
|
|
} |
395 |
|
|
else |
396 |
|
|
/* Deviation is probably bias -- need fewer photons, |
397 |
|
|
so recurse on [numLo, numMid] */ |
398 |
|
|
numHi = numMid; |
399 |
|
|
} |
400 |
|
|
|
401 |
|
|
--histEnd; |
402 |
|
|
for (i = 0; i <= 2; i++) { |
403 |
|
|
/* Estimated relative error */ |
404 |
|
|
d [i] = histEnd -> irrad [i] / irradAvg [i] - 1; |
405 |
|
|
/* Divide by 4 / 3 * PI for search volume (r^3 already accounted |
406 |
|
|
for) and phase function normalization factor 1 / (4 * PI) */ |
407 |
|
|
irrad [i] = histEnd -> irrad [i] * 3 / (16 * PI * PI); |
408 |
|
|
} |
409 |
|
|
|
410 |
|
|
/* Update statistix */ |
411 |
|
|
r = colorAvg(d); |
412 |
|
|
if (r < pmap -> minError) |
413 |
|
|
pmap -> minError = r; |
414 |
|
|
if (r > pmap -> maxError) |
415 |
|
|
pmap -> maxError = r; |
416 |
|
|
pmap -> rmsError += r * r; |
417 |
|
|
|
418 |
|
|
if (numMid < pmap -> minGathered) |
419 |
|
|
pmap -> minGathered = numMid; |
420 |
|
|
if (numMid > pmap -> maxGathered) |
421 |
|
|
pmap -> maxGathered = numMid; |
422 |
|
|
|
423 |
|
|
pmap -> totalGathered += numMid; |
424 |
|
|
++pmap -> numDensity; |
425 |
|
|
} |
426 |
greg |
2.3 |
|