1 |
/* |
2 |
================================================================== |
3 |
Photon map main module |
4 |
|
5 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
6 |
(c) Fraunhofer Institute for Solar Energy Systems, |
7 |
(c) Lucerne University of Applied Sciences and Arts, |
8 |
supported by the Swiss National Science Foundation (SNSF, #147053) |
9 |
================================================================== |
10 |
|
11 |
$Id: pmap.c,v 2.5 2015/05/08 13:20:23 rschregle Exp $ |
12 |
*/ |
13 |
|
14 |
|
15 |
|
16 |
#include "pmap.h" |
17 |
#include "pmapmat.h" |
18 |
#include "pmapsrc.h" |
19 |
#include "pmaprand.h" |
20 |
#include "pmapio.h" |
21 |
#include "pmapbias.h" |
22 |
#include "pmapdiag.h" |
23 |
#include "otypes.h" |
24 |
#include <time.h> |
25 |
#include <sys/stat.h> |
26 |
|
27 |
|
28 |
|
29 |
extern char *octname; |
30 |
|
31 |
static char PmapRevision [] = "$Revision: 2.5 $"; |
32 |
|
33 |
|
34 |
|
35 |
/* Photon map lookup functions per type */ |
36 |
void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = { |
37 |
photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity, |
38 |
photonDensity, NULL |
39 |
}; |
40 |
|
41 |
|
42 |
|
43 |
void colorNorm (COLOR c) |
44 |
/* Normalise colour channels to average of 1 */ |
45 |
{ |
46 |
const float avg = colorAvg(c); |
47 |
|
48 |
if (!avg) |
49 |
return; |
50 |
|
51 |
c [0] /= avg; |
52 |
c [1] /= avg; |
53 |
c [2] /= avg; |
54 |
} |
55 |
|
56 |
|
57 |
|
58 |
void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm) |
59 |
{ |
60 |
unsigned t; |
61 |
struct stat octstat, pmstat; |
62 |
PhotonMap *pm; |
63 |
PhotonMapType type; |
64 |
|
65 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
66 |
if (setPmapParam(&pm, parm + t)) { |
67 |
/* Check if photon map newer than octree */ |
68 |
if (pm -> fileName && octname && |
69 |
!stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) && |
70 |
octstat.st_mtime > pmstat.st_mtime) { |
71 |
sprintf(errmsg, "photon map in file %s may be stale", |
72 |
pm -> fileName); |
73 |
error(USER, errmsg); |
74 |
} |
75 |
|
76 |
/* Load photon map from file and get its type */ |
77 |
if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE) |
78 |
error(USER, "failed loading photon map"); |
79 |
|
80 |
/* Assign to appropriate photon map type (deleting previously |
81 |
* loaded photon map of same type if necessary) */ |
82 |
if (pmaps [type]) { |
83 |
deletePhotons(pmaps [type]); |
84 |
free(pmaps [type]); |
85 |
} |
86 |
pmaps [type] = pm; |
87 |
|
88 |
/* Check for invalid density estimate bandwidth */ |
89 |
if (pm -> maxGather > pm -> heapSize) { |
90 |
error(WARNING, "adjusting density estimate bandwidth"); |
91 |
pm -> minGather = pm -> maxGather = pm -> heapSize; |
92 |
} |
93 |
} |
94 |
} |
95 |
|
96 |
|
97 |
|
98 |
void savePmaps (const PhotonMap **pmaps, int argc, char **argv) |
99 |
{ |
100 |
unsigned t; |
101 |
|
102 |
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
103 |
if (pmaps [t]) |
104 |
savePhotonMap(pmaps [t], pmaps [t] -> fileName, t, argc, argv); |
105 |
} |
106 |
} |
107 |
|
108 |
|
109 |
|
110 |
void cleanUpPmaps (PhotonMap **pmaps) |
111 |
{ |
112 |
unsigned t; |
113 |
|
114 |
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
115 |
if (pmaps [t]) { |
116 |
deletePhotons(pmaps [t]); |
117 |
free(pmaps [t]); |
118 |
} |
119 |
} |
120 |
} |
121 |
|
122 |
|
123 |
|
124 |
static int photonParticipate (RAY *ray) |
125 |
/* Trace photon through participating medium. Returns 1 if passed through, |
126 |
or 0 if absorbed and $*%&ed. Analogon to rayparticipate(). */ |
127 |
{ |
128 |
int i; |
129 |
RREAL cosTheta, cosPhi, du, dv; |
130 |
const float cext = colorAvg(ray -> cext), |
131 |
albedo = colorAvg(ray -> albedo); |
132 |
FVECT u, v; |
133 |
COLOR cvext; |
134 |
|
135 |
/* Mean free distance until interaction with medium */ |
136 |
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
137 |
|
138 |
while (!localhit(ray, &thescene)) { |
139 |
setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]), |
140 |
exp(-ray -> rmax * ray -> cext [1]), |
141 |
exp(-ray -> rmax * ray -> cext [2])); |
142 |
|
143 |
/* Modify ray color and normalise */ |
144 |
multcolor(ray -> rcol, cvext); |
145 |
colorNorm(ray -> rcol); |
146 |
VCOPY(ray -> rorg, ray -> rop); |
147 |
|
148 |
if (albedo > FTINY) |
149 |
/* Add to volume photon map */ |
150 |
if (ray -> rlvl > 0) addPhoton(volumePmap, ray); |
151 |
|
152 |
/* Absorbed? */ |
153 |
if (pmapRandom(rouletteState) > albedo) return 0; |
154 |
|
155 |
/* Colour bleeding without attenuation (?) */ |
156 |
multcolor(ray -> rcol, ray -> albedo); |
157 |
scalecolor(ray -> rcol, 1 / albedo); |
158 |
|
159 |
/* Scatter photon */ |
160 |
cosTheta = ray -> gecc <= FTINY ? 2 * pmapRandom(scatterState) - 1 |
161 |
: 1 / (2 * ray -> gecc) * |
162 |
(1 + ray -> gecc * ray -> gecc - |
163 |
(1 - ray -> gecc * ray -> gecc) / |
164 |
(1 - ray -> gecc + 2 * ray -> gecc * |
165 |
pmapRandom(scatterState))); |
166 |
|
167 |
cosPhi = cos(2 * PI * pmapRandom(scatterState)); |
168 |
du = dv = sqrt(1 - cosTheta * cosTheta); /* sin(theta) */ |
169 |
du *= cosPhi; |
170 |
dv *= sqrt(1 - cosPhi * cosPhi); /* sin(phi) */ |
171 |
|
172 |
/* Get axes u & v perpendicular to photon direction */ |
173 |
i = 0; |
174 |
do { |
175 |
v [0] = v [1] = v [2] = 0; |
176 |
v [i++] = 1; |
177 |
fcross(u, v, ray -> rdir); |
178 |
} while (normalize(u) < FTINY); |
179 |
fcross(v, ray -> rdir, u); |
180 |
|
181 |
for (i = 0; i < 3; i++) |
182 |
ray -> rdir [i] = du * u [i] + dv * v [i] + |
183 |
cosTheta * ray -> rdir [i]; |
184 |
ray -> rlvl++; |
185 |
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
186 |
} |
187 |
|
188 |
setcolor(cvext, exp(-ray -> rot * ray -> cext [0]), |
189 |
exp(-ray -> rot * ray -> cext [1]), |
190 |
exp(-ray -> rot * ray -> cext [2])); |
191 |
|
192 |
/* Modify ray color and normalise */ |
193 |
multcolor(ray -> rcol, cvext); |
194 |
colorNorm(ray -> rcol); |
195 |
|
196 |
/* Passed through medium */ |
197 |
return 1; |
198 |
} |
199 |
|
200 |
|
201 |
|
202 |
void tracePhoton (RAY *ray) |
203 |
/* Follow photon as it bounces around... */ |
204 |
{ |
205 |
long mod; |
206 |
OBJREC* mat; |
207 |
|
208 |
if (ray -> rlvl > photonMaxBounce) { |
209 |
#ifdef PMAP_RUNAWAY_WARN |
210 |
error(WARNING, "runaway photon!"); |
211 |
#endif |
212 |
return; |
213 |
} |
214 |
|
215 |
if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) |
216 |
return; |
217 |
|
218 |
if (localhit(ray, &thescene)) { |
219 |
mod = ray -> ro -> omod; |
220 |
|
221 |
if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { |
222 |
/* Transfer ray if modifier is VOID or clipped within antimatta */ |
223 |
RAY tray; |
224 |
photonRay(ray, &tray, PMAP_XFER, NULL); |
225 |
tracePhoton(&tray); |
226 |
} |
227 |
else { |
228 |
/* Scatter for modifier material */ |
229 |
mat = objptr(mod); |
230 |
photonScatter [mat -> otype] (mat, ray); |
231 |
} |
232 |
} |
233 |
} |
234 |
|
235 |
|
236 |
|
237 |
static void preComputeGlobal (PhotonMap *pmap) |
238 |
/* Precompute irradiance from global photons for final gathering using |
239 |
the first finalGather * pmap -> heapSize photons in the heap. Returns |
240 |
new heap with precomputed photons. */ |
241 |
{ |
242 |
unsigned long i, nuHeapSize; |
243 |
unsigned j; |
244 |
Photon *nuHeap, *p; |
245 |
COLOR irrad; |
246 |
RAY ray; |
247 |
float nuMinPos [3], nuMaxPos [3]; |
248 |
|
249 |
repComplete = nuHeapSize = finalGather * pmap -> heapSize; |
250 |
|
251 |
if (photonRepTime) { |
252 |
sprintf(errmsg, |
253 |
"Precomputing irradiance for %ld global photons...\n", |
254 |
nuHeapSize); |
255 |
eputs(errmsg); |
256 |
fflush(stderr); |
257 |
} |
258 |
|
259 |
p = nuHeap = (Photon*)malloc(nuHeapSize * sizeof(Photon)); |
260 |
if (!nuHeap) |
261 |
error(USER, "can't allocate photon heap"); |
262 |
|
263 |
for (j = 0; j <= 2; j++) { |
264 |
nuMinPos [j] = FHUGE; |
265 |
nuMaxPos [j] = -FHUGE; |
266 |
} |
267 |
|
268 |
/* Record start time, baby */ |
269 |
repStartTime = time(NULL); |
270 |
#ifdef SIGCONT |
271 |
signal(SIGCONT, pmapPreCompReport); |
272 |
#endif |
273 |
repProgress = 0; |
274 |
memcpy(nuHeap, pmap -> heap, nuHeapSize * sizeof(Photon)); |
275 |
|
276 |
for (i = 0, p = nuHeap; i < nuHeapSize; i++, p++) { |
277 |
ray.ro = NULL; |
278 |
VCOPY(ray.rop, p -> pos); |
279 |
|
280 |
/* Update min and max positions & set ray normal */ |
281 |
for (j = 0; j < 3; j++) { |
282 |
if (p -> pos [j] < nuMinPos [j]) nuMinPos [j] = p -> pos [j]; |
283 |
if (p -> pos [j] > nuMaxPos [j]) nuMaxPos [j] = p -> pos [j]; |
284 |
ray.ron [j] = p -> norm [j] / 127.0; |
285 |
} |
286 |
|
287 |
photonDensity(pmap, &ray, irrad); |
288 |
setPhotonFlux(p, irrad); |
289 |
repProgress++; |
290 |
|
291 |
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
292 |
pmapPreCompReport(); |
293 |
#ifdef SIGCONT |
294 |
else signal(SIGCONT, pmapPreCompReport); |
295 |
#endif |
296 |
} |
297 |
|
298 |
#ifdef SIGCONT |
299 |
signal(SIGCONT, SIG_DFL); |
300 |
#endif |
301 |
|
302 |
/* Replace & rebuild heap */ |
303 |
free(pmap -> heap); |
304 |
pmap -> heap = nuHeap; |
305 |
pmap -> heapSize = pmap -> heapEnd = nuHeapSize; |
306 |
VCOPY(pmap -> minPos, nuMinPos); |
307 |
VCOPY(pmap -> maxPos, nuMaxPos); |
308 |
|
309 |
if (photonRepTime) { |
310 |
eputs("Rebuilding global photon heap...\n"); |
311 |
fflush(stderr); |
312 |
} |
313 |
|
314 |
balancePhotons(pmap, NULL); |
315 |
} |
316 |
|
317 |
|
318 |
|
319 |
void distribPhotons (PhotonMap **pmaps) |
320 |
{ |
321 |
EmissionMap emap; |
322 |
char errmsg2 [128]; |
323 |
unsigned t, srcIdx, passCnt = 0, prePassCnt = 0; |
324 |
double totalFlux = 0; |
325 |
PhotonMap *pm; |
326 |
|
327 |
for (t = 0; t < NUM_PMAP_TYPES && !photonMaps [t]; t++); |
328 |
if (t >= NUM_PMAP_TYPES) |
329 |
error(USER, "no photon maps defined"); |
330 |
|
331 |
if (!nsources) |
332 |
error(USER, "no light sources"); |
333 |
|
334 |
/* =================================================================== |
335 |
* INITIALISATION - Set up emission and scattering funcs |
336 |
* =================================================================== */ |
337 |
emap.samples = NULL; |
338 |
emap.maxPartitions = MAXSPART; |
339 |
emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1); |
340 |
if (!emap.partitions) |
341 |
error(INTERNAL, "can't allocate source partitions"); |
342 |
|
343 |
/* Initialise all defined photon maps */ |
344 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
345 |
initPhotonMap(photonMaps [t], t); |
346 |
|
347 |
initPhotonEmissionFuncs(); |
348 |
initPhotonScatterFuncs(); |
349 |
|
350 |
/* Get photon ports if specified */ |
351 |
if (ambincl == 1) |
352 |
getPhotonPorts(); |
353 |
|
354 |
/* Get photon sensor modifiers */ |
355 |
getPhotonSensors(photonSensorList); |
356 |
|
357 |
/* Seed RNGs for photon distribution */ |
358 |
pmapSeed(randSeed, partState); |
359 |
pmapSeed(randSeed, emitState); |
360 |
pmapSeed(randSeed, cntState); |
361 |
pmapSeed(randSeed, mediumState); |
362 |
pmapSeed(randSeed, scatterState); |
363 |
pmapSeed(randSeed, rouletteState); |
364 |
|
365 |
if (photonRepTime) |
366 |
eputs("\n"); |
367 |
|
368 |
/* =================================================================== |
369 |
* FLUX INTEGRATION - Get total photon flux from light sources |
370 |
* =================================================================== */ |
371 |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
372 |
unsigned portCnt = 0; |
373 |
emap.src = source + srcIdx; |
374 |
|
375 |
do { |
376 |
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
377 |
: NULL; |
378 |
photonPartition [emap.src -> so -> otype] (&emap); |
379 |
|
380 |
if (photonRepTime) { |
381 |
sprintf(errmsg, "Integrating flux from source %s ", |
382 |
source [srcIdx].so -> oname); |
383 |
|
384 |
if (emap.port) { |
385 |
sprintf(errmsg2, "via port %s ", |
386 |
photonPorts [portCnt].so -> oname); |
387 |
strcat(errmsg, errmsg2); |
388 |
} |
389 |
|
390 |
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
391 |
strcat(errmsg, errmsg2); |
392 |
eputs(errmsg); |
393 |
fflush(stderr); |
394 |
} |
395 |
|
396 |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
397 |
emap.partitionCnt++) { |
398 |
initPhotonEmission(&emap, pdfSamples); |
399 |
totalFlux += colorAvg(emap.partFlux); |
400 |
} |
401 |
|
402 |
portCnt++; |
403 |
} while (portCnt < numPhotonPorts); |
404 |
} |
405 |
|
406 |
if (totalFlux < FTINY) |
407 |
error(USER, "zero flux from light sources"); |
408 |
|
409 |
/* Record start time and enable progress report signal handler */ |
410 |
repStartTime = time(NULL); |
411 |
#ifdef SIGCONT |
412 |
signal(SIGCONT, pmapDistribReport); |
413 |
#endif |
414 |
repProgress = prePassCnt = 0; |
415 |
|
416 |
if (photonRepTime) |
417 |
eputs("\n"); |
418 |
|
419 |
/* =================================================================== |
420 |
* 2-PASS PHOTON DISTRIBUTION |
421 |
* Pass 1 (pre): emit fraction of target photon count |
422 |
* Pass 2 (main): based on outcome of pass 1, estimate remaining number |
423 |
* of photons to emit to approximate target count |
424 |
* =================================================================== */ |
425 |
do { |
426 |
double numEmit; |
427 |
|
428 |
if (!passCnt) { |
429 |
/* INIT PASS 1 */ |
430 |
/* Skip if no photons contributed after sufficient iterations; make |
431 |
* it clear to user which photon maps are missing so (s)he can |
432 |
* check the scene geometry and materials */ |
433 |
if (++prePassCnt > maxPreDistrib) { |
434 |
sprintf(errmsg, "too many prepasses"); |
435 |
|
436 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
437 |
if (photonMaps [t] && !photonMaps [t] -> heapEnd) { |
438 |
sprintf(errmsg2, ", no %s photons stored", pmapName [t]); |
439 |
strcat(errmsg, errmsg2); |
440 |
} |
441 |
|
442 |
error(USER, errmsg); |
443 |
break; |
444 |
} |
445 |
|
446 |
/* Num to emit is fraction of minimum target count */ |
447 |
numEmit = FHUGE; |
448 |
|
449 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
450 |
if (photonMaps [t]) |
451 |
numEmit = min(photonMaps [t] -> distribTarget, numEmit); |
452 |
|
453 |
numEmit *= preDistrib; |
454 |
} |
455 |
|
456 |
else { |
457 |
/* INIT PASS 2 */ |
458 |
/* Based on the outcome of the predistribution we can now estimate |
459 |
* how many more photons we have to emit for each photon map to |
460 |
* meet its respective target count. This value is clamped to 0 in |
461 |
* case the target has already been exceeded in the pass 1. Note |
462 |
* repProgress is the number of photons emitted thus far, while |
463 |
* heapEnd is the number of photons stored in each photon map. */ |
464 |
double maxDistribRatio = 0; |
465 |
|
466 |
/* Set the distribution ratio for each map; this indicates how many |
467 |
* photons of each respective type are stored per emitted photon, |
468 |
* and is used as probability for storing a photon by addPhoton(). |
469 |
* Since this biases the photon density, addPhoton() promotes the |
470 |
* flux of stored photons to compensate. */ |
471 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
472 |
if ((pm = photonMaps [t])) { |
473 |
pm -> distribRatio = (double)pm -> distribTarget / |
474 |
pm -> heapEnd - 1; |
475 |
|
476 |
/* Check if photon map "overflowed", i.e. exceeded its target |
477 |
* count in the prepass; correcting the photon flux via the |
478 |
* distribution ratio is no longer possible, as no more |
479 |
* photons of this type will be stored, so notify the user |
480 |
* rather than deliver incorrect results. |
481 |
* In future we should handle this more intelligently by |
482 |
* using the photonFlux in each photon map to individually |
483 |
* correct the flux after distribution. */ |
484 |
if (pm -> distribRatio <= FTINY) { |
485 |
sprintf(errmsg, |
486 |
"%s photon map overflow in prepass, reduce -apD", |
487 |
pmapName [t]); |
488 |
error(INTERNAL, errmsg); |
489 |
} |
490 |
|
491 |
maxDistribRatio = max(pm -> distribRatio, maxDistribRatio); |
492 |
} |
493 |
|
494 |
/* Normalise distribution ratios and calculate number of photons to |
495 |
* emit in main pass */ |
496 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
497 |
if ((pm = photonMaps [t])) |
498 |
pm -> distribRatio /= maxDistribRatio; |
499 |
|
500 |
if ((numEmit = repProgress * maxDistribRatio) < FTINY) |
501 |
/* No photons left to distribute in main pass */ |
502 |
break; |
503 |
} |
504 |
|
505 |
/* Set completion count for progress report */ |
506 |
repComplete = numEmit + repProgress; |
507 |
|
508 |
/* PHOTON DISTRIBUTION LOOP */ |
509 |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
510 |
unsigned portCnt = 0; |
511 |
emap.src = source + srcIdx; |
512 |
|
513 |
do { |
514 |
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
515 |
: NULL; |
516 |
photonPartition [emap.src -> so -> otype] (&emap); |
517 |
|
518 |
if (photonRepTime) { |
519 |
if (!passCnt) |
520 |
sprintf(errmsg, "PREPASS %d on source %s ", |
521 |
prePassCnt, source [srcIdx].so -> oname); |
522 |
else |
523 |
sprintf(errmsg, "MAIN PASS on source %s ", |
524 |
source [srcIdx].so -> oname); |
525 |
|
526 |
if (emap.port) { |
527 |
sprintf(errmsg2, "via port %s ", |
528 |
photonPorts [portCnt].so -> oname); |
529 |
strcat(errmsg, errmsg2); |
530 |
} |
531 |
|
532 |
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
533 |
strcat(errmsg, errmsg2); |
534 |
eputs(errmsg); |
535 |
fflush(stderr); |
536 |
} |
537 |
|
538 |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
539 |
emap.partitionCnt++) { |
540 |
double partNumEmit; |
541 |
unsigned long partEmitCnt; |
542 |
|
543 |
/* Get photon origin within current source partishunn and |
544 |
* build emission map */ |
545 |
photonOrigin [emap.src -> so -> otype] (&emap); |
546 |
initPhotonEmission(&emap, pdfSamples); |
547 |
|
548 |
/* Number of photons to emit from ziss partishunn -- |
549 |
* proportional to flux; photon ray weight and scalar flux |
550 |
* are uniform (the latter only varying in RGB). */ |
551 |
partNumEmit = numEmit * colorAvg(emap.partFlux) / totalFlux; |
552 |
partEmitCnt = (unsigned long)partNumEmit; |
553 |
|
554 |
/* Probabilistically account for fractional photons */ |
555 |
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
556 |
partEmitCnt++; |
557 |
|
558 |
/* Integer counter avoids FP rounding errors */ |
559 |
while (partEmitCnt--) { |
560 |
RAY photonRay; |
561 |
|
562 |
/* Emit photon based on PDF and trace through scene until |
563 |
* absorbed/leaked */ |
564 |
emitPhoton(&emap, &photonRay); |
565 |
tracePhoton(&photonRay); |
566 |
|
567 |
/* Record progress */ |
568 |
repProgress++; |
569 |
|
570 |
if (photonRepTime > 0 && |
571 |
time(NULL) >= repLastTime + photonRepTime) |
572 |
pmapDistribReport(); |
573 |
#ifdef SIGCONT |
574 |
else signal(SIGCONT, pmapDistribReport); |
575 |
#endif |
576 |
} |
577 |
} |
578 |
|
579 |
portCnt++; |
580 |
} while (portCnt < numPhotonPorts); |
581 |
} |
582 |
|
583 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
584 |
if (photonMaps [t] && !photonMaps [t] -> heapEnd) { |
585 |
/* Double preDistrib in case a photon map is empty and redo |
586 |
* pass 1 --> possibility of infinite loop for pathological |
587 |
* scenes (e.g. absorbing materials) */ |
588 |
preDistrib *= 2; |
589 |
break; |
590 |
} |
591 |
|
592 |
if (t >= NUM_PMAP_TYPES) { |
593 |
/* No empty photon maps found; now do pass 2 */ |
594 |
passCnt++; |
595 |
if (photonRepTime) |
596 |
eputs("\n"); |
597 |
} |
598 |
} while (passCnt < 2); |
599 |
|
600 |
/* =================================================================== |
601 |
* POST-DISTRIBUTION - Set photon flux and build kd-tree, etc. |
602 |
* =================================================================== */ |
603 |
#ifdef SIGCONT |
604 |
signal(SIGCONT, SIG_DFL); |
605 |
#endif |
606 |
free(emap.samples); |
607 |
|
608 |
/* Set photon flux (repProgress is total num emitted) */ |
609 |
totalFlux /= repProgress; |
610 |
|
611 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
612 |
if (photonMaps [t]) { |
613 |
if (photonRepTime) { |
614 |
sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]); |
615 |
eputs(errmsg); |
616 |
fflush(stderr); |
617 |
} |
618 |
|
619 |
balancePhotons(photonMaps [t], &totalFlux); |
620 |
} |
621 |
|
622 |
/* Precompute photon irradiance if necessary */ |
623 |
if (preCompPmap) |
624 |
preComputeGlobal(preCompPmap); |
625 |
} |
626 |
|
627 |
|
628 |
|
629 |
void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
630 |
/* Photon density estimate. Returns irradiance at ray -> rop. */ |
631 |
{ |
632 |
unsigned i; |
633 |
PhotonSQNode *sq; |
634 |
float r; |
635 |
COLOR flux; |
636 |
|
637 |
setcolor(irrad, 0, 0, 0); |
638 |
|
639 |
if (!pmap -> maxGather) |
640 |
return; |
641 |
|
642 |
/* Ignore sources */ |
643 |
if (ray -> ro) |
644 |
if (islight(objptr(ray -> ro -> omod) -> otype)) |
645 |
return; |
646 |
|
647 |
pmap -> squeueEnd = 0; |
648 |
findPhotons(pmap, ray); |
649 |
|
650 |
/* Need at least 2 photons */ |
651 |
if (pmap -> squeueEnd < 2) { |
652 |
#ifdef PMAP_NONEFOUND |
653 |
sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", |
654 |
ray -> ro ? ray -> ro -> oname : "<null>", |
655 |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
656 |
error(WARNING, errmsg); |
657 |
#endif |
658 |
|
659 |
return; |
660 |
} |
661 |
|
662 |
if (pmap -> minGather == pmap -> maxGather) { |
663 |
/* No bias compensation. Just do a plain vanilla estimate */ |
664 |
sq = pmap -> squeue + 1; |
665 |
|
666 |
/* Average radius between furthest two photons to improve accuracy */ |
667 |
r = max(sq -> dist, (sq + 1) -> dist); |
668 |
r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r)); |
669 |
|
670 |
/* Skip the extra photon */ |
671 |
for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) { |
672 |
getPhotonFlux(sq -> photon, flux); |
673 |
#ifdef PMAP_EPANECHNIKOV |
674 |
/* Apply Epanechnikov kernel to photon flux (dists are squared) */ |
675 |
scalecolor(flux, 2 * (1 - sq -> dist / r)); |
676 |
#endif |
677 |
addcolor(irrad, flux); |
678 |
} |
679 |
|
680 |
/* Divide by search area PI * r^2, 1 / PI required as ambient |
681 |
normalisation factor */ |
682 |
scalecolor(irrad, 1 / (PI * PI * r)); |
683 |
|
684 |
return; |
685 |
} |
686 |
else |
687 |
/* Apply bias compensation to density estimate */ |
688 |
biasComp(pmap, irrad); |
689 |
} |
690 |
|
691 |
|
692 |
|
693 |
void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad) |
694 |
/* Returns precomputed photon density estimate at ray -> rop. */ |
695 |
{ |
696 |
Photon *p; |
697 |
|
698 |
setcolor(irrad, 0, 0, 0); |
699 |
|
700 |
/* Ignore sources */ |
701 |
if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) |
702 |
return; |
703 |
|
704 |
if ((p = find1Photon(preCompPmap, r))) |
705 |
getPhotonFlux(p, irrad); |
706 |
} |
707 |
|
708 |
|
709 |
|
710 |
void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
711 |
/* Photon volume density estimate. Returns irradiance at ray -> rop. */ |
712 |
{ |
713 |
unsigned i; |
714 |
PhotonSQNode *sq; |
715 |
float gecc2, r, ph; |
716 |
COLOR flux; |
717 |
|
718 |
setcolor(irrad, 0, 0, 0); |
719 |
|
720 |
if (!pmap -> maxGather) |
721 |
return; |
722 |
|
723 |
pmap -> squeueEnd = 0; |
724 |
findPhotons(pmap, ray); |
725 |
|
726 |
/* Need at least 2 photons */ |
727 |
if (pmap -> squeueEnd < 2) |
728 |
return; |
729 |
|
730 |
if (pmap -> minGather == pmap -> maxGather) { |
731 |
/* No bias compensation. Just do a plain vanilla estimate */ |
732 |
gecc2 = ray -> gecc * ray -> gecc; |
733 |
sq = pmap -> squeue + 1; |
734 |
|
735 |
/* Average radius between furthest two photons to improve accuracy */ |
736 |
r = max(sq -> dist, (sq + 1) -> dist); |
737 |
r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r)); |
738 |
|
739 |
/* Skip the extra photon */ |
740 |
for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) { |
741 |
/* Compute phase function for inscattering from photon */ |
742 |
if (gecc2 <= FTINY) |
743 |
ph = 1; |
744 |
else { |
745 |
ph = DOT(ray -> rdir, sq -> photon -> norm) / 127; |
746 |
ph = 1 + gecc2 - 2 * ray -> gecc * ph; |
747 |
ph = (1 - gecc2) / (ph * sqrt(ph)); |
748 |
} |
749 |
|
750 |
getPhotonFlux(sq -> photon, flux); |
751 |
scalecolor(flux, ph); |
752 |
addcolor(irrad, flux); |
753 |
} |
754 |
|
755 |
/* Divide by search volume 4 / 3 * PI * r^3 and phase function |
756 |
normalization factor 1 / (4 * PI) */ |
757 |
scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r))); |
758 |
|
759 |
return; |
760 |
} |
761 |
|
762 |
else |
763 |
/* Apply bias compensation to density estimate */ |
764 |
volumeBiasComp(pmap, ray, irrad); |
765 |
} |