1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: pmap.c,v 2.15 2018/06/07 19:26:04 rschregle Exp $"; |
3 |
#endif |
4 |
|
5 |
|
6 |
/* |
7 |
====================================================================== |
8 |
Photon map main module |
9 |
|
10 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
11 |
(c) Fraunhofer Institute for Solar Energy Systems, |
12 |
(c) Lucerne University of Applied Sciences and Arts, |
13 |
supported by the Swiss National Science Foundation (SNSF, #147053) |
14 |
====================================================================== |
15 |
|
16 |
$Id: pmap.c,v 2.15 2018/06/07 19:26:04 rschregle Exp $ |
17 |
*/ |
18 |
|
19 |
|
20 |
#include "pmap.h" |
21 |
#include "pmapmat.h" |
22 |
#include "pmapsrc.h" |
23 |
#include "pmaprand.h" |
24 |
#include "pmapio.h" |
25 |
#include "pmapbias.h" |
26 |
#include "pmapdiag.h" |
27 |
#include "otypes.h" |
28 |
#include <time.h> |
29 |
#if NIX |
30 |
#include <sys/stat.h> |
31 |
#include <sys/mman.h> |
32 |
#include <sys/wait.h> |
33 |
#endif |
34 |
|
35 |
|
36 |
void savePmaps (const PhotonMap **pmaps, int argc, char **argv) |
37 |
{ |
38 |
unsigned t; |
39 |
|
40 |
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
41 |
if (pmaps [t]) |
42 |
savePhotonMap(pmaps [t], pmaps [t] -> fileName, argc, argv); |
43 |
} |
44 |
} |
45 |
|
46 |
|
47 |
|
48 |
static int photonParticipate (RAY *ray) |
49 |
/* Trace photon through participating medium. Returns 1 if passed through, |
50 |
or 0 if absorbed and $*%&ed. Analogon to rayparticipate(). */ |
51 |
{ |
52 |
int i; |
53 |
RREAL cosTheta, cosPhi, du, dv; |
54 |
const float cext = colorAvg(ray -> cext), |
55 |
albedo = colorAvg(ray -> albedo), |
56 |
gecc2 = ray -> gecc * ray -> gecc; |
57 |
FVECT u, v; |
58 |
COLOR cvext; |
59 |
|
60 |
/* Mean free distance until interaction with medium */ |
61 |
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
62 |
|
63 |
while (!localhit(ray, &thescene)) { |
64 |
if (!incube(&thescene, ray -> rop)) { |
65 |
/* Terminate photon if it has leaked from the scene */ |
66 |
#ifdef DEBUG_PMAP |
67 |
fprintf(stderr, |
68 |
"Volume photon leaked from scene at [%.3f %.3f %.3f]\n", |
69 |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
70 |
#endif |
71 |
return 0; |
72 |
} |
73 |
|
74 |
setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]), |
75 |
exp(-ray -> rmax * ray -> cext [1]), |
76 |
exp(-ray -> rmax * ray -> cext [2])); |
77 |
|
78 |
/* Modify ray color and normalise */ |
79 |
multcolor(ray -> rcol, cvext); |
80 |
colorNorm(ray -> rcol); |
81 |
VCOPY(ray -> rorg, ray -> rop); |
82 |
|
83 |
#if 0 |
84 |
if (albedo > FTINY && ray -> rlvl > 0) |
85 |
#else |
86 |
/* Store volume photons unconditionally in mist to also account for |
87 |
direct inscattering from sources */ |
88 |
if (albedo > FTINY) |
89 |
#endif |
90 |
/* Add to volume photon map */ |
91 |
newPhoton(volumePmap, ray); |
92 |
|
93 |
/* Absorbed? */ |
94 |
if (pmapRandom(rouletteState) > albedo) |
95 |
return 0; |
96 |
|
97 |
/* Colour bleeding without attenuation (?) */ |
98 |
multcolor(ray -> rcol, ray -> albedo); |
99 |
scalecolor(ray -> rcol, 1 / albedo); |
100 |
|
101 |
/* Scatter photon */ |
102 |
cosTheta = ray -> gecc <= FTINY |
103 |
? 2 * pmapRandom(scatterState) - 1 |
104 |
: 0.5 * (1 + gecc2 - |
105 |
(1 - gecc2) / (1 - ray -> gecc + 2 * ray -> gecc * |
106 |
pmapRandom(scatterState))) / ray -> gecc; |
107 |
|
108 |
cosPhi = cos(2 * PI * pmapRandom(scatterState)); |
109 |
du = dv = sqrt(1 - cosTheta * cosTheta); /* sin(theta) */ |
110 |
du *= cosPhi; |
111 |
dv *= sqrt(1 - cosPhi * cosPhi); /* sin(phi) */ |
112 |
|
113 |
/* Get axes u & v perpendicular to photon direction */ |
114 |
i = 0; |
115 |
do { |
116 |
v [0] = v [1] = v [2] = 0; |
117 |
v [i++] = 1; |
118 |
fcross(u, v, ray -> rdir); |
119 |
} while (normalize(u) < FTINY); |
120 |
fcross(v, ray -> rdir, u); |
121 |
|
122 |
for (i = 0; i < 3; i++) |
123 |
ray -> rdir [i] = du * u [i] + dv * v [i] + |
124 |
cosTheta * ray -> rdir [i]; |
125 |
ray -> rlvl++; |
126 |
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
127 |
} |
128 |
|
129 |
/* Passed through medium until intersecting local object */ |
130 |
setcolor(cvext, exp(-ray -> rot * ray -> cext [0]), |
131 |
exp(-ray -> rot * ray -> cext [1]), |
132 |
exp(-ray -> rot * ray -> cext [2])); |
133 |
|
134 |
/* Modify ray color and normalise */ |
135 |
multcolor(ray -> rcol, cvext); |
136 |
colorNorm(ray -> rcol); |
137 |
|
138 |
return 1; |
139 |
} |
140 |
|
141 |
|
142 |
|
143 |
void tracePhoton (RAY *ray) |
144 |
/* Follow photon as it bounces around... */ |
145 |
{ |
146 |
long mod; |
147 |
OBJREC *mat, *port = NULL; |
148 |
|
149 |
if (!ray -> parent) { |
150 |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: get photon port for |
151 |
* !!! primary ray from ray -> ro, then reset the latter to NULL so |
152 |
* !!! as not to interfere with localhit() */ |
153 |
port = ray -> ro; |
154 |
ray -> ro = NULL; |
155 |
} |
156 |
|
157 |
if (ray -> rlvl > photonMaxBounce) { |
158 |
#ifdef PMAP_RUNAWAY_WARN |
159 |
error(WARNING, "runaway photon!"); |
160 |
#endif |
161 |
return; |
162 |
} |
163 |
|
164 |
if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) |
165 |
return; |
166 |
|
167 |
if (localhit(ray, &thescene)) { |
168 |
mod = ray -> ro -> omod; |
169 |
|
170 |
if (port && ray -> ro != port) { |
171 |
/* !!! PHOTON PORT REJECTION SAMPLING HACK !!! |
172 |
* Terminate photon if emitted from port without intersecting it; |
173 |
* this can happen when the port's partitions extend beyond its |
174 |
* actual geometry, e.g. with polygons. Since the total flux |
175 |
* relayed by the port is based on the (in this case) larger |
176 |
* partition area, it is overestimated; terminating these photons |
177 |
* constitutes rejection sampling and thereby compensates any bias |
178 |
* incurred by the overestimated flux. */ |
179 |
#ifdef PMAP_PORTREJECT_WARN |
180 |
sprintf(errmsg, "photon outside port %s", ray -> ro -> oname); |
181 |
error(WARNING, errmsg); |
182 |
#endif |
183 |
return; |
184 |
} |
185 |
|
186 |
if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { |
187 |
/* Transfer ray if modifier is VOID or clipped within antimatta */ |
188 |
RAY tray; |
189 |
photonRay(ray, &tray, PMAP_XFER, NULL); |
190 |
tracePhoton(&tray); |
191 |
} |
192 |
else { |
193 |
/* Scatter for modifier material */ |
194 |
mat = objptr(mod); |
195 |
photonScatter [mat -> otype] (mat, ray); |
196 |
} |
197 |
} |
198 |
} |
199 |
|
200 |
|
201 |
|
202 |
static void preComputeGlobal (PhotonMap *pmap) |
203 |
/* Precompute irradiance from global photons for final gathering for |
204 |
a random subset of finalGather * pmap -> numPhotons photons, and builds |
205 |
the photon map, discarding the original photons. */ |
206 |
/* !!! NOTE: PRECOMPUTATION WITH OOC CURRENTLY WITHOUT CACHE !!! */ |
207 |
{ |
208 |
unsigned long i, numPreComp; |
209 |
unsigned j; |
210 |
PhotonIdx pIdx; |
211 |
Photon photon; |
212 |
RAY ray; |
213 |
PhotonMap nuPmap; |
214 |
|
215 |
repComplete = numPreComp = finalGather * pmap -> numPhotons; |
216 |
|
217 |
if (verbose) { |
218 |
sprintf(errmsg, |
219 |
"\nPrecomputing irradiance for %ld global photons\n", |
220 |
numPreComp); |
221 |
eputs(errmsg); |
222 |
#if NIX |
223 |
fflush(stderr); |
224 |
#endif |
225 |
} |
226 |
|
227 |
/* Copy photon map for precomputed photons */ |
228 |
memcpy(&nuPmap, pmap, sizeof(PhotonMap)); |
229 |
|
230 |
/* Zero counters, init new heap and extents */ |
231 |
nuPmap.numPhotons = 0; |
232 |
initPhotonHeap(&nuPmap); |
233 |
|
234 |
for (j = 0; j < 3; j++) { |
235 |
nuPmap.minPos [j] = FHUGE; |
236 |
nuPmap.maxPos [j] = -FHUGE; |
237 |
} |
238 |
|
239 |
/* Record start time, baby */ |
240 |
repStartTime = time(NULL); |
241 |
#ifdef SIGCONT |
242 |
signal(SIGCONT, pmapPreCompReport); |
243 |
#endif |
244 |
repProgress = 0; |
245 |
|
246 |
photonRay(NULL, &ray, PRIMARY, NULL); |
247 |
ray.ro = NULL; |
248 |
|
249 |
for (i = 0; i < numPreComp; i++) { |
250 |
/* Get random photon from stratified distribution in source heap to |
251 |
* avoid duplicates and clustering */ |
252 |
pIdx = firstPhoton(pmap) + |
253 |
(unsigned long)((i + pmapRandom(pmap -> randState)) / |
254 |
finalGather); |
255 |
getPhoton(pmap, pIdx, &photon); |
256 |
|
257 |
/* Init dummy photon ray with intersection at photon position */ |
258 |
VCOPY(ray.rop, photon.pos); |
259 |
for (j = 0; j < 3; j++) |
260 |
ray.ron [j] = photon.norm [j] / 127.0; |
261 |
|
262 |
/* Get density estimate at photon position */ |
263 |
photonDensity(pmap, &ray, ray.rcol); |
264 |
|
265 |
/* Append photon to new heap from ray */ |
266 |
newPhoton(&nuPmap, &ray); |
267 |
|
268 |
/* Update progress */ |
269 |
repProgress++; |
270 |
|
271 |
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
272 |
pmapPreCompReport(); |
273 |
#ifdef SIGCONT |
274 |
else signal(SIGCONT, pmapPreCompReport); |
275 |
#endif |
276 |
} |
277 |
|
278 |
/* Flush heap */ |
279 |
flushPhotonHeap(&nuPmap); |
280 |
|
281 |
#ifdef SIGCONT |
282 |
signal(SIGCONT, SIG_DFL); |
283 |
#endif |
284 |
|
285 |
/* Trash original pmap, replace with precomputed one */ |
286 |
deletePhotons(pmap); |
287 |
memcpy(pmap, &nuPmap, sizeof(PhotonMap)); |
288 |
|
289 |
if (verbose) { |
290 |
eputs("\nRebuilding precomputed photon map\n"); |
291 |
#if NIX |
292 |
fflush(stderr); |
293 |
#endif |
294 |
} |
295 |
|
296 |
/* Rebuild underlying data structure, destroying heap */ |
297 |
buildPhotonMap(pmap, NULL, NULL, 1); |
298 |
} |
299 |
|
300 |
|
301 |
|
302 |
typedef struct { |
303 |
unsigned long numPhotons [NUM_PMAP_TYPES], |
304 |
numEmitted, numComplete; |
305 |
} PhotonCnt; |
306 |
|
307 |
|
308 |
|
309 |
void distribPhotons (PhotonMap **pmaps, unsigned numProc) |
310 |
{ |
311 |
EmissionMap emap; |
312 |
char errmsg2 [128], shmFname [PMAP_TMPFNLEN]; |
313 |
unsigned t, srcIdx, proc; |
314 |
double totalFlux = 0; |
315 |
int shmFile, stat, pid; |
316 |
PhotonMap *pm; |
317 |
PhotonCnt *photonCnt; |
318 |
|
319 |
for (t = 0; t < NUM_PMAP_TYPES && !pmaps [t]; t++); |
320 |
|
321 |
if (t >= NUM_PMAP_TYPES) |
322 |
error(USER, "no photon maps defined in distribPhotons"); |
323 |
|
324 |
if (!nsources) |
325 |
error(USER, "no light sources in distribPhotons"); |
326 |
|
327 |
/* =================================================================== |
328 |
* INITIALISATION - Set up emission and scattering funcs |
329 |
* =================================================================== */ |
330 |
emap.samples = NULL; |
331 |
emap.maxPartitions = MAXSPART; |
332 |
emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1); |
333 |
if (!emap.partitions) |
334 |
error(INTERNAL, "can't allocate source partitions in distribPhotons"); |
335 |
|
336 |
/* Initialise all defined photon maps */ |
337 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
338 |
if (pmaps [t]) { |
339 |
initPhotonMap(pmaps [t], t); |
340 |
/* Open photon heapfile */ |
341 |
initPhotonHeap(pmaps [t]); |
342 |
/* Per-subprocess target count */ |
343 |
pmaps [t] -> distribTarget /= numProc; |
344 |
|
345 |
if (!pmaps [t] -> distribTarget) |
346 |
error(INTERNAL, "no photons to distribute in distribPhotons"); |
347 |
} |
348 |
|
349 |
initPhotonEmissionFuncs(); |
350 |
initPhotonScatterFuncs(); |
351 |
|
352 |
/* Get photon ports from modifier list */ |
353 |
getPhotonPorts(photonPortList); |
354 |
|
355 |
/* Get photon sensor modifiers */ |
356 |
getPhotonSensors(photonSensorList); |
357 |
|
358 |
#if NIX |
359 |
/* Set up shared mem for photon counters (zeroed by ftruncate) */ |
360 |
strcpy(shmFname, PMAP_TMPFNAME); |
361 |
shmFile = mkstemp(shmFname); |
362 |
|
363 |
if (shmFile < 0 || ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
364 |
error(SYSTEM, "failed shared mem init in distribPhotons"); |
365 |
|
366 |
photonCnt = mmap(NULL, sizeof(*photonCnt), PROT_READ | PROT_WRITE, |
367 |
MAP_SHARED, shmFile, 0); |
368 |
|
369 |
if (photonCnt == MAP_FAILED) |
370 |
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
371 |
#else |
372 |
/* Allocate photon counters statically on Windoze */ |
373 |
if (!(photonCnt = malloc(sizeof(PhotonCnt)))) |
374 |
error(SYSTEM, "failed trivial malloc in distribPhotons"); |
375 |
photonCnt -> numEmitted = photonCnt -> numComplete = 0; |
376 |
#endif /* NIX */ |
377 |
|
378 |
if (verbose) { |
379 |
sprintf(errmsg, "\nIntegrating flux from %d sources", nsources); |
380 |
|
381 |
if (photonPorts) { |
382 |
sprintf(errmsg2, " via %d ports", numPhotonPorts); |
383 |
strcat(errmsg, errmsg2); |
384 |
} |
385 |
|
386 |
strcat(errmsg, "\n"); |
387 |
eputs(errmsg); |
388 |
} |
389 |
|
390 |
/* =================================================================== |
391 |
* FLUX INTEGRATION - Get total photon flux from light sources |
392 |
* =================================================================== */ |
393 |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
394 |
unsigned portCnt = 0; |
395 |
emap.src = source + srcIdx; |
396 |
|
397 |
do { /* Need at least one iteration if no ports! */ |
398 |
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
399 |
: NULL; |
400 |
photonPartition [emap.src -> so -> otype] (&emap); |
401 |
|
402 |
if (verbose) { |
403 |
sprintf(errmsg, "\tIntegrating flux from source %s ", |
404 |
source [srcIdx].so -> oname); |
405 |
|
406 |
if (emap.port) { |
407 |
sprintf(errmsg2, "via port %s ", |
408 |
photonPorts [portCnt].so -> oname); |
409 |
strcat(errmsg, errmsg2); |
410 |
} |
411 |
|
412 |
sprintf(errmsg2, "(%lu partitions)\n", emap.numPartitions); |
413 |
strcat(errmsg, errmsg2); |
414 |
eputs(errmsg); |
415 |
#if NIX |
416 |
fflush(stderr); |
417 |
#endif |
418 |
} |
419 |
|
420 |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
421 |
emap.partitionCnt++) { |
422 |
initPhotonEmission(&emap, pdfSamples); |
423 |
totalFlux += colorAvg(emap.partFlux); |
424 |
} |
425 |
|
426 |
portCnt++; |
427 |
} while (portCnt < numPhotonPorts); |
428 |
} |
429 |
|
430 |
if (totalFlux < FTINY) |
431 |
error(USER, "zero flux from light sources"); |
432 |
|
433 |
/* Record start time for progress reports */ |
434 |
repStartTime = time(NULL); |
435 |
|
436 |
if (verbose) { |
437 |
sprintf(errmsg, "\nPhoton distribution @ %d procs\n", numProc); |
438 |
eputs(errmsg); |
439 |
} |
440 |
|
441 |
/* MAIN LOOP */ |
442 |
for (proc = 0; proc < numProc; proc++) { |
443 |
#if NIX |
444 |
if (!(pid = fork())) { |
445 |
/* SUBPROCESS ENTERS HERE; open and mmapped files inherited */ |
446 |
#else |
447 |
if (1) { |
448 |
/* No subprocess under Windoze */ |
449 |
#endif |
450 |
/* Local photon counters for this subprocess */ |
451 |
unsigned passCnt = 0, prePassCnt = 0; |
452 |
unsigned long lastNumPhotons [NUM_PMAP_TYPES]; |
453 |
unsigned long localNumEmitted = 0; /* Num photons emitted by this |
454 |
subprocess alone */ |
455 |
|
456 |
/* Seed RNGs from PID for decorellated photon distribution */ |
457 |
pmapSeed(randSeed + proc, partState); |
458 |
pmapSeed(randSeed + (proc + 1) % numProc, emitState); |
459 |
pmapSeed(randSeed + (proc + 2) % numProc, cntState); |
460 |
pmapSeed(randSeed + (proc + 3) % numProc, mediumState); |
461 |
pmapSeed(randSeed + (proc + 4) % numProc, scatterState); |
462 |
pmapSeed(randSeed + (proc + 5) % numProc, rouletteState); |
463 |
|
464 |
#ifdef DEBUG_PMAP |
465 |
/* Output child process PID after random delay to prevent corrupted |
466 |
* console output due to race condition */ |
467 |
usleep(1e6 * pmapRandom(rouletteState)); |
468 |
fprintf(stderr, "Proc %d: PID = %d " |
469 |
"(waiting 10 sec to attach debugger...)\n", |
470 |
proc, getpid()); |
471 |
/* Allow time for debugger to attach to child process */ |
472 |
sleep(10); |
473 |
#endif |
474 |
|
475 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
476 |
lastNumPhotons [t] = 0; |
477 |
|
478 |
/* ============================================================= |
479 |
* 2-PASS PHOTON DISTRIBUTION |
480 |
* Pass 1 (pre): emit fraction of target photon count |
481 |
* Pass 2 (main): based on outcome of pass 1, estimate remaining |
482 |
* number of photons to emit to approximate target |
483 |
* count |
484 |
* ============================================================= */ |
485 |
do { |
486 |
double numEmit; |
487 |
|
488 |
if (!passCnt) { |
489 |
/* INIT PASS 1 */ |
490 |
/* Skip if no photons contributed after sufficient |
491 |
* iterations; make it clear to user which photon maps are |
492 |
* missing so (s)he can check geometry and materials */ |
493 |
if (++prePassCnt > maxPreDistrib) { |
494 |
sprintf(errmsg, "proc %d: too many prepasses", proc); |
495 |
|
496 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
497 |
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
498 |
sprintf(errmsg2, ", no %s photons stored", |
499 |
pmapName [t]); |
500 |
strcat(errmsg, errmsg2); |
501 |
} |
502 |
|
503 |
error(USER, errmsg); |
504 |
break; |
505 |
} |
506 |
|
507 |
/* Num to emit is fraction of minimum target count */ |
508 |
numEmit = FHUGE; |
509 |
|
510 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
511 |
if (pmaps [t]) |
512 |
numEmit = min(pmaps [t] -> distribTarget, numEmit); |
513 |
|
514 |
numEmit *= preDistrib; |
515 |
} |
516 |
else { |
517 |
/* INIT PASS 2 */ |
518 |
/* Based on the outcome of the predistribution we can now |
519 |
* estimate how many more photons we have to emit for each |
520 |
* photon map to meet its respective target count. This |
521 |
* value is clamped to 0 in case the target has already been |
522 |
* exceeded in the pass 1. */ |
523 |
double maxDistribRatio = 0; |
524 |
|
525 |
/* Set the distribution ratio for each map; this indicates |
526 |
* how many photons of each respective type are stored per |
527 |
* emitted photon, and is used as probability for storing a |
528 |
* photon by newPhoton(). Since this biases the photon |
529 |
* density, newPhoton() promotes the flux of stored photons |
530 |
* to compensate. */ |
531 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
532 |
if ((pm = pmaps [t])) { |
533 |
pm -> distribRatio = (double)pm -> distribTarget / |
534 |
pm -> numPhotons - 1; |
535 |
|
536 |
/* Check if photon map "overflowed", i.e. exceeded its |
537 |
* target count in the prepass; correcting the photon |
538 |
* flux via the distribution ratio is no longer |
539 |
* possible, as no more photons of this type will be |
540 |
* stored, so notify the user rather than deliver |
541 |
* incorrect results. In future we should handle this |
542 |
* more intelligently by using the photonFlux in each |
543 |
* photon map to individually correct the flux after |
544 |
* distribution. */ |
545 |
if (pm -> distribRatio <= FTINY) { |
546 |
sprintf(errmsg, "%s photon map overflow in " |
547 |
"prepass, reduce -apD", pmapName [t]); |
548 |
error(INTERNAL, errmsg); |
549 |
} |
550 |
|
551 |
maxDistribRatio = max(pm -> distribRatio, |
552 |
maxDistribRatio); |
553 |
} |
554 |
|
555 |
/* Normalise distribution ratios and calculate number of |
556 |
* photons to emit in main pass */ |
557 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
558 |
if ((pm = pmaps [t])) |
559 |
pm -> distribRatio /= maxDistribRatio; |
560 |
|
561 |
if ((numEmit = localNumEmitted * maxDistribRatio) < FTINY) |
562 |
/* No photons left to distribute in main pass */ |
563 |
break; |
564 |
} |
565 |
|
566 |
/* Update shared completion counter for progreport by parent */ |
567 |
photonCnt -> numComplete += numEmit; |
568 |
|
569 |
/* PHOTON DISTRIBUTION LOOP */ |
570 |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
571 |
unsigned portCnt = 0; |
572 |
emap.src = source + srcIdx; |
573 |
|
574 |
do { /* Need at least one iteration if no ports! */ |
575 |
emap.port = emap.src -> sflags & SDISTANT |
576 |
? photonPorts + portCnt : NULL; |
577 |
photonPartition [emap.src -> so -> otype] (&emap); |
578 |
|
579 |
if (verbose && !proc) { |
580 |
/* Output from subproc 0 only to avoid race condition |
581 |
* on console I/O */ |
582 |
if (!passCnt) |
583 |
sprintf(errmsg, "\tPREPASS %d on source %s ", |
584 |
prePassCnt, source [srcIdx].so -> oname); |
585 |
else |
586 |
sprintf(errmsg, "\tMAIN PASS on source %s ", |
587 |
source [srcIdx].so -> oname); |
588 |
|
589 |
if (emap.port) { |
590 |
sprintf(errmsg2, "via port %s ", |
591 |
photonPorts [portCnt].so -> oname); |
592 |
strcat(errmsg, errmsg2); |
593 |
} |
594 |
|
595 |
sprintf(errmsg2, "(%lu partitions)\n", |
596 |
emap.numPartitions); |
597 |
strcat(errmsg, errmsg2); |
598 |
eputs(errmsg); |
599 |
#if NIX |
600 |
fflush(stderr); |
601 |
#endif |
602 |
} |
603 |
|
604 |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
605 |
emap.partitionCnt++) { |
606 |
double partNumEmit; |
607 |
unsigned long partEmitCnt; |
608 |
|
609 |
/* Get photon origin within current source partishunn |
610 |
* and build emission map */ |
611 |
photonOrigin [emap.src -> so -> otype] (&emap); |
612 |
initPhotonEmission(&emap, pdfSamples); |
613 |
|
614 |
/* Number of photons to emit from ziss partishunn -- |
615 |
* proportional to flux; photon ray weight and scalar |
616 |
* flux are uniform (latter only varying in RGB). */ |
617 |
partNumEmit = numEmit * colorAvg(emap.partFlux) / |
618 |
totalFlux; |
619 |
partEmitCnt = (unsigned long)partNumEmit; |
620 |
|
621 |
/* Probabilistically account for fractional photons */ |
622 |
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
623 |
partEmitCnt++; |
624 |
|
625 |
/* Update local and shared (global) emission counter */ |
626 |
photonCnt -> numEmitted += partEmitCnt; |
627 |
localNumEmitted += partEmitCnt; |
628 |
|
629 |
/* Integer counter avoids FP rounding errors during |
630 |
* iteration */ |
631 |
while (partEmitCnt--) { |
632 |
RAY photonRay; |
633 |
|
634 |
/* Emit photon based on PDF and trace through scene |
635 |
* until absorbed/leaked */ |
636 |
emitPhoton(&emap, &photonRay); |
637 |
#if 1 |
638 |
if (emap.port) |
639 |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: set |
640 |
* !!! photon port as fake hit object for |
641 |
* !!! primary ray to check for intersection in |
642 |
* !!! tracePhoton() */ |
643 |
photonRay.ro = emap.port -> so; |
644 |
#endif |
645 |
tracePhoton(&photonRay); |
646 |
} |
647 |
|
648 |
/* Update shared global photon count for each pmap */ |
649 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
650 |
if (pmaps [t]) { |
651 |
photonCnt -> numPhotons [t] += |
652 |
pmaps [t] -> numPhotons - lastNumPhotons [t]; |
653 |
lastNumPhotons [t] = pmaps [t] -> numPhotons; |
654 |
} |
655 |
#if !NIX |
656 |
/* Synchronous progress report on Windoze */ |
657 |
if (!proc && photonRepTime > 0 && |
658 |
time(NULL) >= repLastTime + photonRepTime) { |
659 |
repEmitted = repProgress = photonCnt -> numEmitted; |
660 |
repComplete = photonCnt -> numComplete; |
661 |
pmapDistribReport(); |
662 |
} |
663 |
#endif |
664 |
} |
665 |
|
666 |
portCnt++; |
667 |
} while (portCnt < numPhotonPorts); |
668 |
} |
669 |
|
670 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
671 |
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
672 |
/* Double preDistrib in case a photon map is empty and |
673 |
* redo pass 1 --> possibility of infinite loop for |
674 |
* pathological scenes (e.g. absorbing materials) */ |
675 |
preDistrib *= 2; |
676 |
break; |
677 |
} |
678 |
|
679 |
if (t >= NUM_PMAP_TYPES) |
680 |
/* No empty photon maps found; now do pass 2 */ |
681 |
passCnt++; |
682 |
} while (passCnt < 2); |
683 |
|
684 |
/* Flush heap buffa for every pmap one final time; |
685 |
* avoids potential data corruption! */ |
686 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
687 |
if (pmaps [t]) { |
688 |
flushPhotonHeap(pmaps [t]); |
689 |
/* Heap file closed automatically on exit |
690 |
fclose(pmaps [t] -> heap); */ |
691 |
#ifdef DEBUG_PMAP |
692 |
sprintf(errmsg, "Proc %d: total %ld photons\n", proc, |
693 |
pmaps [t] -> numPhotons); |
694 |
eputs(errmsg); |
695 |
#endif |
696 |
} |
697 |
#if NIX |
698 |
/* Terminate subprocess */ |
699 |
exit(0); |
700 |
#endif |
701 |
} |
702 |
else if (pid < 0) |
703 |
error(SYSTEM, "failed to fork subprocess in distribPhotons"); |
704 |
} |
705 |
|
706 |
#if NIX |
707 |
/* PARENT PROCESS CONTINUES HERE */ |
708 |
#ifdef SIGCONT |
709 |
/* Enable progress report signal handler */ |
710 |
signal(SIGCONT, pmapDistribReport); |
711 |
#endif |
712 |
/* Wait for subprocesses complete while reporting progress */ |
713 |
proc = numProc; |
714 |
while (proc) { |
715 |
while (waitpid(-1, &stat, WNOHANG) > 0) { |
716 |
/* Subprocess exited; check status */ |
717 |
if (!WIFEXITED(stat) || WEXITSTATUS(stat)) |
718 |
error(USER, "failed photon distribution"); |
719 |
|
720 |
--proc; |
721 |
} |
722 |
|
723 |
/* Nod off for a bit and update progress */ |
724 |
sleep(1); |
725 |
|
726 |
/* Asynchronous progress report from shared subprocess counters */ |
727 |
repEmitted = repProgress = photonCnt -> numEmitted; |
728 |
repComplete = photonCnt -> numComplete; |
729 |
|
730 |
repProgress = repComplete = 0; |
731 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
732 |
if ((pm = pmaps [t])) { |
733 |
/* Get global photon count from shmem updated by subprocs */ |
734 |
repProgress += pm -> numPhotons = photonCnt -> numPhotons [t]; |
735 |
repComplete += pm -> distribTarget; |
736 |
} |
737 |
repComplete *= numProc; |
738 |
|
739 |
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
740 |
pmapDistribReport(); |
741 |
#ifdef SIGCONT |
742 |
else signal(SIGCONT, pmapDistribReport); |
743 |
#endif |
744 |
} |
745 |
#endif /* NIX */ |
746 |
|
747 |
/* =================================================================== |
748 |
* POST-DISTRIBUTION - Set photon flux and build data struct for photon |
749 |
* storage, etc. |
750 |
* =================================================================== */ |
751 |
#ifdef SIGCONT |
752 |
/* Reset signal handler */ |
753 |
signal(SIGCONT, SIG_DFL); |
754 |
#endif |
755 |
free(emap.samples); |
756 |
|
757 |
/* Set photon flux */ |
758 |
totalFlux /= photonCnt -> numEmitted; |
759 |
#if NIX |
760 |
/* Photon counters no longer needed, unmap shared memory */ |
761 |
munmap(photonCnt, sizeof(*photonCnt)); |
762 |
close(shmFile); |
763 |
unlink(shmFname); |
764 |
#else |
765 |
free(photonCnt); |
766 |
#endif |
767 |
if (verbose) |
768 |
eputs("\n"); |
769 |
|
770 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
771 |
if (pmaps [t]) { |
772 |
if (verbose) { |
773 |
sprintf(errmsg, "Building %s photon map\n", pmapName [t]); |
774 |
eputs(errmsg); |
775 |
#if NIX |
776 |
fflush(stderr); |
777 |
#endif |
778 |
} |
779 |
|
780 |
/* Build underlying data structure; heap is destroyed */ |
781 |
buildPhotonMap(pmaps [t], &totalFlux, NULL, numProc); |
782 |
} |
783 |
|
784 |
/* Precompute photon irradiance if necessary */ |
785 |
if (preCompPmap) { |
786 |
if (verbose) |
787 |
eputs("\n"); |
788 |
preComputeGlobal(preCompPmap); |
789 |
} |
790 |
|
791 |
if (verbose) |
792 |
eputs("\n"); |
793 |
} |