2 |
|
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
|
|
5 |
+ |
|
6 |
|
/* |
7 |
|
====================================================================== |
8 |
|
Photon map main module |
17 |
|
*/ |
18 |
|
|
19 |
|
|
19 |
– |
|
20 |
|
#include "pmap.h" |
21 |
|
#include "pmapmat.h" |
22 |
|
#include "pmapsrc.h" |
26 |
|
#include "pmapdiag.h" |
27 |
|
#include "otypes.h" |
28 |
|
#include <time.h> |
29 |
< |
#include <sys/stat.h> |
30 |
< |
#include <sys/mman.h> |
31 |
< |
#include <sys/wait.h> |
29 |
> |
#if NIX |
30 |
> |
#include <sys/stat.h> |
31 |
> |
#include <sys/mman.h> |
32 |
> |
#include <sys/wait.h> |
33 |
> |
#endif |
34 |
|
|
33 |
– |
#define PMAP_REV "$Revision$" |
35 |
|
|
35 |
– |
|
36 |
– |
extern char *octname; |
37 |
– |
|
38 |
– |
|
39 |
– |
|
40 |
– |
/* Photon map lookup functions per type */ |
41 |
– |
void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = { |
42 |
– |
photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity, |
43 |
– |
photonDensity, NULL |
44 |
– |
}; |
45 |
– |
|
46 |
– |
|
47 |
– |
|
48 |
– |
void colorNorm (COLOR c) |
49 |
– |
/* Normalise colour channels to average of 1 */ |
50 |
– |
{ |
51 |
– |
const float avg = colorAvg(c); |
52 |
– |
|
53 |
– |
if (!avg) |
54 |
– |
return; |
55 |
– |
|
56 |
– |
c [0] /= avg; |
57 |
– |
c [1] /= avg; |
58 |
– |
c [2] /= avg; |
59 |
– |
} |
60 |
– |
|
61 |
– |
|
62 |
– |
|
63 |
– |
void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm) |
64 |
– |
{ |
65 |
– |
unsigned t; |
66 |
– |
struct stat octstat, pmstat; |
67 |
– |
PhotonMap *pm; |
68 |
– |
PhotonMapType type; |
69 |
– |
|
70 |
– |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
71 |
– |
if (setPmapParam(&pm, parm + t)) { |
72 |
– |
/* Check if photon map newer than octree */ |
73 |
– |
if (pm -> fileName && octname && |
74 |
– |
!stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) && |
75 |
– |
octstat.st_mtime > pmstat.st_mtime) { |
76 |
– |
sprintf(errmsg, "photon map in file %s may be stale", |
77 |
– |
pm -> fileName); |
78 |
– |
error(USER, errmsg); |
79 |
– |
} |
80 |
– |
|
81 |
– |
/* Load photon map from file and get its type */ |
82 |
– |
if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE) |
83 |
– |
error(USER, "failed loading photon map"); |
84 |
– |
|
85 |
– |
/* Assign to appropriate photon map type (deleting previously |
86 |
– |
* loaded photon map of same type if necessary) */ |
87 |
– |
if (pmaps [type]) { |
88 |
– |
deletePhotons(pmaps [type]); |
89 |
– |
free(pmaps [type]); |
90 |
– |
} |
91 |
– |
pmaps [type] = pm; |
92 |
– |
|
93 |
– |
/* Check for invalid density estimate bandwidth */ |
94 |
– |
if (pm -> maxGather > pm -> numPhotons) { |
95 |
– |
error(WARNING, "adjusting density estimate bandwidth"); |
96 |
– |
pm -> minGather = pm -> maxGather = pm -> numPhotons; |
97 |
– |
} |
98 |
– |
} |
99 |
– |
} |
100 |
– |
|
101 |
– |
|
102 |
– |
|
36 |
|
void savePmaps (const PhotonMap **pmaps, int argc, char **argv) |
37 |
|
{ |
38 |
|
unsigned t; |
44 |
|
} |
45 |
|
|
46 |
|
|
114 |
– |
|
115 |
– |
void cleanUpPmaps (PhotonMap **pmaps) |
116 |
– |
{ |
117 |
– |
unsigned t; |
118 |
– |
|
119 |
– |
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
120 |
– |
if (pmaps [t]) { |
121 |
– |
deletePhotons(pmaps [t]); |
122 |
– |
free(pmaps [t]); |
123 |
– |
} |
124 |
– |
} |
125 |
– |
} |
126 |
– |
|
127 |
– |
|
47 |
|
|
48 |
|
static int photonParticipate (RAY *ray) |
49 |
|
/* Trace photon through participating medium. Returns 1 if passed through, |
128 |
|
/* Follow photon as it bounces around... */ |
129 |
|
{ |
130 |
|
long mod; |
131 |
< |
OBJREC* mat; |
131 |
> |
OBJREC *mat, *port = NULL; |
132 |
> |
|
133 |
> |
if (!ray -> parent) { |
134 |
> |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: get photon port for |
135 |
> |
* !!! primary ray from ray -> ro, then reset the latter to NULL so |
136 |
> |
* !!! as not to interfere with localhit() */ |
137 |
> |
port = ray -> ro; |
138 |
> |
ray -> ro = NULL; |
139 |
> |
} |
140 |
|
|
141 |
|
if (ray -> rlvl > photonMaxBounce) { |
142 |
|
#ifdef PMAP_RUNAWAY_WARN |
147 |
|
|
148 |
|
if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) |
149 |
|
return; |
150 |
< |
|
150 |
> |
|
151 |
|
if (localhit(ray, &thescene)) { |
152 |
|
mod = ray -> ro -> omod; |
153 |
< |
|
153 |
> |
|
154 |
> |
if (port && ray -> ro != port) { |
155 |
> |
/* !!! PHOTON PORT REJECTION SAMPLING HACK !!! |
156 |
> |
* Terminate photon if emitted from port without intersecting it; |
157 |
> |
* this can happen when the port's partitions extend beyond its |
158 |
> |
* actual geometry, e.g. with polygons. Since the total flux |
159 |
> |
* relayed by the port is based on the (in this case) larger |
160 |
> |
* partition area, it is overestimated; terminating these photons |
161 |
> |
* constitutes rejection sampling and thereby compensates any bias |
162 |
> |
* incurred by the overestimated flux. */ |
163 |
> |
#ifdef PMAP_PORTREJECT_WARN |
164 |
> |
sprintf(errmsg, "photon outside port %s", ray -> ro -> oname); |
165 |
> |
error(WARNING, errmsg); |
166 |
> |
#endif |
167 |
> |
return; |
168 |
> |
} |
169 |
> |
|
170 |
|
if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { |
171 |
|
/* Transfer ray if modifier is VOID or clipped within antimatta */ |
172 |
|
RAY tray; |
198 |
|
|
199 |
|
repComplete = numPreComp = finalGather * pmap -> numPhotons; |
200 |
|
|
201 |
< |
if (photonRepTime) { |
202 |
< |
sprintf(errmsg, "Precomputing irradiance for %ld global photons...\n", |
201 |
> |
if (verbose) { |
202 |
> |
sprintf(errmsg, |
203 |
> |
"\nPrecomputing irradiance for %ld global photons\n", |
204 |
|
numPreComp); |
205 |
|
eputs(errmsg); |
206 |
+ |
#if NIX |
207 |
|
fflush(stderr); |
208 |
+ |
#endif |
209 |
|
} |
210 |
|
|
211 |
|
/* Copy photon map for precomputed photons */ |
232 |
|
|
233 |
|
for (i = 0; i < numPreComp; i++) { |
234 |
|
/* Get random photon from stratified distribution in source heap to |
235 |
< |
* avoid duplicates and clutering */ |
235 |
> |
* avoid duplicates and clustering */ |
236 |
|
pIdx = firstPhoton(pmap) + |
237 |
|
(unsigned long)((i + pmapRandom(pmap -> randState)) / |
238 |
|
finalGather); |
270 |
|
deletePhotons(pmap); |
271 |
|
memcpy(pmap, &nuPmap, sizeof(PhotonMap)); |
272 |
|
|
273 |
< |
if (photonRepTime) { |
274 |
< |
eputs("Rebuilding precomputed photon map...\n"); |
273 |
> |
if (verbose) { |
274 |
> |
eputs("\nRebuilding precomputed photon map\n"); |
275 |
> |
#if NIX |
276 |
|
fflush(stderr); |
277 |
+ |
#endif |
278 |
|
} |
279 |
|
|
280 |
|
/* Rebuild underlying data structure, destroying heap */ |
293 |
|
void distribPhotons (PhotonMap **pmaps, unsigned numProc) |
294 |
|
{ |
295 |
|
EmissionMap emap; |
296 |
< |
char errmsg2 [128], shmFname [255]; |
296 |
> |
char errmsg2 [128], shmFname [PMAP_TMPFNLEN]; |
297 |
|
unsigned t, srcIdx, proc; |
298 |
|
double totalFlux = 0; |
299 |
|
int shmFile, stat, pid; |
325 |
|
initPhotonHeap(pmaps [t]); |
326 |
|
/* Per-subprocess target count */ |
327 |
|
pmaps [t] -> distribTarget /= numProc; |
328 |
+ |
|
329 |
+ |
if (!pmaps [t] -> distribTarget) |
330 |
+ |
error(INTERNAL, "no photons to distribute in distribPhotons"); |
331 |
|
} |
332 |
|
|
333 |
|
initPhotonEmissionFuncs(); |
340 |
|
/* Get photon sensor modifiers */ |
341 |
|
getPhotonSensors(photonSensorList); |
342 |
|
|
343 |
+ |
#if NIX |
344 |
|
/* Set up shared mem for photon counters (zeroed by ftruncate) */ |
345 |
< |
#if 0 |
394 |
< |
snprintf(shmFname, 255, PMAP_SHMFNAME, getpid()); |
395 |
< |
shmFile = shm_open(shmFname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); |
396 |
< |
#else |
397 |
< |
strcpy(shmFname, PMAP_SHMFNAME); |
345 |
> |
strcpy(shmFname, PMAP_TMPFNAME); |
346 |
|
shmFile = mkstemp(shmFname); |
399 |
– |
#endif |
347 |
|
|
348 |
< |
if (shmFile < 0) |
349 |
< |
error(SYSTEM, "failed opening shared memory file in distribPhotons"); |
348 |
> |
if (shmFile < 0 || ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
349 |
> |
error(SYSTEM, "failed shared mem init in distribPhotons"); |
350 |
|
|
404 |
– |
if (ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
405 |
– |
error(SYSTEM, "failed setting shared memory size in distribPhotons"); |
406 |
– |
|
351 |
|
photonCnt = mmap(NULL, sizeof(*photonCnt), PROT_READ | PROT_WRITE, |
352 |
|
MAP_SHARED, shmFile, 0); |
353 |
|
|
354 |
|
if (photonCnt == MAP_FAILED) |
355 |
< |
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
355 |
> |
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
356 |
> |
#else |
357 |
> |
/* Allocate photon counters statically on Windoze */ |
358 |
> |
if (!(photonCnt = malloc(sizeof(PhotonCnt)))) |
359 |
> |
error(SYSTEM, "failed trivial malloc in distribPhotons"); |
360 |
> |
photonCnt -> numEmitted = photonCnt -> numComplete = 0; |
361 |
> |
#endif /* NIX */ |
362 |
|
|
363 |
< |
if (photonRepTime) |
364 |
< |
eputs("\n"); |
363 |
> |
if (verbose) { |
364 |
> |
sprintf(errmsg, "\nIntegrating flux from %d sources", nsources); |
365 |
> |
|
366 |
> |
if (photonPorts) { |
367 |
> |
sprintf(errmsg2, " via %d ports", numPhotonPorts); |
368 |
> |
strcat(errmsg, errmsg2); |
369 |
> |
} |
370 |
> |
|
371 |
> |
strcat(errmsg, "\n"); |
372 |
> |
eputs(errmsg); |
373 |
> |
} |
374 |
|
|
375 |
|
/* =================================================================== |
376 |
|
* FLUX INTEGRATION - Get total photon flux from light sources |
384 |
|
: NULL; |
385 |
|
photonPartition [emap.src -> so -> otype] (&emap); |
386 |
|
|
387 |
< |
if (photonRepTime) { |
388 |
< |
sprintf(errmsg, "Integrating flux from source %s ", |
387 |
> |
if (verbose) { |
388 |
> |
sprintf(errmsg, "\tIntegrating flux from source %s ", |
389 |
|
source [srcIdx].so -> oname); |
390 |
< |
|
390 |
> |
|
391 |
|
if (emap.port) { |
392 |
|
sprintf(errmsg2, "via port %s ", |
393 |
|
photonPorts [portCnt].so -> oname); |
394 |
|
strcat(errmsg, errmsg2); |
395 |
|
} |
396 |
< |
|
397 |
< |
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
396 |
> |
|
397 |
> |
sprintf(errmsg2, "(%lu partitions)\n", emap.numPartitions); |
398 |
|
strcat(errmsg, errmsg2); |
399 |
|
eputs(errmsg); |
400 |
+ |
#if NIX |
401 |
|
fflush(stderr); |
402 |
+ |
#endif |
403 |
|
} |
404 |
|
|
405 |
|
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
414 |
|
|
415 |
|
if (totalFlux < FTINY) |
416 |
|
error(USER, "zero flux from light sources"); |
417 |
+ |
|
418 |
+ |
/* Record start time for progress reports */ |
419 |
+ |
repStartTime = time(NULL); |
420 |
|
|
421 |
+ |
if (verbose) { |
422 |
+ |
sprintf(errmsg, "\nPhoton distribution @ %d procs\n", numProc); |
423 |
+ |
eputs(errmsg); |
424 |
+ |
} |
425 |
+ |
|
426 |
|
/* MAIN LOOP */ |
427 |
|
for (proc = 0; proc < numProc; proc++) { |
428 |
+ |
#if NIX |
429 |
|
if (!(pid = fork())) { |
430 |
< |
/* SUBPROCESS ENTERS HERE. |
431 |
< |
All opened and memory mapped files are inherited */ |
430 |
> |
/* SUBPROCESS ENTERS HERE; open and mmapped files inherited */ |
431 |
> |
#else |
432 |
> |
if (1) { |
433 |
> |
/* No subprocess under Windoze */ |
434 |
> |
#endif |
435 |
> |
/* Local photon counters for this subprocess */ |
436 |
|
unsigned passCnt = 0, prePassCnt = 0; |
437 |
|
unsigned long lastNumPhotons [NUM_PMAP_TYPES]; |
438 |
|
unsigned long localNumEmitted = 0; /* Num photons emitted by this |
440 |
|
|
441 |
|
/* Seed RNGs from PID for decorellated photon distribution */ |
442 |
|
pmapSeed(randSeed + proc, partState); |
443 |
< |
pmapSeed(randSeed + proc, emitState); |
444 |
< |
pmapSeed(randSeed + proc, cntState); |
445 |
< |
pmapSeed(randSeed + proc, mediumState); |
446 |
< |
pmapSeed(randSeed + proc, scatterState); |
447 |
< |
pmapSeed(randSeed + proc, rouletteState); |
443 |
> |
pmapSeed(randSeed + (proc + 1) % numProc, emitState); |
444 |
> |
pmapSeed(randSeed + (proc + 2) % numProc, cntState); |
445 |
> |
pmapSeed(randSeed + (proc + 3) % numProc, mediumState); |
446 |
> |
pmapSeed(randSeed + (proc + 4) % numProc, scatterState); |
447 |
> |
pmapSeed(randSeed + (proc + 5) % numProc, rouletteState); |
448 |
|
|
449 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
450 |
|
lastNumPhotons [t] = 0; |
465 |
|
* iterations; make it clear to user which photon maps are |
466 |
|
* missing so (s)he can check geometry and materials */ |
467 |
|
if (++prePassCnt > maxPreDistrib) { |
468 |
< |
sprintf(errmsg, |
495 |
< |
"proc %d, source %s: too many prepasses", |
496 |
< |
proc, source [srcIdx].so -> oname); |
468 |
> |
sprintf(errmsg, "proc %d: too many prepasses", proc); |
469 |
|
|
470 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
471 |
|
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
537 |
|
break; |
538 |
|
} |
539 |
|
|
540 |
< |
/* Update shared completion counter for prog.report by parent */ |
540 |
> |
/* Update shared completion counter for progreport by parent */ |
541 |
|
photonCnt -> numComplete += numEmit; |
542 |
|
|
543 |
|
/* PHOTON DISTRIBUTION LOOP */ |
550 |
|
? photonPorts + portCnt : NULL; |
551 |
|
photonPartition [emap.src -> so -> otype] (&emap); |
552 |
|
|
553 |
< |
if (photonRepTime && !proc) { |
553 |
> |
if (verbose && !proc) { |
554 |
> |
/* Output from subproc 0 only to avoid race condition |
555 |
> |
* on console I/O */ |
556 |
|
if (!passCnt) |
557 |
< |
sprintf(errmsg, "PREPASS %d on source %s ", |
557 |
> |
sprintf(errmsg, "\tPREPASS %d on source %s ", |
558 |
|
prePassCnt, source [srcIdx].so -> oname); |
559 |
|
else |
560 |
< |
sprintf(errmsg, "MAIN PASS on source %s ", |
560 |
> |
sprintf(errmsg, "\tMAIN PASS on source %s ", |
561 |
|
source [srcIdx].so -> oname); |
562 |
< |
|
562 |
> |
|
563 |
|
if (emap.port) { |
564 |
|
sprintf(errmsg2, "via port %s ", |
565 |
|
photonPorts [portCnt].so -> oname); |
566 |
|
strcat(errmsg, errmsg2); |
567 |
|
} |
568 |
< |
|
568 |
> |
|
569 |
|
sprintf(errmsg2, "(%lu partitions)\n", |
570 |
|
emap.numPartitions); |
571 |
|
strcat(errmsg, errmsg2); |
572 |
|
eputs(errmsg); |
573 |
+ |
#if NIX |
574 |
|
fflush(stderr); |
575 |
+ |
#endif |
576 |
|
} |
577 |
|
|
578 |
|
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
587 |
|
|
588 |
|
/* Number of photons to emit from ziss partishunn -- |
589 |
|
* proportional to flux; photon ray weight and scalar |
590 |
< |
* flux are uniform (the latter only varying in RGB). |
615 |
< |
* */ |
590 |
> |
* flux are uniform (latter only varying in RGB). */ |
591 |
|
partNumEmit = numEmit * colorAvg(emap.partFlux) / |
592 |
|
totalFlux; |
593 |
|
partEmitCnt = (unsigned long)partNumEmit; |
608 |
|
/* Emit photon based on PDF and trace through scene |
609 |
|
* until absorbed/leaked */ |
610 |
|
emitPhoton(&emap, &photonRay); |
611 |
+ |
#if 1 |
612 |
+ |
if (emap.port) |
613 |
+ |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: set |
614 |
+ |
* !!! photon port as fake hit object for |
615 |
+ |
* !!! primary ray to check for intersection in |
616 |
+ |
* !!! tracePhoton() */ |
617 |
+ |
photonRay.ro = emap.port -> so; |
618 |
+ |
#endif |
619 |
|
tracePhoton(&photonRay); |
620 |
|
} |
621 |
< |
|
621 |
> |
|
622 |
|
/* Update shared global photon count for each pmap */ |
623 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
624 |
|
if (pmaps [t]) { |
626 |
|
pmaps [t] -> numPhotons - lastNumPhotons [t]; |
627 |
|
lastNumPhotons [t] = pmaps [t] -> numPhotons; |
628 |
|
} |
629 |
+ |
#if !NIX |
630 |
+ |
/* Synchronous progress report on Windoze */ |
631 |
+ |
if (!proc && photonRepTime > 0 && |
632 |
+ |
time(NULL) >= repLastTime + photonRepTime) { |
633 |
+ |
repEmitted = repProgress = photonCnt -> numEmitted; |
634 |
+ |
repComplete = photonCnt -> numComplete; |
635 |
+ |
pmapDistribReport(); |
636 |
+ |
} |
637 |
+ |
#endif |
638 |
|
} |
639 |
|
|
640 |
|
portCnt++; |
650 |
|
break; |
651 |
|
} |
652 |
|
|
653 |
< |
if (t >= NUM_PMAP_TYPES) { |
653 |
> |
if (t >= NUM_PMAP_TYPES) |
654 |
|
/* No empty photon maps found; now do pass 2 */ |
655 |
|
passCnt++; |
664 |
– |
#if 0 |
665 |
– |
if (photonRepTime) |
666 |
– |
eputs("\n"); |
667 |
– |
#endif |
668 |
– |
} |
656 |
|
} while (passCnt < 2); |
657 |
|
|
658 |
< |
/* Unmap shared photon counters */ |
659 |
< |
#if 0 |
673 |
< |
munmap(photonCnt, sizeof(*photonCnt)); |
674 |
< |
close(shmFile); |
675 |
< |
#endif |
676 |
< |
|
677 |
< |
/* Flush heap buffa for every pmap one final time; this is required |
678 |
< |
* to prevent data corruption! */ |
658 |
> |
/* Flush heap buffa for every pmap one final time; |
659 |
> |
* avoids potential data corruption! */ |
660 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
661 |
|
if (pmaps [t]) { |
681 |
– |
#if 0 |
682 |
– |
eputs("Final flush\n"); |
683 |
– |
#endif |
662 |
|
flushPhotonHeap(pmaps [t]); |
663 |
< |
fclose(pmaps [t] -> heap); |
663 |
> |
/* Heap file closed automatically on exit |
664 |
> |
fclose(pmaps [t] -> heap); */ |
665 |
|
#ifdef DEBUG_PMAP |
666 |
< |
sprintf(errmsg, "Proc %d: total %ld photons\n", getpid(), |
666 |
> |
sprintf(errmsg, "Proc %d: total %ld photons\n", proc, |
667 |
|
pmaps [t] -> numPhotons); |
668 |
|
eputs(errmsg); |
669 |
|
#endif |
670 |
|
} |
671 |
< |
|
671 |
> |
#if NIX |
672 |
> |
/* Terminate subprocess */ |
673 |
|
exit(0); |
674 |
+ |
#endif |
675 |
|
} |
676 |
|
else if (pid < 0) |
677 |
|
error(SYSTEM, "failed to fork subprocess in distribPhotons"); |
678 |
|
} |
679 |
|
|
680 |
+ |
#if NIX |
681 |
|
/* PARENT PROCESS CONTINUES HERE */ |
700 |
– |
/* Record start time and enable progress report signal handler */ |
701 |
– |
repStartTime = time(NULL); |
682 |
|
#ifdef SIGCONT |
683 |
+ |
/* Enable progress report signal handler */ |
684 |
|
signal(SIGCONT, pmapDistribReport); |
685 |
< |
#endif |
686 |
< |
|
706 |
< |
if (photonRepTime) |
707 |
< |
eputs("\n"); |
708 |
< |
|
709 |
< |
/* Wait for subprocesses to complete while reporting progress */ |
685 |
> |
#endif |
686 |
> |
/* Wait for subprocesses complete while reporting progress */ |
687 |
|
proc = numProc; |
688 |
|
while (proc) { |
689 |
|
while (waitpid(-1, &stat, WNOHANG) > 0) { |
696 |
|
|
697 |
|
/* Nod off for a bit and update progress */ |
698 |
|
sleep(1); |
699 |
< |
/* Update progress report from shared subprocess counters */ |
699 |
> |
|
700 |
> |
/* Asynchronous progress report from shared subprocess counters */ |
701 |
|
repEmitted = repProgress = photonCnt -> numEmitted; |
702 |
< |
repComplete = photonCnt -> numComplete; |
702 |
> |
repComplete = photonCnt -> numComplete; |
703 |
|
|
704 |
+ |
repProgress = repComplete = 0; |
705 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
706 |
|
if ((pm = pmaps [t])) { |
728 |
– |
#if 0 |
729 |
– |
/* Get photon count from heapfile size for progress update */ |
730 |
– |
fseek(pm -> heap, 0, SEEK_END); |
731 |
– |
pm -> numPhotons = ftell(pm -> heap) / sizeof(Photon); */ |
732 |
– |
#else |
707 |
|
/* Get global photon count from shmem updated by subprocs */ |
708 |
< |
pm -> numPhotons = photonCnt -> numPhotons [t]; |
709 |
< |
#endif |
708 |
> |
repProgress += pm -> numPhotons = photonCnt -> numPhotons [t]; |
709 |
> |
repComplete += pm -> distribTarget; |
710 |
|
} |
711 |
+ |
repComplete *= numProc; |
712 |
|
|
713 |
|
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
714 |
|
pmapDistribReport(); |
716 |
|
else signal(SIGCONT, pmapDistribReport); |
717 |
|
#endif |
718 |
|
} |
719 |
+ |
#endif /* NIX */ |
720 |
|
|
721 |
|
/* =================================================================== |
722 |
|
* POST-DISTRIBUTION - Set photon flux and build data struct for photon |
723 |
|
* storage, etc. |
724 |
|
* =================================================================== */ |
725 |
|
#ifdef SIGCONT |
726 |
+ |
/* Reset signal handler */ |
727 |
|
signal(SIGCONT, SIG_DFL); |
728 |
|
#endif |
729 |
|
free(emap.samples); |
730 |
|
|
731 |
< |
/* Set photon flux (repProgress is total num emitted) */ |
731 |
> |
/* Set photon flux */ |
732 |
|
totalFlux /= photonCnt -> numEmitted; |
733 |
< |
|
733 |
> |
#if NIX |
734 |
|
/* Photon counters no longer needed, unmap shared memory */ |
735 |
|
munmap(photonCnt, sizeof(*photonCnt)); |
736 |
|
close(shmFile); |
760 |
– |
#if 0 |
761 |
– |
shm_unlink(shmFname); |
762 |
– |
#else |
737 |
|
unlink(shmFname); |
738 |
+ |
#else |
739 |
+ |
free(photonCnt); |
740 |
|
#endif |
741 |
< |
|
741 |
> |
if (verbose) |
742 |
> |
eputs("\n"); |
743 |
> |
|
744 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
745 |
|
if (pmaps [t]) { |
746 |
< |
if (photonRepTime) { |
747 |
< |
sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]); |
746 |
> |
if (verbose) { |
747 |
> |
sprintf(errmsg, "Building %s photon map\n", pmapName [t]); |
748 |
|
eputs(errmsg); |
749 |
+ |
#if NIX |
750 |
|
fflush(stderr); |
751 |
+ |
#endif |
752 |
|
} |
753 |
|
|
754 |
|
/* Build underlying data structure; heap is destroyed */ |
755 |
|
buildPhotonMap(pmaps [t], &totalFlux, NULL, numProc); |
756 |
|
} |
757 |
< |
|
757 |
> |
|
758 |
|
/* Precompute photon irradiance if necessary */ |
759 |
< |
if (preCompPmap) |
759 |
> |
if (preCompPmap) { |
760 |
> |
if (verbose) |
761 |
> |
eputs("\n"); |
762 |
|
preComputeGlobal(preCompPmap); |
763 |
< |
} |
782 |
< |
|
783 |
< |
|
784 |
< |
|
785 |
< |
void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
786 |
< |
/* Photon density estimate. Returns irradiance at ray -> rop. */ |
787 |
< |
{ |
788 |
< |
unsigned i; |
789 |
< |
float r; |
790 |
< |
COLOR flux; |
791 |
< |
Photon *photon; |
792 |
< |
const PhotonSearchQueueNode *sqn; |
793 |
< |
|
794 |
< |
setcolor(irrad, 0, 0, 0); |
795 |
< |
|
796 |
< |
if (!pmap -> maxGather) |
797 |
< |
return; |
798 |
< |
|
799 |
< |
/* Ignore sources */ |
800 |
< |
if (ray -> ro && islight(objptr(ray -> ro -> omod) -> otype)) |
801 |
< |
return; |
802 |
< |
|
803 |
< |
findPhotons(pmap, ray); |
763 |
> |
} |
764 |
|
|
765 |
< |
/* Need at least 2 photons */ |
766 |
< |
if (pmap -> squeue.tail < 2) { |
807 |
< |
#ifdef PMAP_NONEFOUND |
808 |
< |
sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", |
809 |
< |
ray -> ro ? ray -> ro -> oname : "<null>", |
810 |
< |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
811 |
< |
error(WARNING, errmsg); |
812 |
< |
#endif |
813 |
< |
|
814 |
< |
return; |
815 |
< |
} |
816 |
< |
|
817 |
< |
if (pmap -> minGather == pmap -> maxGather) { |
818 |
< |
/* No bias compensation. Just do a plain vanilla estimate */ |
819 |
< |
sqn = pmap -> squeue.node + 1; |
820 |
< |
|
821 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
822 |
< |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
823 |
< |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
824 |
< |
|
825 |
< |
/* Skip the extra photon */ |
826 |
< |
for (i = 1 ; i < pmap -> squeue.tail; i++, sqn++) { |
827 |
< |
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); |
828 |
< |
getPhotonFlux(photon, flux); |
829 |
< |
#ifdef PMAP_EPANECHNIKOV |
830 |
< |
/* Apply Epanechnikov kernel to photon flux based on photon dist */ |
831 |
< |
scalecolor(flux, 2 * (1 - sqn -> dist2 / r)); |
832 |
< |
#endif |
833 |
< |
addcolor(irrad, flux); |
834 |
< |
} |
835 |
< |
|
836 |
< |
/* Divide by search area PI * r^2, 1 / PI required as ambient |
837 |
< |
normalisation factor */ |
838 |
< |
scalecolor(irrad, 1 / (PI * PI * r)); |
839 |
< |
|
840 |
< |
return; |
841 |
< |
} |
842 |
< |
else |
843 |
< |
/* Apply bias compensation to density estimate */ |
844 |
< |
biasComp(pmap, irrad); |
845 |
< |
} |
846 |
< |
|
847 |
< |
|
848 |
< |
|
849 |
< |
void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad) |
850 |
< |
/* Returns precomputed photon density estimate at ray -> rop. */ |
851 |
< |
{ |
852 |
< |
Photon p; |
853 |
< |
|
854 |
< |
setcolor(irrad, 0, 0, 0); |
855 |
< |
|
856 |
< |
/* Ignore sources */ |
857 |
< |
if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) |
858 |
< |
return; |
859 |
< |
|
860 |
< |
find1Photon(preCompPmap, r, &p); |
861 |
< |
getPhotonFlux(&p, irrad); |
862 |
< |
} |
863 |
< |
|
864 |
< |
|
865 |
< |
|
866 |
< |
void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
867 |
< |
/* Photon volume density estimate. Returns irradiance at ray -> rop. */ |
868 |
< |
{ |
869 |
< |
unsigned i; |
870 |
< |
float r, gecc2, ph; |
871 |
< |
COLOR flux; |
872 |
< |
Photon *photon; |
873 |
< |
const PhotonSearchQueueNode *sqn; |
874 |
< |
|
875 |
< |
setcolor(irrad, 0, 0, 0); |
876 |
< |
|
877 |
< |
if (!pmap -> maxGather) |
878 |
< |
return; |
879 |
< |
|
880 |
< |
findPhotons(pmap, ray); |
881 |
< |
|
882 |
< |
/* Need at least 2 photons */ |
883 |
< |
if (pmap -> squeue.tail < 2) |
884 |
< |
return; |
885 |
< |
|
886 |
< |
#if 0 |
887 |
< |
/* Volume biascomp disabled (probably redundant) */ |
888 |
< |
if (pmap -> minGather == pmap -> maxGather) |
889 |
< |
#endif |
890 |
< |
{ |
891 |
< |
/* No bias compensation. Just do a plain vanilla estimate */ |
892 |
< |
gecc2 = ray -> gecc * ray -> gecc; |
893 |
< |
sqn = pmap -> squeue.node + 1; |
894 |
< |
|
895 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
896 |
< |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
897 |
< |
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
898 |
< |
|
899 |
< |
/* Skip the extra photon */ |
900 |
< |
for (i = 1; i < pmap -> squeue.tail; i++, sqn++) { |
901 |
< |
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); |
902 |
< |
|
903 |
< |
/* Compute phase function for inscattering from photon */ |
904 |
< |
if (gecc2 <= FTINY) |
905 |
< |
ph = 1; |
906 |
< |
else { |
907 |
< |
ph = DOT(ray -> rdir, photon -> norm) / 127; |
908 |
< |
ph = 1 + gecc2 - 2 * ray -> gecc * ph; |
909 |
< |
ph = (1 - gecc2) / (ph * sqrt(ph)); |
910 |
< |
} |
911 |
< |
|
912 |
< |
getPhotonFlux(photon, flux); |
913 |
< |
scalecolor(flux, ph); |
914 |
< |
addcolor(irrad, flux); |
915 |
< |
} |
916 |
< |
|
917 |
< |
/* Divide by search volume 4 / 3 * PI * r^3 and phase function |
918 |
< |
normalization factor 1 / (4 * PI) */ |
919 |
< |
scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r))); |
920 |
< |
return; |
921 |
< |
} |
922 |
< |
#if 0 |
923 |
< |
else |
924 |
< |
/* Apply bias compensation to density estimate */ |
925 |
< |
volumeBiasComp(pmap, ray, irrad); |
926 |
< |
#endif |
765 |
> |
if (verbose) |
766 |
> |
eputs("\n"); |
767 |
|
} |