2 |
|
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
|
|
5 |
+ |
|
6 |
|
/* |
7 |
|
====================================================================== |
8 |
|
Photon map main module |
17 |
|
*/ |
18 |
|
|
19 |
|
|
19 |
– |
|
20 |
|
#include "pmap.h" |
21 |
|
#include "pmapmat.h" |
22 |
|
#include "pmapsrc.h" |
26 |
|
#include "pmapdiag.h" |
27 |
|
#include "otypes.h" |
28 |
|
#include <time.h> |
29 |
< |
#include <sys/stat.h> |
30 |
< |
#include <sys/mman.h> |
31 |
< |
#include <sys/wait.h> |
29 |
> |
#if NIX |
30 |
> |
#include <sys/stat.h> |
31 |
> |
#include <sys/mman.h> |
32 |
> |
#include <sys/wait.h> |
33 |
> |
#endif |
34 |
|
|
35 |
|
|
34 |
– |
|
36 |
|
void savePmaps (const PhotonMap **pmaps, int argc, char **argv) |
37 |
|
{ |
38 |
|
unsigned t; |
50 |
|
or 0 if absorbed and $*%&ed. Analogon to rayparticipate(). */ |
51 |
|
{ |
52 |
|
int i; |
53 |
< |
RREAL cosTheta, cosPhi, du, dv; |
53 |
> |
RREAL xi1, cosTheta, phi, du, dv; |
54 |
|
const float cext = colorAvg(ray -> cext), |
55 |
< |
albedo = colorAvg(ray -> albedo); |
55 |
> |
albedo = colorAvg(ray -> albedo), |
56 |
> |
gecc = ray -> gecc, gecc2 = sqr(gecc); |
57 |
|
FVECT u, v; |
58 |
|
COLOR cvext; |
59 |
|
|
61 |
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
62 |
|
|
63 |
|
while (!localhit(ray, &thescene)) { |
64 |
+ |
if (!incube(&thescene, ray -> rop)) { |
65 |
+ |
/* Terminate photon if it has leaked from the scene */ |
66 |
+ |
#ifdef DEBUG_PMAP |
67 |
+ |
fprintf(stderr, |
68 |
+ |
"Volume photon leaked from scene at [%.3f %.3f %.3f]\n", |
69 |
+ |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
70 |
+ |
#endif |
71 |
+ |
return 0; |
72 |
+ |
} |
73 |
+ |
|
74 |
|
setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]), |
75 |
|
exp(-ray -> rmax * ray -> cext [1]), |
76 |
|
exp(-ray -> rmax * ray -> cext [2])); |
80 |
|
colorNorm(ray -> rcol); |
81 |
|
VCOPY(ray -> rorg, ray -> rop); |
82 |
|
|
83 |
+ |
#if 0 |
84 |
|
if (albedo > FTINY && ray -> rlvl > 0) |
85 |
+ |
#else |
86 |
+ |
/* Store volume photons unconditionally in mist to also account for |
87 |
+ |
direct inscattering from sources */ |
88 |
+ |
if (albedo > FTINY) |
89 |
+ |
#endif |
90 |
|
/* Add to volume photon map */ |
91 |
|
newPhoton(volumePmap, ray); |
92 |
|
|
99 |
|
scalecolor(ray -> rcol, 1 / albedo); |
100 |
|
|
101 |
|
/* Scatter photon */ |
102 |
< |
cosTheta = ray -> gecc <= FTINY ? 2 * pmapRandom(scatterState) - 1 |
103 |
< |
: 1 / (2 * ray -> gecc) * |
104 |
< |
(1 + ray -> gecc * ray -> gecc - |
105 |
< |
(1 - ray -> gecc * ray -> gecc) / |
106 |
< |
(1 - ray -> gecc + 2 * ray -> gecc * |
107 |
< |
pmapRandom(scatterState))); |
108 |
< |
|
109 |
< |
cosPhi = cos(2 * PI * pmapRandom(scatterState)); |
110 |
< |
du = dv = sqrt(1 - cosTheta * cosTheta); /* sin(theta) */ |
111 |
< |
du *= cosPhi; |
112 |
< |
dv *= sqrt(1 - cosPhi * cosPhi); /* sin(phi) */ |
102 |
> |
xi1 = pmapRandom(scatterState); |
103 |
> |
cosTheta = ray -> gecc <= FTINY |
104 |
> |
? 2 * xi1 - 1 |
105 |
> |
: 0.5 / gecc * |
106 |
> |
(1 + gecc2 - sqr((1 - gecc2) / |
107 |
> |
(1 + gecc * (2 * xi1 - 1)))); |
108 |
> |
|
109 |
> |
phi = 2 * PI * pmapRandom(scatterState); |
110 |
> |
du = dv = sqrt(1 - sqr(cosTheta)); /* sin(theta) */ |
111 |
> |
du *= cos(phi); |
112 |
> |
dv *= sin(phi); |
113 |
|
|
114 |
|
/* Get axes u & v perpendicular to photon direction */ |
115 |
|
i = 0; |
123 |
|
for (i = 0; i < 3; i++) |
124 |
|
ray -> rdir [i] = du * u [i] + dv * v [i] + |
125 |
|
cosTheta * ray -> rdir [i]; |
126 |
+ |
|
127 |
|
ray -> rlvl++; |
128 |
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
129 |
|
} |
130 |
< |
|
130 |
> |
|
131 |
> |
/* Passed through medium until intersecting local object */ |
132 |
|
setcolor(cvext, exp(-ray -> rot * ray -> cext [0]), |
133 |
|
exp(-ray -> rot * ray -> cext [1]), |
134 |
|
exp(-ray -> rot * ray -> cext [2])); |
135 |
|
|
136 |
|
/* Modify ray color and normalise */ |
137 |
|
multcolor(ray -> rcol, cvext); |
138 |
< |
colorNorm(ray -> rcol); |
139 |
< |
|
120 |
< |
/* Passed through medium */ |
138 |
> |
colorNorm(ray -> rcol); |
139 |
> |
|
140 |
|
return 1; |
141 |
|
} |
142 |
|
|
146 |
|
/* Follow photon as it bounces around... */ |
147 |
|
{ |
148 |
|
long mod; |
149 |
< |
OBJREC* mat; |
149 |
> |
OBJREC *mat, *port = NULL; |
150 |
> |
|
151 |
> |
if (!ray -> parent) { |
152 |
> |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: get photon port for |
153 |
> |
* !!! primary ray from ray -> ro, then reset the latter to NULL so |
154 |
> |
* !!! as not to interfere with localhit() */ |
155 |
> |
port = ray -> ro; |
156 |
> |
ray -> ro = NULL; |
157 |
> |
} |
158 |
|
|
159 |
|
if (ray -> rlvl > photonMaxBounce) { |
160 |
|
#ifdef PMAP_RUNAWAY_WARN |
165 |
|
|
166 |
|
if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) |
167 |
|
return; |
168 |
< |
|
168 |
> |
|
169 |
|
if (localhit(ray, &thescene)) { |
170 |
|
mod = ray -> ro -> omod; |
171 |
< |
|
171 |
> |
|
172 |
> |
if (port && ray -> ro != port) { |
173 |
> |
/* !!! PHOTON PORT REJECTION SAMPLING HACK !!! |
174 |
> |
* Terminate photon if emitted from port without intersecting it; |
175 |
> |
* this can happen when the port's partitions extend beyond its |
176 |
> |
* actual geometry, e.g. with polygons. Since the total flux |
177 |
> |
* relayed by the port is based on the (in this case) larger |
178 |
> |
* partition area, it is overestimated; terminating these photons |
179 |
> |
* constitutes rejection sampling and thereby compensates any bias |
180 |
> |
* incurred by the overestimated flux. */ |
181 |
> |
#ifdef PMAP_PORTREJECT_WARN |
182 |
> |
sprintf(errmsg, "photon outside port %s", ray -> ro -> oname); |
183 |
> |
error(WARNING, errmsg); |
184 |
> |
#endif |
185 |
> |
return; |
186 |
> |
} |
187 |
> |
|
188 |
|
if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { |
189 |
|
/* Transfer ray if modifier is VOID or clipped within antimatta */ |
190 |
|
RAY tray; |
216 |
|
|
217 |
|
repComplete = numPreComp = finalGather * pmap -> numPhotons; |
218 |
|
|
219 |
< |
if (photonRepTime) { |
220 |
< |
sprintf(errmsg, "Precomputing irradiance for %ld global photons...\n", |
219 |
> |
if (verbose) { |
220 |
> |
sprintf(errmsg, |
221 |
> |
"\nPrecomputing irradiance for %ld global photons\n", |
222 |
|
numPreComp); |
223 |
|
eputs(errmsg); |
224 |
+ |
#if NIX |
225 |
|
fflush(stderr); |
226 |
+ |
#endif |
227 |
|
} |
228 |
|
|
229 |
|
/* Copy photon map for precomputed photons */ |
250 |
|
|
251 |
|
for (i = 0; i < numPreComp; i++) { |
252 |
|
/* Get random photon from stratified distribution in source heap to |
253 |
< |
* avoid duplicates and clutering */ |
253 |
> |
* avoid duplicates and clustering */ |
254 |
|
pIdx = firstPhoton(pmap) + |
255 |
|
(unsigned long)((i + pmapRandom(pmap -> randState)) / |
256 |
|
finalGather); |
288 |
|
deletePhotons(pmap); |
289 |
|
memcpy(pmap, &nuPmap, sizeof(PhotonMap)); |
290 |
|
|
291 |
< |
if (photonRepTime) { |
292 |
< |
eputs("Rebuilding precomputed photon map...\n"); |
291 |
> |
if (verbose) { |
292 |
> |
eputs("\nRebuilding precomputed photon map\n"); |
293 |
> |
#if NIX |
294 |
|
fflush(stderr); |
295 |
+ |
#endif |
296 |
|
} |
297 |
|
|
298 |
|
/* Rebuild underlying data structure, destroying heap */ |
311 |
|
void distribPhotons (PhotonMap **pmaps, unsigned numProc) |
312 |
|
{ |
313 |
|
EmissionMap emap; |
314 |
< |
char errmsg2 [128], shmFname [255]; |
314 |
> |
char errmsg2 [128], shmFname [PMAP_TMPFNLEN]; |
315 |
|
unsigned t, srcIdx, proc; |
316 |
|
double totalFlux = 0; |
317 |
|
int shmFile, stat, pid; |
343 |
|
initPhotonHeap(pmaps [t]); |
344 |
|
/* Per-subprocess target count */ |
345 |
|
pmaps [t] -> distribTarget /= numProc; |
346 |
+ |
|
347 |
+ |
if (!pmaps [t] -> distribTarget) |
348 |
+ |
error(INTERNAL, "no photons to distribute in distribPhotons"); |
349 |
|
} |
350 |
|
|
351 |
|
initPhotonEmissionFuncs(); |
352 |
|
initPhotonScatterFuncs(); |
353 |
|
|
354 |
< |
/* Get photon ports if specified */ |
355 |
< |
if (ambincl == 1) |
305 |
< |
getPhotonPorts(); |
354 |
> |
/* Get photon ports from modifier list */ |
355 |
> |
getPhotonPorts(photonPortList); |
356 |
|
|
357 |
|
/* Get photon sensor modifiers */ |
358 |
|
getPhotonSensors(photonSensorList); |
359 |
|
|
360 |
+ |
#if NIX |
361 |
|
/* Set up shared mem for photon counters (zeroed by ftruncate) */ |
362 |
< |
#if 0 |
312 |
< |
snprintf(shmFname, 255, PMAP_SHMFNAME, getpid()); |
313 |
< |
shmFile = shm_open(shmFname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); |
314 |
< |
#else |
315 |
< |
strcpy(shmFname, PMAP_SHMFNAME); |
362 |
> |
strcpy(shmFname, PMAP_TMPFNAME); |
363 |
|
shmFile = mkstemp(shmFname); |
317 |
– |
#endif |
364 |
|
|
365 |
< |
if (shmFile < 0) |
366 |
< |
error(SYSTEM, "failed opening shared memory file in distribPhotons"); |
365 |
> |
if (shmFile < 0 || ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
366 |
> |
error(SYSTEM, "failed shared mem init in distribPhotons"); |
367 |
|
|
322 |
– |
if (ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
323 |
– |
error(SYSTEM, "failed setting shared memory size in distribPhotons"); |
324 |
– |
|
368 |
|
photonCnt = mmap(NULL, sizeof(*photonCnt), PROT_READ | PROT_WRITE, |
369 |
|
MAP_SHARED, shmFile, 0); |
370 |
|
|
371 |
|
if (photonCnt == MAP_FAILED) |
372 |
< |
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
372 |
> |
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
373 |
> |
#else |
374 |
> |
/* Allocate photon counters statically on Windoze */ |
375 |
> |
if (!(photonCnt = malloc(sizeof(PhotonCnt)))) |
376 |
> |
error(SYSTEM, "failed trivial malloc in distribPhotons"); |
377 |
> |
photonCnt -> numEmitted = photonCnt -> numComplete = 0; |
378 |
> |
#endif /* NIX */ |
379 |
|
|
380 |
< |
if (photonRepTime) |
381 |
< |
eputs("\n"); |
380 |
> |
if (verbose) { |
381 |
> |
sprintf(errmsg, "\nIntegrating flux from %d sources", nsources); |
382 |
> |
|
383 |
> |
if (photonPorts) { |
384 |
> |
sprintf(errmsg2, " via %d ports", numPhotonPorts); |
385 |
> |
strcat(errmsg, errmsg2); |
386 |
> |
} |
387 |
> |
|
388 |
> |
strcat(errmsg, "\n"); |
389 |
> |
eputs(errmsg); |
390 |
> |
} |
391 |
|
|
392 |
|
/* =================================================================== |
393 |
|
* FLUX INTEGRATION - Get total photon flux from light sources |
401 |
|
: NULL; |
402 |
|
photonPartition [emap.src -> so -> otype] (&emap); |
403 |
|
|
404 |
< |
if (photonRepTime) { |
405 |
< |
sprintf(errmsg, "Integrating flux from source %s ", |
404 |
> |
if (verbose) { |
405 |
> |
sprintf(errmsg, "\tIntegrating flux from source %s ", |
406 |
|
source [srcIdx].so -> oname); |
407 |
< |
|
407 |
> |
|
408 |
|
if (emap.port) { |
409 |
|
sprintf(errmsg2, "via port %s ", |
410 |
|
photonPorts [portCnt].so -> oname); |
411 |
|
strcat(errmsg, errmsg2); |
412 |
|
} |
413 |
< |
|
414 |
< |
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
413 |
> |
|
414 |
> |
sprintf(errmsg2, "(%lu partitions)\n", emap.numPartitions); |
415 |
|
strcat(errmsg, errmsg2); |
416 |
|
eputs(errmsg); |
417 |
+ |
#if NIX |
418 |
|
fflush(stderr); |
419 |
+ |
#endif |
420 |
|
} |
421 |
|
|
422 |
|
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
431 |
|
|
432 |
|
if (totalFlux < FTINY) |
433 |
|
error(USER, "zero flux from light sources"); |
434 |
+ |
|
435 |
+ |
/* Record start time for progress reports */ |
436 |
+ |
repStartTime = time(NULL); |
437 |
|
|
438 |
+ |
if (verbose) { |
439 |
+ |
sprintf(errmsg, "\nPhoton distribution @ %d procs\n", numProc); |
440 |
+ |
eputs(errmsg); |
441 |
+ |
} |
442 |
+ |
|
443 |
|
/* MAIN LOOP */ |
444 |
|
for (proc = 0; proc < numProc; proc++) { |
445 |
+ |
#if NIX |
446 |
|
if (!(pid = fork())) { |
447 |
< |
/* SUBPROCESS ENTERS HERE. |
448 |
< |
All opened and memory mapped files are inherited */ |
447 |
> |
/* SUBPROCESS ENTERS HERE; open and mmapped files inherited */ |
448 |
> |
#else |
449 |
> |
if (1) { |
450 |
> |
/* No subprocess under Windoze */ |
451 |
> |
#endif |
452 |
> |
/* Local photon counters for this subprocess */ |
453 |
|
unsigned passCnt = 0, prePassCnt = 0; |
454 |
|
unsigned long lastNumPhotons [NUM_PMAP_TYPES]; |
455 |
|
unsigned long localNumEmitted = 0; /* Num photons emitted by this |
457 |
|
|
458 |
|
/* Seed RNGs from PID for decorellated photon distribution */ |
459 |
|
pmapSeed(randSeed + proc, partState); |
460 |
< |
pmapSeed(randSeed + proc, emitState); |
461 |
< |
pmapSeed(randSeed + proc, cntState); |
462 |
< |
pmapSeed(randSeed + proc, mediumState); |
463 |
< |
pmapSeed(randSeed + proc, scatterState); |
464 |
< |
pmapSeed(randSeed + proc, rouletteState); |
465 |
< |
|
460 |
> |
pmapSeed(randSeed + (proc + 1) % numProc, emitState); |
461 |
> |
pmapSeed(randSeed + (proc + 2) % numProc, cntState); |
462 |
> |
pmapSeed(randSeed + (proc + 3) % numProc, mediumState); |
463 |
> |
pmapSeed(randSeed + (proc + 4) % numProc, scatterState); |
464 |
> |
pmapSeed(randSeed + (proc + 5) % numProc, rouletteState); |
465 |
> |
|
466 |
> |
#ifdef DEBUG_PMAP |
467 |
> |
/* Output child process PID after random delay to prevent corrupted |
468 |
> |
* console output due to race condition */ |
469 |
> |
usleep(1e6 * pmapRandom(rouletteState)); |
470 |
> |
fprintf(stderr, "Proc %d: PID = %d " |
471 |
> |
"(waiting 10 sec to attach debugger...)\n", |
472 |
> |
proc, getpid()); |
473 |
> |
/* Allow time for debugger to attach to child process */ |
474 |
> |
sleep(10); |
475 |
> |
#endif |
476 |
> |
|
477 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
478 |
|
lastNumPhotons [t] = 0; |
479 |
|
|
493 |
|
* iterations; make it clear to user which photon maps are |
494 |
|
* missing so (s)he can check geometry and materials */ |
495 |
|
if (++prePassCnt > maxPreDistrib) { |
496 |
< |
sprintf(errmsg, |
413 |
< |
"proc %d, source %s: too many prepasses", |
414 |
< |
proc, source [srcIdx].so -> oname); |
496 |
> |
sprintf(errmsg, "proc %d: too many prepasses", proc); |
497 |
|
|
498 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
499 |
|
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
565 |
|
break; |
566 |
|
} |
567 |
|
|
568 |
< |
/* Update shared completion counter for prog.report by parent */ |
568 |
> |
/* Update shared completion counter for progreport by parent */ |
569 |
|
photonCnt -> numComplete += numEmit; |
570 |
|
|
571 |
|
/* PHOTON DISTRIBUTION LOOP */ |
578 |
|
? photonPorts + portCnt : NULL; |
579 |
|
photonPartition [emap.src -> so -> otype] (&emap); |
580 |
|
|
581 |
< |
if (photonRepTime && !proc) { |
581 |
> |
if (verbose && !proc) { |
582 |
> |
/* Output from subproc 0 only to avoid race condition |
583 |
> |
* on console I/O */ |
584 |
|
if (!passCnt) |
585 |
< |
sprintf(errmsg, "PREPASS %d on source %s ", |
585 |
> |
sprintf(errmsg, "\tPREPASS %d on source %s ", |
586 |
|
prePassCnt, source [srcIdx].so -> oname); |
587 |
|
else |
588 |
< |
sprintf(errmsg, "MAIN PASS on source %s ", |
588 |
> |
sprintf(errmsg, "\tMAIN PASS on source %s ", |
589 |
|
source [srcIdx].so -> oname); |
590 |
< |
|
590 |
> |
|
591 |
|
if (emap.port) { |
592 |
|
sprintf(errmsg2, "via port %s ", |
593 |
|
photonPorts [portCnt].so -> oname); |
594 |
|
strcat(errmsg, errmsg2); |
595 |
|
} |
596 |
< |
|
596 |
> |
|
597 |
|
sprintf(errmsg2, "(%lu partitions)\n", |
598 |
|
emap.numPartitions); |
599 |
|
strcat(errmsg, errmsg2); |
600 |
|
eputs(errmsg); |
601 |
+ |
#if NIX |
602 |
|
fflush(stderr); |
603 |
+ |
#endif |
604 |
|
} |
605 |
|
|
606 |
|
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
615 |
|
|
616 |
|
/* Number of photons to emit from ziss partishunn -- |
617 |
|
* proportional to flux; photon ray weight and scalar |
618 |
< |
* flux are uniform (the latter only varying in RGB). |
533 |
< |
* */ |
618 |
> |
* flux are uniform (latter only varying in RGB). */ |
619 |
|
partNumEmit = numEmit * colorAvg(emap.partFlux) / |
620 |
|
totalFlux; |
621 |
|
partEmitCnt = (unsigned long)partNumEmit; |
636 |
|
/* Emit photon based on PDF and trace through scene |
637 |
|
* until absorbed/leaked */ |
638 |
|
emitPhoton(&emap, &photonRay); |
639 |
+ |
#if 1 |
640 |
+ |
if (emap.port) |
641 |
+ |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: set |
642 |
+ |
* !!! photon port as fake hit object for |
643 |
+ |
* !!! primary ray to check for intersection in |
644 |
+ |
* !!! tracePhoton() */ |
645 |
+ |
photonRay.ro = emap.port -> so; |
646 |
+ |
#endif |
647 |
|
tracePhoton(&photonRay); |
648 |
|
} |
649 |
< |
|
649 |
> |
|
650 |
|
/* Update shared global photon count for each pmap */ |
651 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
652 |
|
if (pmaps [t]) { |
654 |
|
pmaps [t] -> numPhotons - lastNumPhotons [t]; |
655 |
|
lastNumPhotons [t] = pmaps [t] -> numPhotons; |
656 |
|
} |
657 |
+ |
#if !NIX |
658 |
+ |
/* Synchronous progress report on Windoze */ |
659 |
+ |
if (!proc && photonRepTime > 0 && |
660 |
+ |
time(NULL) >= repLastTime + photonRepTime) { |
661 |
+ |
repEmitted = repProgress = photonCnt -> numEmitted; |
662 |
+ |
repComplete = photonCnt -> numComplete; |
663 |
+ |
pmapDistribReport(); |
664 |
+ |
} |
665 |
+ |
#endif |
666 |
|
} |
667 |
|
|
668 |
|
portCnt++; |
678 |
|
break; |
679 |
|
} |
680 |
|
|
681 |
< |
if (t >= NUM_PMAP_TYPES) { |
681 |
> |
if (t >= NUM_PMAP_TYPES) |
682 |
|
/* No empty photon maps found; now do pass 2 */ |
683 |
|
passCnt++; |
582 |
– |
#if 0 |
583 |
– |
if (photonRepTime) |
584 |
– |
eputs("\n"); |
585 |
– |
#endif |
586 |
– |
} |
684 |
|
} while (passCnt < 2); |
685 |
|
|
686 |
< |
/* Unmap shared photon counters */ |
687 |
< |
#if 0 |
591 |
< |
munmap(photonCnt, sizeof(*photonCnt)); |
592 |
< |
close(shmFile); |
593 |
< |
#endif |
594 |
< |
|
595 |
< |
/* Flush heap buffa for every pmap one final time; this is required |
596 |
< |
* to prevent data corruption! */ |
686 |
> |
/* Flush heap buffa for every pmap one final time; |
687 |
> |
* avoids potential data corruption! */ |
688 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
689 |
|
if (pmaps [t]) { |
599 |
– |
#if 0 |
600 |
– |
eputs("Final flush\n"); |
601 |
– |
#endif |
690 |
|
flushPhotonHeap(pmaps [t]); |
691 |
< |
fclose(pmaps [t] -> heap); |
691 |
> |
/* Heap file closed automatically on exit |
692 |
> |
fclose(pmaps [t] -> heap); */ |
693 |
|
#ifdef DEBUG_PMAP |
694 |
< |
sprintf(errmsg, "Proc %d: total %ld photons\n", getpid(), |
694 |
> |
sprintf(errmsg, "Proc %d: total %ld photons\n", proc, |
695 |
|
pmaps [t] -> numPhotons); |
696 |
|
eputs(errmsg); |
697 |
|
#endif |
698 |
|
} |
699 |
< |
|
699 |
> |
#if NIX |
700 |
> |
/* Terminate subprocess */ |
701 |
|
exit(0); |
702 |
+ |
#endif |
703 |
|
} |
704 |
|
else if (pid < 0) |
705 |
|
error(SYSTEM, "failed to fork subprocess in distribPhotons"); |
706 |
|
} |
707 |
|
|
708 |
+ |
#if NIX |
709 |
|
/* PARENT PROCESS CONTINUES HERE */ |
618 |
– |
/* Record start time and enable progress report signal handler */ |
619 |
– |
repStartTime = time(NULL); |
710 |
|
#ifdef SIGCONT |
711 |
+ |
/* Enable progress report signal handler */ |
712 |
|
signal(SIGCONT, pmapDistribReport); |
713 |
< |
#endif |
714 |
< |
|
624 |
< |
if (photonRepTime) |
625 |
< |
eputs("\n"); |
626 |
< |
|
627 |
< |
/* Wait for subprocesses to complete while reporting progress */ |
713 |
> |
#endif |
714 |
> |
/* Wait for subprocesses complete while reporting progress */ |
715 |
|
proc = numProc; |
716 |
|
while (proc) { |
717 |
|
while (waitpid(-1, &stat, WNOHANG) > 0) { |
724 |
|
|
725 |
|
/* Nod off for a bit and update progress */ |
726 |
|
sleep(1); |
727 |
< |
/* Update progress report from shared subprocess counters */ |
727 |
> |
|
728 |
> |
/* Asynchronous progress report from shared subprocess counters */ |
729 |
|
repEmitted = repProgress = photonCnt -> numEmitted; |
730 |
< |
repComplete = photonCnt -> numComplete; |
730 |
> |
repComplete = photonCnt -> numComplete; |
731 |
|
|
732 |
+ |
repProgress = repComplete = 0; |
733 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
734 |
|
if ((pm = pmaps [t])) { |
646 |
– |
#if 0 |
647 |
– |
/* Get photon count from heapfile size for progress update */ |
648 |
– |
fseek(pm -> heap, 0, SEEK_END); |
649 |
– |
pm -> numPhotons = ftell(pm -> heap) / sizeof(Photon); */ |
650 |
– |
#else |
735 |
|
/* Get global photon count from shmem updated by subprocs */ |
736 |
< |
pm -> numPhotons = photonCnt -> numPhotons [t]; |
737 |
< |
#endif |
736 |
> |
repProgress += pm -> numPhotons = photonCnt -> numPhotons [t]; |
737 |
> |
repComplete += pm -> distribTarget; |
738 |
|
} |
739 |
+ |
repComplete *= numProc; |
740 |
|
|
741 |
|
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
742 |
|
pmapDistribReport(); |
744 |
|
else signal(SIGCONT, pmapDistribReport); |
745 |
|
#endif |
746 |
|
} |
747 |
+ |
#endif /* NIX */ |
748 |
|
|
749 |
|
/* =================================================================== |
750 |
|
* POST-DISTRIBUTION - Set photon flux and build data struct for photon |
751 |
|
* storage, etc. |
752 |
|
* =================================================================== */ |
753 |
|
#ifdef SIGCONT |
754 |
+ |
/* Reset signal handler */ |
755 |
|
signal(SIGCONT, SIG_DFL); |
756 |
|
#endif |
757 |
|
free(emap.samples); |
758 |
|
|
759 |
< |
/* Set photon flux (repProgress is total num emitted) */ |
759 |
> |
/* Set photon flux */ |
760 |
|
totalFlux /= photonCnt -> numEmitted; |
761 |
< |
|
761 |
> |
#if NIX |
762 |
|
/* Photon counters no longer needed, unmap shared memory */ |
763 |
|
munmap(photonCnt, sizeof(*photonCnt)); |
764 |
|
close(shmFile); |
678 |
– |
#if 0 |
679 |
– |
shm_unlink(shmFname); |
680 |
– |
#else |
765 |
|
unlink(shmFname); |
766 |
+ |
#else |
767 |
+ |
free(photonCnt); |
768 |
|
#endif |
769 |
< |
|
769 |
> |
if (verbose) |
770 |
> |
eputs("\n"); |
771 |
> |
|
772 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
773 |
|
if (pmaps [t]) { |
774 |
< |
if (photonRepTime) { |
775 |
< |
sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]); |
774 |
> |
if (verbose) { |
775 |
> |
sprintf(errmsg, "Building %s photon map\n", pmapName [t]); |
776 |
|
eputs(errmsg); |
777 |
+ |
#if NIX |
778 |
|
fflush(stderr); |
779 |
+ |
#endif |
780 |
|
} |
781 |
|
|
782 |
|
/* Build underlying data structure; heap is destroyed */ |
783 |
|
buildPhotonMap(pmaps [t], &totalFlux, NULL, numProc); |
784 |
|
} |
785 |
< |
|
785 |
> |
|
786 |
|
/* Precompute photon irradiance if necessary */ |
787 |
< |
if (preCompPmap) |
787 |
> |
if (preCompPmap) { |
788 |
> |
if (verbose) |
789 |
> |
eputs("\n"); |
790 |
|
preComputeGlobal(preCompPmap); |
791 |
+ |
} |
792 |
+ |
|
793 |
+ |
if (verbose) |
794 |
+ |
eputs("\n"); |
795 |
|
} |