1 |
|
#ifndef lint |
2 |
|
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
+ |
|
5 |
+ |
|
6 |
|
/* |
7 |
< |
================================================================== |
7 |
> |
====================================================================== |
8 |
|
Photon map main module |
9 |
|
|
10 |
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
11 |
|
(c) Fraunhofer Institute for Solar Energy Systems, |
12 |
|
(c) Lucerne University of Applied Sciences and Arts, |
13 |
< |
supported by the Swiss National Science Foundation (SNSF, #147053) |
14 |
< |
================================================================== |
13 |
> |
supported by the Swiss National Science Foundation (SNSF, #147053) |
14 |
> |
====================================================================== |
15 |
|
|
16 |
+ |
$Id$ |
17 |
|
*/ |
18 |
|
|
19 |
|
|
17 |
– |
|
20 |
|
#include "pmap.h" |
21 |
|
#include "pmapmat.h" |
22 |
|
#include "pmapsrc.h" |
26 |
|
#include "pmapdiag.h" |
27 |
|
#include "otypes.h" |
28 |
|
#include <time.h> |
29 |
< |
#include <sys/stat.h> |
29 |
> |
#if NIX |
30 |
> |
#include <sys/stat.h> |
31 |
> |
#include <sys/mman.h> |
32 |
> |
#include <sys/wait.h> |
33 |
> |
#endif |
34 |
|
|
35 |
|
|
30 |
– |
|
31 |
– |
extern char *octname; |
32 |
– |
|
33 |
– |
static char PmapRevision [] = "$Revision$"; |
34 |
– |
|
35 |
– |
|
36 |
– |
|
37 |
– |
/* Photon map lookup functions per type */ |
38 |
– |
void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = { |
39 |
– |
photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity, |
40 |
– |
photonDensity, NULL |
41 |
– |
}; |
42 |
– |
|
43 |
– |
|
44 |
– |
|
45 |
– |
void colorNorm (COLOR c) |
46 |
– |
/* Normalise colour channels to average of 1 */ |
47 |
– |
{ |
48 |
– |
const float avg = colorAvg(c); |
49 |
– |
|
50 |
– |
if (!avg) |
51 |
– |
return; |
52 |
– |
|
53 |
– |
c [0] /= avg; |
54 |
– |
c [1] /= avg; |
55 |
– |
c [2] /= avg; |
56 |
– |
} |
57 |
– |
|
58 |
– |
|
59 |
– |
|
60 |
– |
void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm) |
61 |
– |
{ |
62 |
– |
unsigned t; |
63 |
– |
struct stat octstat, pmstat; |
64 |
– |
PhotonMap *pm; |
65 |
– |
PhotonMapType type; |
66 |
– |
|
67 |
– |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
68 |
– |
if (setPmapParam(&pm, parm + t)) { |
69 |
– |
/* Check if photon map newer than octree */ |
70 |
– |
if (pm -> fileName && octname && |
71 |
– |
!stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) && |
72 |
– |
octstat.st_mtime > pmstat.st_mtime) { |
73 |
– |
sprintf(errmsg, "photon map in file %s may be stale", |
74 |
– |
pm -> fileName); |
75 |
– |
error(USER, errmsg); |
76 |
– |
} |
77 |
– |
|
78 |
– |
/* Load photon map from file and get its type */ |
79 |
– |
if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE) |
80 |
– |
error(USER, "failed loading photon map"); |
81 |
– |
|
82 |
– |
/* Assign to appropriate photon map type (deleting previously |
83 |
– |
* loaded photon map of same type if necessary) */ |
84 |
– |
if (pmaps [type]) { |
85 |
– |
deletePhotons(pmaps [type]); |
86 |
– |
free(pmaps [type]); |
87 |
– |
} |
88 |
– |
pmaps [type] = pm; |
89 |
– |
|
90 |
– |
/* Check for invalid density estimate bandwidth */ |
91 |
– |
if (pm -> maxGather > pm -> heapSize) { |
92 |
– |
error(WARNING, "adjusting density estimate bandwidth"); |
93 |
– |
pm -> minGather = pm -> maxGather = pm -> heapSize; |
94 |
– |
} |
95 |
– |
} |
96 |
– |
} |
97 |
– |
|
98 |
– |
|
99 |
– |
|
36 |
|
void savePmaps (const PhotonMap **pmaps, int argc, char **argv) |
37 |
|
{ |
38 |
|
unsigned t; |
44 |
|
} |
45 |
|
|
46 |
|
|
111 |
– |
|
112 |
– |
void cleanUpPmaps (PhotonMap **pmaps) |
113 |
– |
{ |
114 |
– |
unsigned t; |
115 |
– |
|
116 |
– |
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
117 |
– |
if (pmaps [t]) { |
118 |
– |
deletePhotons(pmaps [t]); |
119 |
– |
free(pmaps [t]); |
120 |
– |
} |
121 |
– |
} |
122 |
– |
} |
123 |
– |
|
124 |
– |
|
47 |
|
|
48 |
|
static int photonParticipate (RAY *ray) |
49 |
|
/* Trace photon through participating medium. Returns 1 if passed through, |
52 |
|
int i; |
53 |
|
RREAL cosTheta, cosPhi, du, dv; |
54 |
|
const float cext = colorAvg(ray -> cext), |
55 |
< |
albedo = colorAvg(ray -> albedo); |
55 |
> |
albedo = colorAvg(ray -> albedo), |
56 |
> |
gecc2 = ray -> gecc * ray -> gecc; |
57 |
|
FVECT u, v; |
58 |
|
COLOR cvext; |
59 |
|
|
61 |
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
62 |
|
|
63 |
|
while (!localhit(ray, &thescene)) { |
64 |
+ |
if (!incube(&thescene, ray -> rop)) { |
65 |
+ |
/* Terminate photon if it has leaked from the scene */ |
66 |
+ |
#ifdef DEBUG_PMAP |
67 |
+ |
fprintf(stderr, |
68 |
+ |
"Volume photon leaked from scene at [%.3f %.3f %.3f]\n", |
69 |
+ |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
70 |
+ |
#endif |
71 |
+ |
return 0; |
72 |
+ |
} |
73 |
+ |
|
74 |
|
setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]), |
75 |
|
exp(-ray -> rmax * ray -> cext [1]), |
76 |
|
exp(-ray -> rmax * ray -> cext [2])); |
80 |
|
colorNorm(ray -> rcol); |
81 |
|
VCOPY(ray -> rorg, ray -> rop); |
82 |
|
|
83 |
+ |
#if 0 |
84 |
+ |
if (albedo > FTINY && ray -> rlvl > 0) |
85 |
+ |
#else |
86 |
+ |
/* Store volume photons unconditionally in mist to also account for |
87 |
+ |
direct inscattering from sources */ |
88 |
|
if (albedo > FTINY) |
89 |
+ |
#endif |
90 |
|
/* Add to volume photon map */ |
91 |
< |
if (ray -> rlvl > 0) addPhoton(volumePmap, ray); |
91 |
> |
newPhoton(volumePmap, ray); |
92 |
|
|
93 |
|
/* Absorbed? */ |
94 |
< |
if (pmapRandom(rouletteState) > albedo) return 0; |
94 |
> |
if (pmapRandom(rouletteState) > albedo) |
95 |
> |
return 0; |
96 |
|
|
97 |
|
/* Colour bleeding without attenuation (?) */ |
98 |
|
multcolor(ray -> rcol, ray -> albedo); |
99 |
|
scalecolor(ray -> rcol, 1 / albedo); |
100 |
|
|
101 |
|
/* Scatter photon */ |
102 |
< |
cosTheta = ray -> gecc <= FTINY ? 2 * pmapRandom(scatterState) - 1 |
103 |
< |
: 1 / (2 * ray -> gecc) * |
104 |
< |
(1 + ray -> gecc * ray -> gecc - |
105 |
< |
(1 - ray -> gecc * ray -> gecc) / |
106 |
< |
(1 - ray -> gecc + 2 * ray -> gecc * |
167 |
< |
pmapRandom(scatterState))); |
102 |
> |
cosTheta = ray -> gecc <= FTINY |
103 |
> |
? 2 * pmapRandom(scatterState) - 1 |
104 |
> |
: 0.5 * (1 + gecc2 - |
105 |
> |
(1 - gecc2) / (1 - ray -> gecc + 2 * ray -> gecc * |
106 |
> |
pmapRandom(scatterState))) / ray -> gecc; |
107 |
|
|
108 |
|
cosPhi = cos(2 * PI * pmapRandom(scatterState)); |
109 |
|
du = dv = sqrt(1 - cosTheta * cosTheta); /* sin(theta) */ |
125 |
|
ray -> rlvl++; |
126 |
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
127 |
|
} |
128 |
< |
|
128 |
> |
|
129 |
> |
/* Passed through medium until intersecting local object */ |
130 |
|
setcolor(cvext, exp(-ray -> rot * ray -> cext [0]), |
131 |
|
exp(-ray -> rot * ray -> cext [1]), |
132 |
|
exp(-ray -> rot * ray -> cext [2])); |
133 |
|
|
134 |
|
/* Modify ray color and normalise */ |
135 |
|
multcolor(ray -> rcol, cvext); |
136 |
< |
colorNorm(ray -> rcol); |
137 |
< |
|
198 |
< |
/* Passed through medium */ |
136 |
> |
colorNorm(ray -> rcol); |
137 |
> |
|
138 |
|
return 1; |
139 |
|
} |
140 |
|
|
144 |
|
/* Follow photon as it bounces around... */ |
145 |
|
{ |
146 |
|
long mod; |
147 |
< |
OBJREC* mat; |
147 |
> |
OBJREC *mat, *port = NULL; |
148 |
> |
|
149 |
> |
if (!ray -> parent) { |
150 |
> |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: get photon port for |
151 |
> |
* !!! primary ray from ray -> ro, then reset the latter to NULL so |
152 |
> |
* !!! as not to interfere with localhit() */ |
153 |
> |
port = ray -> ro; |
154 |
> |
ray -> ro = NULL; |
155 |
> |
} |
156 |
|
|
157 |
|
if (ray -> rlvl > photonMaxBounce) { |
158 |
|
#ifdef PMAP_RUNAWAY_WARN |
163 |
|
|
164 |
|
if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) |
165 |
|
return; |
166 |
< |
|
166 |
> |
|
167 |
|
if (localhit(ray, &thescene)) { |
168 |
|
mod = ray -> ro -> omod; |
169 |
< |
|
169 |
> |
|
170 |
> |
if (port && ray -> ro != port) { |
171 |
> |
/* !!! PHOTON PORT REJECTION SAMPLING HACK !!! |
172 |
> |
* Terminate photon if emitted from port without intersecting it; |
173 |
> |
* this can happen when the port's partitions extend beyond its |
174 |
> |
* actual geometry, e.g. with polygons. Since the total flux |
175 |
> |
* relayed by the port is based on the (in this case) larger |
176 |
> |
* partition area, it is overestimated; terminating these photons |
177 |
> |
* constitutes rejection sampling and thereby compensates any bias |
178 |
> |
* incurred by the overestimated flux. */ |
179 |
> |
#ifdef PMAP_PORTREJECT_WARN |
180 |
> |
sprintf(errmsg, "photon outside port %s", ray -> ro -> oname); |
181 |
> |
error(WARNING, errmsg); |
182 |
> |
#endif |
183 |
> |
return; |
184 |
> |
} |
185 |
> |
|
186 |
|
if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { |
187 |
|
/* Transfer ray if modifier is VOID or clipped within antimatta */ |
188 |
|
RAY tray; |
200 |
|
|
201 |
|
|
202 |
|
static void preComputeGlobal (PhotonMap *pmap) |
203 |
< |
/* Precompute irradiance from global photons for final gathering using |
204 |
< |
the first finalGather * pmap -> heapSize photons in the heap. Returns |
205 |
< |
new heap with precomputed photons. */ |
203 |
> |
/* Precompute irradiance from global photons for final gathering for |
204 |
> |
a random subset of finalGather * pmap -> numPhotons photons, and builds |
205 |
> |
the photon map, discarding the original photons. */ |
206 |
> |
/* !!! NOTE: PRECOMPUTATION WITH OOC CURRENTLY WITHOUT CACHE !!! */ |
207 |
|
{ |
208 |
< |
unsigned long i, nuHeapSize; |
209 |
< |
unsigned j; |
210 |
< |
Photon *nuHeap, *p; |
211 |
< |
COLOR irrad; |
212 |
< |
RAY ray; |
213 |
< |
float nuMinPos [3], nuMaxPos [3]; |
208 |
> |
unsigned long i, numPreComp; |
209 |
> |
unsigned j; |
210 |
> |
PhotonIdx pIdx; |
211 |
> |
Photon photon; |
212 |
> |
RAY ray; |
213 |
> |
PhotonMap nuPmap; |
214 |
|
|
215 |
< |
repComplete = nuHeapSize = finalGather * pmap -> heapSize; |
215 |
> |
repComplete = numPreComp = finalGather * pmap -> numPhotons; |
216 |
|
|
217 |
< |
if (photonRepTime) { |
217 |
> |
if (verbose) { |
218 |
|
sprintf(errmsg, |
219 |
< |
"Precomputing irradiance for %ld global photons...\n", |
220 |
< |
nuHeapSize); |
219 |
> |
"\nPrecomputing irradiance for %ld global photons\n", |
220 |
> |
numPreComp); |
221 |
|
eputs(errmsg); |
222 |
+ |
#if NIX |
223 |
|
fflush(stderr); |
224 |
+ |
#endif |
225 |
|
} |
226 |
|
|
227 |
< |
p = nuHeap = (Photon*)malloc(nuHeapSize * sizeof(Photon)); |
228 |
< |
if (!nuHeap) |
229 |
< |
error(USER, "can't allocate photon heap"); |
230 |
< |
|
231 |
< |
for (j = 0; j <= 2; j++) { |
232 |
< |
nuMinPos [j] = FHUGE; |
267 |
< |
nuMaxPos [j] = -FHUGE; |
268 |
< |
} |
227 |
> |
/* Copy photon map for precomputed photons */ |
228 |
> |
memcpy(&nuPmap, pmap, sizeof(PhotonMap)); |
229 |
> |
|
230 |
> |
/* Zero counters, init new heap and extents */ |
231 |
> |
nuPmap.numPhotons = 0; |
232 |
> |
initPhotonHeap(&nuPmap); |
233 |
|
|
234 |
+ |
for (j = 0; j < 3; j++) { |
235 |
+ |
nuPmap.minPos [j] = FHUGE; |
236 |
+ |
nuPmap.maxPos [j] = -FHUGE; |
237 |
+ |
} |
238 |
+ |
|
239 |
|
/* Record start time, baby */ |
240 |
|
repStartTime = time(NULL); |
241 |
< |
#ifdef SIGCONT |
242 |
< |
signal(SIGCONT, pmapPreCompReport); |
243 |
< |
#endif |
241 |
> |
#ifdef SIGCONT |
242 |
> |
signal(SIGCONT, pmapPreCompReport); |
243 |
> |
#endif |
244 |
|
repProgress = 0; |
276 |
– |
memcpy(nuHeap, pmap -> heap, nuHeapSize * sizeof(Photon)); |
245 |
|
|
246 |
< |
for (i = 0, p = nuHeap; i < nuHeapSize; i++, p++) { |
247 |
< |
ray.ro = NULL; |
248 |
< |
VCOPY(ray.rop, p -> pos); |
246 |
> |
photonRay(NULL, &ray, PRIMARY, NULL); |
247 |
> |
ray.ro = NULL; |
248 |
> |
|
249 |
> |
for (i = 0; i < numPreComp; i++) { |
250 |
> |
/* Get random photon from stratified distribution in source heap to |
251 |
> |
* avoid duplicates and clustering */ |
252 |
> |
pIdx = firstPhoton(pmap) + |
253 |
> |
(unsigned long)((i + pmapRandom(pmap -> randState)) / |
254 |
> |
finalGather); |
255 |
> |
getPhoton(pmap, pIdx, &photon); |
256 |
|
|
257 |
< |
/* Update min and max positions & set ray normal */ |
258 |
< |
for (j = 0; j < 3; j++) { |
259 |
< |
if (p -> pos [j] < nuMinPos [j]) nuMinPos [j] = p -> pos [j]; |
260 |
< |
if (p -> pos [j] > nuMaxPos [j]) nuMaxPos [j] = p -> pos [j]; |
286 |
< |
ray.ron [j] = p -> norm [j] / 127.0; |
287 |
< |
} |
257 |
> |
/* Init dummy photon ray with intersection at photon position */ |
258 |
> |
VCOPY(ray.rop, photon.pos); |
259 |
> |
for (j = 0; j < 3; j++) |
260 |
> |
ray.ron [j] = photon.norm [j] / 127.0; |
261 |
|
|
262 |
< |
photonDensity(pmap, &ray, irrad); |
263 |
< |
setPhotonFlux(p, irrad); |
262 |
> |
/* Get density estimate at photon position */ |
263 |
> |
photonDensity(pmap, &ray, ray.rcol); |
264 |
> |
|
265 |
> |
/* Append photon to new heap from ray */ |
266 |
> |
newPhoton(&nuPmap, &ray); |
267 |
> |
|
268 |
> |
/* Update progress */ |
269 |
|
repProgress++; |
270 |
|
|
271 |
|
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
272 |
|
pmapPreCompReport(); |
273 |
< |
#ifdef SIGCONT |
274 |
< |
else signal(SIGCONT, pmapPreCompReport); |
275 |
< |
#endif |
273 |
> |
#ifdef SIGCONT |
274 |
> |
else signal(SIGCONT, pmapPreCompReport); |
275 |
> |
#endif |
276 |
|
} |
277 |
|
|
278 |
< |
#ifdef SIGCONT |
279 |
< |
signal(SIGCONT, SIG_DFL); |
302 |
< |
#endif |
278 |
> |
/* Flush heap */ |
279 |
> |
flushPhotonHeap(&nuPmap); |
280 |
|
|
281 |
< |
/* Replace & rebuild heap */ |
282 |
< |
free(pmap -> heap); |
283 |
< |
pmap -> heap = nuHeap; |
307 |
< |
pmap -> heapSize = pmap -> heapEnd = nuHeapSize; |
308 |
< |
VCOPY(pmap -> minPos, nuMinPos); |
309 |
< |
VCOPY(pmap -> maxPos, nuMaxPos); |
281 |
> |
#ifdef SIGCONT |
282 |
> |
signal(SIGCONT, SIG_DFL); |
283 |
> |
#endif |
284 |
|
|
285 |
< |
if (photonRepTime) { |
286 |
< |
eputs("Rebuilding global photon heap...\n"); |
285 |
> |
/* Trash original pmap, replace with precomputed one */ |
286 |
> |
deletePhotons(pmap); |
287 |
> |
memcpy(pmap, &nuPmap, sizeof(PhotonMap)); |
288 |
> |
|
289 |
> |
if (verbose) { |
290 |
> |
eputs("\nRebuilding precomputed photon map\n"); |
291 |
> |
#if NIX |
292 |
|
fflush(stderr); |
293 |
+ |
#endif |
294 |
|
} |
295 |
< |
|
296 |
< |
balancePhotons(pmap, NULL); |
295 |
> |
|
296 |
> |
/* Rebuild underlying data structure, destroying heap */ |
297 |
> |
buildPhotonMap(pmap, NULL, NULL, 1); |
298 |
|
} |
299 |
|
|
300 |
|
|
301 |
|
|
302 |
< |
void distribPhotons (PhotonMap **pmaps) |
302 |
> |
typedef struct { |
303 |
> |
unsigned long numPhotons [NUM_PMAP_TYPES], |
304 |
> |
numEmitted, numComplete; |
305 |
> |
} PhotonCnt; |
306 |
> |
|
307 |
> |
|
308 |
> |
|
309 |
> |
void distribPhotons (PhotonMap **pmaps, unsigned numProc) |
310 |
|
{ |
311 |
< |
EmissionMap emap; |
312 |
< |
char errmsg2 [128]; |
313 |
< |
unsigned t, srcIdx, passCnt = 0, prePassCnt = 0; |
314 |
< |
double totalFlux = 0; |
315 |
< |
PhotonMap *pm; |
311 |
> |
EmissionMap emap; |
312 |
> |
char errmsg2 [128], shmFname [PMAP_TMPFNLEN]; |
313 |
> |
unsigned t, srcIdx, proc; |
314 |
> |
double totalFlux = 0; |
315 |
> |
int shmFile, stat, pid; |
316 |
> |
PhotonMap *pm; |
317 |
> |
PhotonCnt *photonCnt; |
318 |
|
|
319 |
|
for (t = 0; t < NUM_PMAP_TYPES && !pmaps [t]; t++); |
320 |
+ |
|
321 |
|
if (t >= NUM_PMAP_TYPES) |
322 |
< |
error(USER, "no photon maps defined"); |
322 |
> |
error(USER, "no photon maps defined in distribPhotons"); |
323 |
|
|
324 |
|
if (!nsources) |
325 |
< |
error(USER, "no light sources"); |
325 |
> |
error(USER, "no light sources in distribPhotons"); |
326 |
|
|
327 |
|
/* =================================================================== |
328 |
|
* INITIALISATION - Set up emission and scattering funcs |
331 |
|
emap.maxPartitions = MAXSPART; |
332 |
|
emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1); |
333 |
|
if (!emap.partitions) |
334 |
< |
error(INTERNAL, "can't allocate source partitions"); |
334 |
> |
error(INTERNAL, "can't allocate source partitions in distribPhotons"); |
335 |
|
|
336 |
|
/* Initialise all defined photon maps */ |
337 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
338 |
< |
initPhotonMap(pmaps [t], t); |
338 |
> |
if (pmaps [t]) { |
339 |
> |
initPhotonMap(pmaps [t], t); |
340 |
> |
/* Open photon heapfile */ |
341 |
> |
initPhotonHeap(pmaps [t]); |
342 |
> |
/* Per-subprocess target count */ |
343 |
> |
pmaps [t] -> distribTarget /= numProc; |
344 |
> |
|
345 |
> |
if (!pmaps [t] -> distribTarget) |
346 |
> |
error(INTERNAL, "no photons to distribute in distribPhotons"); |
347 |
> |
} |
348 |
|
|
349 |
|
initPhotonEmissionFuncs(); |
350 |
|
initPhotonScatterFuncs(); |
351 |
|
|
352 |
< |
/* Get photon ports if specified */ |
353 |
< |
if (ambincl == 1) |
354 |
< |
getPhotonPorts(); |
352 |
> |
/* Get photon ports from modifier list */ |
353 |
> |
getPhotonPorts(photonPortList); |
354 |
|
|
355 |
|
/* Get photon sensor modifiers */ |
356 |
|
getPhotonSensors(photonSensorList); |
357 |
|
|
358 |
< |
/* Seed RNGs for photon distribution */ |
359 |
< |
pmapSeed(randSeed, partState); |
360 |
< |
pmapSeed(randSeed, emitState); |
361 |
< |
pmapSeed(randSeed, cntState); |
362 |
< |
pmapSeed(randSeed, mediumState); |
363 |
< |
pmapSeed(randSeed, scatterState); |
364 |
< |
pmapSeed(randSeed, rouletteState); |
358 |
> |
#if NIX |
359 |
> |
/* Set up shared mem for photon counters (zeroed by ftruncate) */ |
360 |
> |
strcpy(shmFname, PMAP_TMPFNAME); |
361 |
> |
shmFile = mkstemp(shmFname); |
362 |
> |
|
363 |
> |
if (shmFile < 0 || ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
364 |
> |
error(SYSTEM, "failed shared mem init in distribPhotons"); |
365 |
> |
|
366 |
> |
photonCnt = mmap(NULL, sizeof(*photonCnt), PROT_READ | PROT_WRITE, |
367 |
> |
MAP_SHARED, shmFile, 0); |
368 |
> |
|
369 |
> |
if (photonCnt == MAP_FAILED) |
370 |
> |
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
371 |
> |
#else |
372 |
> |
/* Allocate photon counters statically on Windoze */ |
373 |
> |
if (!(photonCnt = malloc(sizeof(PhotonCnt)))) |
374 |
> |
error(SYSTEM, "failed trivial malloc in distribPhotons"); |
375 |
> |
photonCnt -> numEmitted = photonCnt -> numComplete = 0; |
376 |
> |
#endif /* NIX */ |
377 |
> |
|
378 |
> |
if (verbose) { |
379 |
> |
sprintf(errmsg, "\nIntegrating flux from %d sources", nsources); |
380 |
> |
|
381 |
> |
if (photonPorts) { |
382 |
> |
sprintf(errmsg2, " via %d ports", numPhotonPorts); |
383 |
> |
strcat(errmsg, errmsg2); |
384 |
> |
} |
385 |
> |
|
386 |
> |
strcat(errmsg, "\n"); |
387 |
> |
eputs(errmsg); |
388 |
> |
} |
389 |
|
|
367 |
– |
if (photonRepTime) |
368 |
– |
eputs("\n"); |
369 |
– |
|
390 |
|
/* =================================================================== |
391 |
|
* FLUX INTEGRATION - Get total photon flux from light sources |
392 |
|
* =================================================================== */ |
393 |
< |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
393 |
> |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
394 |
|
unsigned portCnt = 0; |
395 |
|
emap.src = source + srcIdx; |
396 |
|
|
397 |
< |
do { |
397 |
> |
do { /* Need at least one iteration if no ports! */ |
398 |
|
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
399 |
|
: NULL; |
400 |
|
photonPartition [emap.src -> so -> otype] (&emap); |
401 |
|
|
402 |
< |
if (photonRepTime) { |
403 |
< |
sprintf(errmsg, "Integrating flux from source %s ", |
402 |
> |
if (verbose) { |
403 |
> |
sprintf(errmsg, "\tIntegrating flux from source %s ", |
404 |
|
source [srcIdx].so -> oname); |
405 |
< |
|
405 |
> |
|
406 |
|
if (emap.port) { |
407 |
|
sprintf(errmsg2, "via port %s ", |
408 |
|
photonPorts [portCnt].so -> oname); |
409 |
|
strcat(errmsg, errmsg2); |
410 |
|
} |
411 |
< |
|
412 |
< |
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
411 |
> |
|
412 |
> |
sprintf(errmsg2, "(%lu partitions)\n", emap.numPartitions); |
413 |
|
strcat(errmsg, errmsg2); |
414 |
|
eputs(errmsg); |
415 |
+ |
#if NIX |
416 |
|
fflush(stderr); |
417 |
+ |
#endif |
418 |
|
} |
419 |
|
|
420 |
|
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
429 |
|
|
430 |
|
if (totalFlux < FTINY) |
431 |
|
error(USER, "zero flux from light sources"); |
410 |
– |
|
411 |
– |
/* Record start time and enable progress report signal handler */ |
412 |
– |
repStartTime = time(NULL); |
413 |
– |
#ifdef SIGCONT |
414 |
– |
signal(SIGCONT, pmapDistribReport); |
415 |
– |
#endif |
416 |
– |
repProgress = prePassCnt = 0; |
417 |
– |
|
418 |
– |
if (photonRepTime) |
419 |
– |
eputs("\n"); |
420 |
– |
|
421 |
– |
/* =================================================================== |
422 |
– |
* 2-PASS PHOTON DISTRIBUTION |
423 |
– |
* Pass 1 (pre): emit fraction of target photon count |
424 |
– |
* Pass 2 (main): based on outcome of pass 1, estimate remaining number |
425 |
– |
* of photons to emit to approximate target count |
426 |
– |
* =================================================================== */ |
427 |
– |
do { |
428 |
– |
double numEmit; |
432 |
|
|
433 |
< |
if (!passCnt) { |
434 |
< |
/* INIT PASS 1 */ |
432 |
< |
/* Skip if no photons contributed after sufficient iterations; make |
433 |
< |
* it clear to user which photon maps are missing so (s)he can |
434 |
< |
* check the scene geometry and materials */ |
435 |
< |
if (++prePassCnt > maxPreDistrib) { |
436 |
< |
sprintf(errmsg, "too many prepasses"); |
433 |
> |
/* Record start time for progress reports */ |
434 |
> |
repStartTime = time(NULL); |
435 |
|
|
436 |
< |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
437 |
< |
if (pmaps [t] && !pmaps [t] -> heapEnd) { |
438 |
< |
sprintf(errmsg2, ", no %s photons stored", pmapName [t]); |
439 |
< |
strcat(errmsg, errmsg2); |
442 |
< |
} |
443 |
< |
|
444 |
< |
error(USER, errmsg); |
445 |
< |
break; |
446 |
< |
} |
436 |
> |
if (verbose) { |
437 |
> |
sprintf(errmsg, "\nPhoton distribution @ %d procs\n", numProc); |
438 |
> |
eputs(errmsg); |
439 |
> |
} |
440 |
|
|
441 |
< |
/* Num to emit is fraction of minimum target count */ |
442 |
< |
numEmit = FHUGE; |
441 |
> |
/* MAIN LOOP */ |
442 |
> |
for (proc = 0; proc < numProc; proc++) { |
443 |
> |
#if NIX |
444 |
> |
if (!(pid = fork())) { |
445 |
> |
/* SUBPROCESS ENTERS HERE; open and mmapped files inherited */ |
446 |
> |
#else |
447 |
> |
if (1) { |
448 |
> |
/* No subprocess under Windoze */ |
449 |
> |
#endif |
450 |
> |
/* Local photon counters for this subprocess */ |
451 |
> |
unsigned passCnt = 0, prePassCnt = 0; |
452 |
> |
unsigned long lastNumPhotons [NUM_PMAP_TYPES]; |
453 |
> |
unsigned long localNumEmitted = 0; /* Num photons emitted by this |
454 |
> |
subprocess alone */ |
455 |
|
|
456 |
< |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
457 |
< |
if (pmaps [t]) |
458 |
< |
numEmit = min(pmaps [t] -> distribTarget, numEmit); |
456 |
> |
/* Seed RNGs from PID for decorellated photon distribution */ |
457 |
> |
pmapSeed(randSeed + proc, partState); |
458 |
> |
pmapSeed(randSeed + (proc + 1) % numProc, emitState); |
459 |
> |
pmapSeed(randSeed + (proc + 2) % numProc, cntState); |
460 |
> |
pmapSeed(randSeed + (proc + 3) % numProc, mediumState); |
461 |
> |
pmapSeed(randSeed + (proc + 4) % numProc, scatterState); |
462 |
> |
pmapSeed(randSeed + (proc + 5) % numProc, rouletteState); |
463 |
|
|
464 |
< |
numEmit *= preDistrib; |
465 |
< |
} |
464 |
> |
#ifdef DEBUG_PMAP |
465 |
> |
/* Output child process PID after random delay to prevent corrupted |
466 |
> |
* console output due to race condition */ |
467 |
> |
usleep(1e6 * pmapRandom(rouletteState)); |
468 |
> |
fprintf(stderr, "Proc %d: PID = %d " |
469 |
> |
"(waiting 10 sec to attach debugger...)\n", |
470 |
> |
proc, getpid()); |
471 |
> |
/* Allow time for debugger to attach to child process */ |
472 |
> |
sleep(10); |
473 |
> |
#endif |
474 |
|
|
458 |
– |
else { |
459 |
– |
/* INIT PASS 2 */ |
460 |
– |
/* Based on the outcome of the predistribution we can now estimate |
461 |
– |
* how many more photons we have to emit for each photon map to |
462 |
– |
* meet its respective target count. This value is clamped to 0 in |
463 |
– |
* case the target has already been exceeded in the pass 1. Note |
464 |
– |
* repProgress is the number of photons emitted thus far, while |
465 |
– |
* heapEnd is the number of photons stored in each photon map. */ |
466 |
– |
double maxDistribRatio = 0; |
467 |
– |
|
468 |
– |
/* Set the distribution ratio for each map; this indicates how many |
469 |
– |
* photons of each respective type are stored per emitted photon, |
470 |
– |
* and is used as probability for storing a photon by addPhoton(). |
471 |
– |
* Since this biases the photon density, addPhoton() promotes the |
472 |
– |
* flux of stored photons to compensate. */ |
475 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
476 |
< |
if ((pm = pmaps [t])) { |
477 |
< |
pm -> distribRatio = (double)pm -> distribTarget / |
478 |
< |
pm -> heapEnd - 1; |
479 |
< |
|
480 |
< |
/* Check if photon map "overflowed", i.e. exceeded its target |
481 |
< |
* count in the prepass; correcting the photon flux via the |
482 |
< |
* distribution ratio is no longer possible, as no more |
483 |
< |
* photons of this type will be stored, so notify the user |
484 |
< |
* rather than deliver incorrect results. |
483 |
< |
* In future we should handle this more intelligently by |
484 |
< |
* using the photonFlux in each photon map to individually |
485 |
< |
* correct the flux after distribution. */ |
486 |
< |
if (pm -> distribRatio <= FTINY) { |
487 |
< |
sprintf(errmsg, |
488 |
< |
"%s photon map overflow in prepass, reduce -apD", |
489 |
< |
pmapName [t]); |
490 |
< |
error(INTERNAL, errmsg); |
491 |
< |
} |
492 |
< |
|
493 |
< |
maxDistribRatio = max(pm -> distribRatio, maxDistribRatio); |
494 |
< |
} |
495 |
< |
|
496 |
< |
/* Normalise distribution ratios and calculate number of photons to |
497 |
< |
* emit in main pass */ |
498 |
< |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
499 |
< |
if ((pm = pmaps [t])) |
500 |
< |
pm -> distribRatio /= maxDistribRatio; |
501 |
< |
|
502 |
< |
if ((numEmit = repProgress * maxDistribRatio) < FTINY) |
503 |
< |
/* No photons left to distribute in main pass */ |
504 |
< |
break; |
505 |
< |
} |
506 |
< |
|
507 |
< |
/* Set completion count for progress report */ |
508 |
< |
repComplete = numEmit + repProgress; |
509 |
< |
|
510 |
< |
/* PHOTON DISTRIBUTION LOOP */ |
511 |
< |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
512 |
< |
unsigned portCnt = 0; |
513 |
< |
emap.src = source + srcIdx; |
514 |
< |
|
476 |
> |
lastNumPhotons [t] = 0; |
477 |
> |
|
478 |
> |
/* ============================================================= |
479 |
> |
* 2-PASS PHOTON DISTRIBUTION |
480 |
> |
* Pass 1 (pre): emit fraction of target photon count |
481 |
> |
* Pass 2 (main): based on outcome of pass 1, estimate remaining |
482 |
> |
* number of photons to emit to approximate target |
483 |
> |
* count |
484 |
> |
* ============================================================= */ |
485 |
|
do { |
486 |
< |
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
517 |
< |
: NULL; |
518 |
< |
photonPartition [emap.src -> so -> otype] (&emap); |
486 |
> |
double numEmit; |
487 |
|
|
488 |
< |
if (photonRepTime) { |
489 |
< |
if (!passCnt) |
490 |
< |
sprintf(errmsg, "PREPASS %d on source %s ", |
491 |
< |
prePassCnt, source [srcIdx].so -> oname); |
492 |
< |
else |
493 |
< |
sprintf(errmsg, "MAIN PASS on source %s ", |
494 |
< |
source [srcIdx].so -> oname); |
495 |
< |
|
496 |
< |
if (emap.port) { |
497 |
< |
sprintf(errmsg2, "via port %s ", |
498 |
< |
photonPorts [portCnt].so -> oname); |
499 |
< |
strcat(errmsg, errmsg2); |
488 |
> |
if (!passCnt) { |
489 |
> |
/* INIT PASS 1 */ |
490 |
> |
/* Skip if no photons contributed after sufficient |
491 |
> |
* iterations; make it clear to user which photon maps are |
492 |
> |
* missing so (s)he can check geometry and materials */ |
493 |
> |
if (++prePassCnt > maxPreDistrib) { |
494 |
> |
sprintf(errmsg, "proc %d: too many prepasses", proc); |
495 |
> |
|
496 |
> |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
497 |
> |
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
498 |
> |
sprintf(errmsg2, ", no %s photons stored", |
499 |
> |
pmapName [t]); |
500 |
> |
strcat(errmsg, errmsg2); |
501 |
> |
} |
502 |
> |
|
503 |
> |
error(USER, errmsg); |
504 |
> |
break; |
505 |
|
} |
506 |
+ |
|
507 |
+ |
/* Num to emit is fraction of minimum target count */ |
508 |
+ |
numEmit = FHUGE; |
509 |
|
|
510 |
< |
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
511 |
< |
strcat(errmsg, errmsg2); |
512 |
< |
eputs(errmsg); |
513 |
< |
fflush(stderr); |
510 |
> |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
511 |
> |
if (pmaps [t]) |
512 |
> |
numEmit = min(pmaps [t] -> distribTarget, numEmit); |
513 |
> |
|
514 |
> |
numEmit *= preDistrib; |
515 |
|
} |
516 |
< |
|
517 |
< |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
518 |
< |
emap.partitionCnt++) { |
519 |
< |
double partNumEmit; |
520 |
< |
unsigned long partEmitCnt; |
516 |
> |
else { |
517 |
> |
/* INIT PASS 2 */ |
518 |
> |
/* Based on the outcome of the predistribution we can now |
519 |
> |
* estimate how many more photons we have to emit for each |
520 |
> |
* photon map to meet its respective target count. This |
521 |
> |
* value is clamped to 0 in case the target has already been |
522 |
> |
* exceeded in the pass 1. */ |
523 |
> |
double maxDistribRatio = 0; |
524 |
> |
|
525 |
> |
/* Set the distribution ratio for each map; this indicates |
526 |
> |
* how many photons of each respective type are stored per |
527 |
> |
* emitted photon, and is used as probability for storing a |
528 |
> |
* photon by newPhoton(). Since this biases the photon |
529 |
> |
* density, newPhoton() promotes the flux of stored photons |
530 |
> |
* to compensate. */ |
531 |
> |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
532 |
> |
if ((pm = pmaps [t])) { |
533 |
> |
pm -> distribRatio = (double)pm -> distribTarget / |
534 |
> |
pm -> numPhotons - 1; |
535 |
> |
|
536 |
> |
/* Check if photon map "overflowed", i.e. exceeded its |
537 |
> |
* target count in the prepass; correcting the photon |
538 |
> |
* flux via the distribution ratio is no longer |
539 |
> |
* possible, as no more photons of this type will be |
540 |
> |
* stored, so notify the user rather than deliver |
541 |
> |
* incorrect results. In future we should handle this |
542 |
> |
* more intelligently by using the photonFlux in each |
543 |
> |
* photon map to individually correct the flux after |
544 |
> |
* distribution. */ |
545 |
> |
if (pm -> distribRatio <= FTINY) { |
546 |
> |
sprintf(errmsg, "%s photon map overflow in " |
547 |
> |
"prepass, reduce -apD", pmapName [t]); |
548 |
> |
error(INTERNAL, errmsg); |
549 |
> |
} |
550 |
> |
|
551 |
> |
maxDistribRatio = max(pm -> distribRatio, |
552 |
> |
maxDistribRatio); |
553 |
> |
} |
554 |
|
|
555 |
< |
/* Get photon origin within current source partishunn and |
556 |
< |
* build emission map */ |
557 |
< |
photonOrigin [emap.src -> so -> otype] (&emap); |
558 |
< |
initPhotonEmission(&emap, pdfSamples); |
559 |
< |
|
560 |
< |
/* Number of photons to emit from ziss partishunn -- |
561 |
< |
* proportional to flux; photon ray weight and scalar flux |
562 |
< |
* are uniform (the latter only varying in RGB). */ |
563 |
< |
partNumEmit = numEmit * colorAvg(emap.partFlux) / totalFlux; |
564 |
< |
partEmitCnt = (unsigned long)partNumEmit; |
555 |
< |
|
556 |
< |
/* Probabilistically account for fractional photons */ |
557 |
< |
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
558 |
< |
partEmitCnt++; |
555 |
> |
/* Normalise distribution ratios and calculate number of |
556 |
> |
* photons to emit in main pass */ |
557 |
> |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
558 |
> |
if ((pm = pmaps [t])) |
559 |
> |
pm -> distribRatio /= maxDistribRatio; |
560 |
> |
|
561 |
> |
if ((numEmit = localNumEmitted * maxDistribRatio) < FTINY) |
562 |
> |
/* No photons left to distribute in main pass */ |
563 |
> |
break; |
564 |
> |
} |
565 |
|
|
566 |
< |
/* Integer counter avoids FP rounding errors */ |
567 |
< |
while (partEmitCnt--) { |
568 |
< |
RAY photonRay; |
566 |
> |
/* Update shared completion counter for progreport by parent */ |
567 |
> |
photonCnt -> numComplete += numEmit; |
568 |
> |
|
569 |
> |
/* PHOTON DISTRIBUTION LOOP */ |
570 |
> |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
571 |
> |
unsigned portCnt = 0; |
572 |
> |
emap.src = source + srcIdx; |
573 |
> |
|
574 |
> |
do { /* Need at least one iteration if no ports! */ |
575 |
> |
emap.port = emap.src -> sflags & SDISTANT |
576 |
> |
? photonPorts + portCnt : NULL; |
577 |
> |
photonPartition [emap.src -> so -> otype] (&emap); |
578 |
> |
|
579 |
> |
if (verbose && !proc) { |
580 |
> |
/* Output from subproc 0 only to avoid race condition |
581 |
> |
* on console I/O */ |
582 |
> |
if (!passCnt) |
583 |
> |
sprintf(errmsg, "\tPREPASS %d on source %s ", |
584 |
> |
prePassCnt, source [srcIdx].so -> oname); |
585 |
> |
else |
586 |
> |
sprintf(errmsg, "\tMAIN PASS on source %s ", |
587 |
> |
source [srcIdx].so -> oname); |
588 |
> |
|
589 |
> |
if (emap.port) { |
590 |
> |
sprintf(errmsg2, "via port %s ", |
591 |
> |
photonPorts [portCnt].so -> oname); |
592 |
> |
strcat(errmsg, errmsg2); |
593 |
> |
} |
594 |
> |
|
595 |
> |
sprintf(errmsg2, "(%lu partitions)\n", |
596 |
> |
emap.numPartitions); |
597 |
> |
strcat(errmsg, errmsg2); |
598 |
> |
eputs(errmsg); |
599 |
> |
#if NIX |
600 |
> |
fflush(stderr); |
601 |
> |
#endif |
602 |
> |
} |
603 |
|
|
604 |
< |
/* Emit photon based on PDF and trace through scene until |
605 |
< |
* absorbed/leaked */ |
606 |
< |
emitPhoton(&emap, &photonRay); |
607 |
< |
tracePhoton(&photonRay); |
604 |
> |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
605 |
> |
emap.partitionCnt++) { |
606 |
> |
double partNumEmit; |
607 |
> |
unsigned long partEmitCnt; |
608 |
> |
|
609 |
> |
/* Get photon origin within current source partishunn |
610 |
> |
* and build emission map */ |
611 |
> |
photonOrigin [emap.src -> so -> otype] (&emap); |
612 |
> |
initPhotonEmission(&emap, pdfSamples); |
613 |
> |
|
614 |
> |
/* Number of photons to emit from ziss partishunn -- |
615 |
> |
* proportional to flux; photon ray weight and scalar |
616 |
> |
* flux are uniform (latter only varying in RGB). */ |
617 |
> |
partNumEmit = numEmit * colorAvg(emap.partFlux) / |
618 |
> |
totalFlux; |
619 |
> |
partEmitCnt = (unsigned long)partNumEmit; |
620 |
> |
|
621 |
> |
/* Probabilistically account for fractional photons */ |
622 |
> |
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
623 |
> |
partEmitCnt++; |
624 |
> |
|
625 |
> |
/* Update local and shared (global) emission counter */ |
626 |
> |
photonCnt -> numEmitted += partEmitCnt; |
627 |
> |
localNumEmitted += partEmitCnt; |
628 |
> |
|
629 |
> |
/* Integer counter avoids FP rounding errors during |
630 |
> |
* iteration */ |
631 |
> |
while (partEmitCnt--) { |
632 |
> |
RAY photonRay; |
633 |
> |
|
634 |
> |
/* Emit photon based on PDF and trace through scene |
635 |
> |
* until absorbed/leaked */ |
636 |
> |
emitPhoton(&emap, &photonRay); |
637 |
> |
#if 1 |
638 |
> |
if (emap.port) |
639 |
> |
/* !!! PHOTON PORT REJECTION SAMPLING HACK: set |
640 |
> |
* !!! photon port as fake hit object for |
641 |
> |
* !!! primary ray to check for intersection in |
642 |
> |
* !!! tracePhoton() */ |
643 |
> |
photonRay.ro = emap.port -> so; |
644 |
> |
#endif |
645 |
> |
tracePhoton(&photonRay); |
646 |
> |
} |
647 |
> |
|
648 |
> |
/* Update shared global photon count for each pmap */ |
649 |
> |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
650 |
> |
if (pmaps [t]) { |
651 |
> |
photonCnt -> numPhotons [t] += |
652 |
> |
pmaps [t] -> numPhotons - lastNumPhotons [t]; |
653 |
> |
lastNumPhotons [t] = pmaps [t] -> numPhotons; |
654 |
> |
} |
655 |
> |
#if !NIX |
656 |
> |
/* Synchronous progress report on Windoze */ |
657 |
> |
if (!proc && photonRepTime > 0 && |
658 |
> |
time(NULL) >= repLastTime + photonRepTime) { |
659 |
> |
repEmitted = repProgress = photonCnt -> numEmitted; |
660 |
> |
repComplete = photonCnt -> numComplete; |
661 |
> |
pmapDistribReport(); |
662 |
> |
} |
663 |
> |
#endif |
664 |
> |
} |
665 |
|
|
666 |
< |
/* Record progress */ |
667 |
< |
repProgress++; |
668 |
< |
|
669 |
< |
if (photonRepTime > 0 && |
670 |
< |
time(NULL) >= repLastTime + photonRepTime) |
671 |
< |
pmapDistribReport(); |
672 |
< |
#ifdef SIGCONT |
673 |
< |
else signal(SIGCONT, pmapDistribReport); |
674 |
< |
#endif |
666 |
> |
portCnt++; |
667 |
> |
} while (portCnt < numPhotonPorts); |
668 |
> |
} |
669 |
> |
|
670 |
> |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
671 |
> |
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
672 |
> |
/* Double preDistrib in case a photon map is empty and |
673 |
> |
* redo pass 1 --> possibility of infinite loop for |
674 |
> |
* pathological scenes (e.g. absorbing materials) */ |
675 |
> |
preDistrib *= 2; |
676 |
> |
break; |
677 |
|
} |
678 |
+ |
|
679 |
+ |
if (t >= NUM_PMAP_TYPES) |
680 |
+ |
/* No empty photon maps found; now do pass 2 */ |
681 |
+ |
passCnt++; |
682 |
+ |
} while (passCnt < 2); |
683 |
+ |
|
684 |
+ |
/* Flush heap buffa for every pmap one final time; |
685 |
+ |
* avoids potential data corruption! */ |
686 |
+ |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
687 |
+ |
if (pmaps [t]) { |
688 |
+ |
flushPhotonHeap(pmaps [t]); |
689 |
+ |
/* Heap file closed automatically on exit |
690 |
+ |
fclose(pmaps [t] -> heap); */ |
691 |
+ |
#ifdef DEBUG_PMAP |
692 |
+ |
sprintf(errmsg, "Proc %d: total %ld photons\n", proc, |
693 |
+ |
pmaps [t] -> numPhotons); |
694 |
+ |
eputs(errmsg); |
695 |
+ |
#endif |
696 |
|
} |
697 |
< |
|
698 |
< |
portCnt++; |
699 |
< |
} while (portCnt < numPhotonPorts); |
697 |
> |
#if NIX |
698 |
> |
/* Terminate subprocess */ |
699 |
> |
exit(0); |
700 |
> |
#endif |
701 |
|
} |
702 |
+ |
else if (pid < 0) |
703 |
+ |
error(SYSTEM, "failed to fork subprocess in distribPhotons"); |
704 |
+ |
} |
705 |
+ |
|
706 |
+ |
#if NIX |
707 |
+ |
/* PARENT PROCESS CONTINUES HERE */ |
708 |
+ |
#ifdef SIGCONT |
709 |
+ |
/* Enable progress report signal handler */ |
710 |
+ |
signal(SIGCONT, pmapDistribReport); |
711 |
+ |
#endif |
712 |
+ |
/* Wait for subprocesses complete while reporting progress */ |
713 |
+ |
proc = numProc; |
714 |
+ |
while (proc) { |
715 |
+ |
while (waitpid(-1, &stat, WNOHANG) > 0) { |
716 |
+ |
/* Subprocess exited; check status */ |
717 |
+ |
if (!WIFEXITED(stat) || WEXITSTATUS(stat)) |
718 |
+ |
error(USER, "failed photon distribution"); |
719 |
|
|
720 |
+ |
--proc; |
721 |
+ |
} |
722 |
+ |
|
723 |
+ |
/* Nod off for a bit and update progress */ |
724 |
+ |
sleep(1); |
725 |
+ |
|
726 |
+ |
/* Asynchronous progress report from shared subprocess counters */ |
727 |
+ |
repEmitted = repProgress = photonCnt -> numEmitted; |
728 |
+ |
repComplete = photonCnt -> numComplete; |
729 |
+ |
|
730 |
+ |
repProgress = repComplete = 0; |
731 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
732 |
< |
if (pmaps [t] && !pmaps [t] -> heapEnd) { |
733 |
< |
/* Double preDistrib in case a photon map is empty and redo |
734 |
< |
* pass 1 --> possibility of infinite loop for pathological |
735 |
< |
* scenes (e.g. absorbing materials) */ |
590 |
< |
preDistrib *= 2; |
591 |
< |
break; |
732 |
> |
if ((pm = pmaps [t])) { |
733 |
> |
/* Get global photon count from shmem updated by subprocs */ |
734 |
> |
repProgress += pm -> numPhotons = photonCnt -> numPhotons [t]; |
735 |
> |
repComplete += pm -> distribTarget; |
736 |
|
} |
737 |
< |
|
594 |
< |
if (t >= NUM_PMAP_TYPES) { |
595 |
< |
/* No empty photon maps found; now do pass 2 */ |
596 |
< |
passCnt++; |
597 |
< |
if (photonRepTime) |
598 |
< |
eputs("\n"); |
599 |
< |
} |
600 |
< |
} while (passCnt < 2); |
737 |
> |
repComplete *= numProc; |
738 |
|
|
739 |
+ |
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
740 |
+ |
pmapDistribReport(); |
741 |
+ |
#ifdef SIGCONT |
742 |
+ |
else signal(SIGCONT, pmapDistribReport); |
743 |
+ |
#endif |
744 |
+ |
} |
745 |
+ |
#endif /* NIX */ |
746 |
+ |
|
747 |
|
/* =================================================================== |
748 |
< |
* POST-DISTRIBUTION - Set photon flux and build kd-tree, etc. |
748 |
> |
* POST-DISTRIBUTION - Set photon flux and build data struct for photon |
749 |
> |
* storage, etc. |
750 |
|
* =================================================================== */ |
751 |
< |
#ifdef SIGCONT |
752 |
< |
signal(SIGCONT, SIG_DFL); |
753 |
< |
#endif |
751 |
> |
#ifdef SIGCONT |
752 |
> |
/* Reset signal handler */ |
753 |
> |
signal(SIGCONT, SIG_DFL); |
754 |
> |
#endif |
755 |
|
free(emap.samples); |
756 |
|
|
757 |
< |
/* Set photon flux (repProgress is total num emitted) */ |
758 |
< |
totalFlux /= repProgress; |
759 |
< |
|
757 |
> |
/* Set photon flux */ |
758 |
> |
totalFlux /= photonCnt -> numEmitted; |
759 |
> |
#if NIX |
760 |
> |
/* Photon counters no longer needed, unmap shared memory */ |
761 |
> |
munmap(photonCnt, sizeof(*photonCnt)); |
762 |
> |
close(shmFile); |
763 |
> |
unlink(shmFname); |
764 |
> |
#else |
765 |
> |
free(photonCnt); |
766 |
> |
#endif |
767 |
> |
if (verbose) |
768 |
> |
eputs("\n"); |
769 |
> |
|
770 |
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
771 |
|
if (pmaps [t]) { |
772 |
< |
if (photonRepTime) { |
773 |
< |
sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]); |
772 |
> |
if (verbose) { |
773 |
> |
sprintf(errmsg, "Building %s photon map\n", pmapName [t]); |
774 |
|
eputs(errmsg); |
775 |
+ |
#if NIX |
776 |
|
fflush(stderr); |
777 |
+ |
#endif |
778 |
|
} |
779 |
< |
|
780 |
< |
balancePhotons(pmaps [t], &totalFlux); |
779 |
> |
|
780 |
> |
/* Build underlying data structure; heap is destroyed */ |
781 |
> |
buildPhotonMap(pmaps [t], &totalFlux, NULL, numProc); |
782 |
|
} |
783 |
|
|
784 |
|
/* Precompute photon irradiance if necessary */ |
785 |
< |
if (preCompPmap) |
785 |
> |
if (preCompPmap) { |
786 |
> |
if (verbose) |
787 |
> |
eputs("\n"); |
788 |
|
preComputeGlobal(preCompPmap); |
789 |
< |
} |
628 |
< |
|
629 |
< |
|
630 |
< |
|
631 |
< |
void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
632 |
< |
/* Photon density estimate. Returns irradiance at ray -> rop. */ |
633 |
< |
{ |
634 |
< |
unsigned i; |
635 |
< |
PhotonSQNode *sq; |
636 |
< |
float r; |
637 |
< |
COLOR flux; |
638 |
< |
|
639 |
< |
setcolor(irrad, 0, 0, 0); |
640 |
< |
|
641 |
< |
if (!pmap -> maxGather) |
642 |
< |
return; |
643 |
< |
|
644 |
< |
/* Ignore sources */ |
645 |
< |
if (ray -> ro) |
646 |
< |
if (islight(objptr(ray -> ro -> omod) -> otype)) |
647 |
< |
return; |
648 |
< |
|
649 |
< |
pmap -> squeueEnd = 0; |
650 |
< |
findPhotons(pmap, ray); |
789 |
> |
} |
790 |
|
|
791 |
< |
/* Need at least 2 photons */ |
792 |
< |
if (pmap -> squeueEnd < 2) { |
654 |
< |
#ifdef PMAP_NONEFOUND |
655 |
< |
sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", |
656 |
< |
ray -> ro ? ray -> ro -> oname : "<null>", |
657 |
< |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
658 |
< |
error(WARNING, errmsg); |
659 |
< |
#endif |
660 |
< |
|
661 |
< |
return; |
662 |
< |
} |
663 |
< |
|
664 |
< |
if (pmap -> minGather == pmap -> maxGather) { |
665 |
< |
/* No bias compensation. Just do a plain vanilla estimate */ |
666 |
< |
sq = pmap -> squeue + 1; |
667 |
< |
|
668 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
669 |
< |
r = max(sq -> dist, (sq + 1) -> dist); |
670 |
< |
r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r)); |
671 |
< |
|
672 |
< |
/* Skip the extra photon */ |
673 |
< |
for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) { |
674 |
< |
getPhotonFlux(sq -> photon, flux); |
675 |
< |
#ifdef PMAP_EPANECHNIKOV |
676 |
< |
/* Apply Epanechnikov kernel to photon flux (dists are squared) */ |
677 |
< |
scalecolor(flux, 2 * (1 - sq -> dist / r)); |
678 |
< |
#endif |
679 |
< |
addcolor(irrad, flux); |
680 |
< |
} |
681 |
< |
|
682 |
< |
/* Divide by search area PI * r^2, 1 / PI required as ambient |
683 |
< |
normalisation factor */ |
684 |
< |
scalecolor(irrad, 1 / (PI * PI * r)); |
685 |
< |
|
686 |
< |
return; |
687 |
< |
} |
688 |
< |
else |
689 |
< |
/* Apply bias compensation to density estimate */ |
690 |
< |
biasComp(pmap, irrad); |
691 |
< |
} |
692 |
< |
|
693 |
< |
|
694 |
< |
|
695 |
< |
void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad) |
696 |
< |
/* Returns precomputed photon density estimate at ray -> rop. */ |
697 |
< |
{ |
698 |
< |
Photon *p; |
699 |
< |
|
700 |
< |
setcolor(irrad, 0, 0, 0); |
701 |
< |
|
702 |
< |
/* Ignore sources */ |
703 |
< |
if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) |
704 |
< |
return; |
705 |
< |
|
706 |
< |
if ((p = find1Photon(preCompPmap, r))) |
707 |
< |
getPhotonFlux(p, irrad); |
708 |
< |
} |
709 |
< |
|
710 |
< |
|
711 |
< |
|
712 |
< |
void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
713 |
< |
/* Photon volume density estimate. Returns irradiance at ray -> rop. */ |
714 |
< |
{ |
715 |
< |
unsigned i; |
716 |
< |
PhotonSQNode *sq; |
717 |
< |
float gecc2, r, ph; |
718 |
< |
COLOR flux; |
719 |
< |
|
720 |
< |
setcolor(irrad, 0, 0, 0); |
721 |
< |
|
722 |
< |
if (!pmap -> maxGather) |
723 |
< |
return; |
724 |
< |
|
725 |
< |
pmap -> squeueEnd = 0; |
726 |
< |
findPhotons(pmap, ray); |
727 |
< |
|
728 |
< |
/* Need at least 2 photons */ |
729 |
< |
if (pmap -> squeueEnd < 2) |
730 |
< |
return; |
731 |
< |
|
732 |
< |
if (pmap -> minGather == pmap -> maxGather) { |
733 |
< |
/* No bias compensation. Just do a plain vanilla estimate */ |
734 |
< |
gecc2 = ray -> gecc * ray -> gecc; |
735 |
< |
sq = pmap -> squeue + 1; |
736 |
< |
|
737 |
< |
/* Average radius between furthest two photons to improve accuracy */ |
738 |
< |
r = max(sq -> dist, (sq + 1) -> dist); |
739 |
< |
r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r)); |
740 |
< |
|
741 |
< |
/* Skip the extra photon */ |
742 |
< |
for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) { |
743 |
< |
/* Compute phase function for inscattering from photon */ |
744 |
< |
if (gecc2 <= FTINY) |
745 |
< |
ph = 1; |
746 |
< |
else { |
747 |
< |
ph = DOT(ray -> rdir, sq -> photon -> norm) / 127; |
748 |
< |
ph = 1 + gecc2 - 2 * ray -> gecc * ph; |
749 |
< |
ph = (1 - gecc2) / (ph * sqrt(ph)); |
750 |
< |
} |
751 |
< |
|
752 |
< |
getPhotonFlux(sq -> photon, flux); |
753 |
< |
scalecolor(flux, ph); |
754 |
< |
addcolor(irrad, flux); |
755 |
< |
} |
756 |
< |
|
757 |
< |
/* Divide by search volume 4 / 3 * PI * r^3 and phase function |
758 |
< |
normalization factor 1 / (4 * PI) */ |
759 |
< |
scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r))); |
760 |
< |
|
761 |
< |
return; |
762 |
< |
} |
763 |
< |
|
764 |
< |
else |
765 |
< |
/* Apply bias compensation to density estimate */ |
766 |
< |
volumeBiasComp(pmap, ray, irrad); |
791 |
> |
if (verbose) |
792 |
> |
eputs("\n"); |
793 |
|
} |