ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/pmap.c
Revision: 2.2
Committed: Tue Apr 21 19:16:51 2015 UTC (9 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +3 -4 lines
Log Message:
Fixes for Windows and photon map

File Contents

# User Rev Content
1 greg 2.1 /*
2     ==================================================================
3     Photon map main module
4    
5     Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
6     (c) Fraunhofer Institute for Solar Energy Systems,
7     Lucerne University of Applied Sciences & Arts
8     ==================================================================
9    
10 greg 2.2 $Id: pmap.c,v 2.1 2015/02/24 19:39:26 greg Exp $
11 greg 2.1 */
12    
13    
14    
15     #include "pmap.h"
16     #include "pmapmat.h"
17     #include "pmapsrc.h"
18     #include "pmaprand.h"
19     #include "pmapio.h"
20     #include "pmapbias.h"
21     #include "pmapdiag.h"
22     #include "otypes.h"
23     #include <time.h>
24     #include <sys/stat.h>
25    
26    
27    
28     extern char *octname;
29    
30 greg 2.2 static char PmapRevision [] = "$Revision: 2.1 $";
31 greg 2.1
32    
33    
34     /* Photon map lookup functions per type */
35     void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = {
36     photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity,
37     photonDensity, NULL
38     };
39    
40    
41    
42     void colorNorm (COLOR c)
43     /* Normalise colour channels to average of 1 */
44     {
45     const float avg = colorAvg(c);
46    
47     if (!avg)
48     return;
49    
50     c [0] /= avg;
51     c [1] /= avg;
52     c [2] /= avg;
53     }
54    
55    
56    
57     void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm)
58     {
59     unsigned t;
60     struct stat octstat, pmstat;
61     PhotonMap *pm;
62     PhotonMapType type;
63    
64     for (t = 0; t < NUM_PMAP_TYPES; t++)
65     if (setPmapParam(&pm, parm + t)) {
66     /* Check if photon map newer than octree */
67     if (!stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) &&
68     octstat.st_mtime > pmstat.st_mtime) {
69     sprintf(errmsg, "photon map in file %s may be stale",
70     pm -> fileName);
71     error(USER, errmsg);
72     }
73    
74     /* Load photon map from file and get its type */
75     if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE)
76     error(USER, "failed loading photon map");
77    
78     /* Assign to appropriate photon map type (deleting previously
79     * loaded photon map of same type if necessary) */
80     if (pmaps [type]) {
81     deletePhotons(pmaps [type]);
82     free(pmaps [type]);
83     }
84     pmaps [type] = pm;
85    
86     /* Check for invalid density estimate bandwidth */
87     if (pm -> maxGather > pm -> heapSize) {
88     error(WARNING, "adjusting density estimate bandwidth");
89     pm -> minGather = pm -> maxGather = pm -> heapSize;
90     }
91     }
92     }
93    
94    
95    
96     void savePmaps (const PhotonMap **pmaps, int argc, char **argv)
97     {
98     unsigned t;
99    
100     for (t = 0; t < NUM_PMAP_TYPES; t++) {
101     if (pmaps [t])
102     savePhotonMap(pmaps [t], pmaps [t] -> fileName, t, argc, argv);
103     }
104     }
105    
106    
107    
108     void cleanUpPmaps (PhotonMap **pmaps)
109     {
110     unsigned t;
111    
112     for (t = 0; t < NUM_PMAP_TYPES; t++) {
113     if (pmaps [t]) {
114     deletePhotons(pmaps [t]);
115     free(pmaps [t]);
116     }
117     }
118     }
119    
120    
121    
122     static int photonParticipate (RAY *ray)
123     /* Trace photon through participating medium. Returns 1 if passed through,
124     or 0 if absorbed and $*%&ed. Analogon to rayparticipate(). */
125     {
126     int i;
127     RREAL cosTheta, cosPhi, du, dv;
128     const float cext = colorAvg(ray -> cext),
129     albedo = colorAvg(ray -> albedo);
130     FVECT u, v;
131     COLOR cvext;
132    
133     /* Mean free distance until interaction with medium */
134     ray -> rmax = -log(pmapRandom(mediumState)) / cext;
135    
136     while (!localhit(ray, &thescene)) {
137     setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]),
138     exp(-ray -> rmax * ray -> cext [1]),
139     exp(-ray -> rmax * ray -> cext [2]));
140    
141     /* Modify ray color and normalise */
142     multcolor(ray -> rcol, cvext);
143     colorNorm(ray -> rcol);
144     VCOPY(ray -> rorg, ray -> rop);
145    
146     if (albedo > FTINY)
147     /* Add to volume photon map */
148     if (ray -> rlvl > 0) addPhoton(volumePmap, ray);
149    
150     /* Absorbed? */
151     if (pmapRandom(rouletteState) > albedo) return 0;
152    
153     /* Colour bleeding without attenuation (?) */
154     multcolor(ray -> rcol, ray -> albedo);
155     scalecolor(ray -> rcol, 1 / albedo);
156    
157     /* Scatter photon */
158     cosTheta = ray -> gecc <= FTINY ? 2 * pmapRandom(scatterState) - 1
159     : 1 / (2 * ray -> gecc) *
160     (1 + ray -> gecc * ray -> gecc -
161     (1 - ray -> gecc * ray -> gecc) /
162     (1 - ray -> gecc + 2 * ray -> gecc *
163     pmapRandom(scatterState)));
164    
165     cosPhi = cos(2 * PI * pmapRandom(scatterState));
166     du = dv = sqrt(1 - cosTheta * cosTheta); /* sin(theta) */
167     du *= cosPhi;
168     dv *= sqrt(1 - cosPhi * cosPhi); /* sin(phi) */
169    
170     /* Get axes u & v perpendicular to photon direction */
171     i = 0;
172     do {
173     v [0] = v [1] = v [2] = 0;
174     v [i++] = 1;
175     fcross(u, v, ray -> rdir);
176     } while (normalize(u) < FTINY);
177     fcross(v, ray -> rdir, u);
178    
179     for (i = 0; i < 3; i++)
180     ray -> rdir [i] = du * u [i] + dv * v [i] +
181     cosTheta * ray -> rdir [i];
182     ray -> rlvl++;
183     ray -> rmax = -log(pmapRandom(mediumState)) / cext;
184     }
185    
186     setcolor(cvext, exp(-ray -> rot * ray -> cext [0]),
187     exp(-ray -> rot * ray -> cext [1]),
188     exp(-ray -> rot * ray -> cext [2]));
189    
190     /* Modify ray color and normalise */
191     multcolor(ray -> rcol, cvext);
192     colorNorm(ray -> rcol);
193    
194     /* Passed through medium */
195     return 1;
196     }
197    
198    
199    
200     void tracePhoton (RAY *ray)
201     /* Follow photon as it bounces around... */
202     {
203     long mod;
204     OBJREC* mat;
205    
206     if (ray -> rlvl > photonMaxBounce) {
207     error(WARNING, "runaway photon!");
208     return;
209     }
210    
211     if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray))
212     return;
213    
214     if (localhit(ray, &thescene)) {
215     mod = ray -> ro -> omod;
216    
217     if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) {
218     /* Transfer ray if modifier is VOID or clipped within antimatta */
219     RAY tray;
220     photonRay(ray, &tray, PMAP_XFER, NULL);
221     tracePhoton(&tray);
222     }
223     else {
224     /* Scatter for modifier material */
225     mat = objptr(mod);
226     photonScatter [mat -> otype] (mat, ray);
227     }
228     }
229     }
230    
231    
232    
233     static void preComputeGlobal (PhotonMap *pmap)
234     /* Precompute irradiance from global photons for final gathering using
235     the first finalGather * pmap -> heapSize photons in the heap. Returns
236     new heap with precomputed photons. */
237     {
238     unsigned long i, nuHeapSize;
239     unsigned j;
240     Photon *nuHeap, *p;
241     COLOR irrad;
242     RAY ray;
243     float nuMinPos [3], nuMaxPos [3];
244    
245     repComplete = nuHeapSize = finalGather * pmap -> heapSize;
246    
247     if (photonRepTime) {
248     sprintf(errmsg,
249     "Precomputing irradiance for %ld global photons...\n",
250     nuHeapSize);
251     eputs(errmsg);
252     fflush(stderr);
253     }
254    
255     p = nuHeap = (Photon*)malloc(nuHeapSize * sizeof(Photon));
256     if (!nuHeap)
257     error(USER, "can't allocate photon heap");
258    
259     for (j = 0; j <= 2; j++) {
260     nuMinPos [j] = FHUGE;
261     nuMaxPos [j] = -FHUGE;
262     }
263    
264     /* Record start time, baby */
265     repStartTime = time(NULL);
266     signal(SIGCONT, pmapPreCompReport);
267     repProgress = 0;
268 greg 2.2 memcpy(nuHeap, pmap -> heap, nuHeapSize * sizeof(Photon));
269 greg 2.1
270     for (i = 0, p = nuHeap; i < nuHeapSize; i++, p++) {
271     ray.ro = NULL;
272     VCOPY(ray.rop, p -> pos);
273    
274     /* Update min and max positions & set ray normal */
275     for (j = 0; j < 3; j++) {
276     if (p -> pos [j] < nuMinPos [j]) nuMinPos [j] = p -> pos [j];
277     if (p -> pos [j] > nuMaxPos [j]) nuMaxPos [j] = p -> pos [j];
278     ray.ron [j] = p -> norm [j] / 127.0;
279     }
280    
281     photonDensity(pmap, &ray, irrad);
282     setPhotonFlux(p, irrad);
283     repProgress++;
284    
285     if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime)
286     pmapPreCompReport();
287     #ifndef BSD
288     else signal(SIGCONT, pmapPreCompReport);
289     #endif
290     }
291    
292     signal(SIGCONT, SIG_DFL);
293    
294     /* Replace & rebuild heap */
295     free(pmap -> heap);
296     pmap -> heap = nuHeap;
297     pmap -> heapSize = pmap -> heapEnd = nuHeapSize;
298     VCOPY(pmap -> minPos, nuMinPos);
299     VCOPY(pmap -> maxPos, nuMaxPos);
300    
301     if (photonRepTime) {
302     eputs("Rebuilding global photon heap...\n");
303     fflush(stderr);
304     }
305    
306     balancePhotons(pmap, NULL);
307     }
308    
309    
310    
311     void distribPhotons (PhotonMap **pmaps)
312     {
313     EmissionMap emap;
314     char errmsg2 [128];
315     unsigned t, srcIdx, passCnt = 0, prePassCnt = 0;
316     double totalFlux = 0;
317     PhotonMap *pm;
318    
319     for (t = 0; t < NUM_PMAP_TYPES && !photonMaps [t]; t++);
320     if (t >= NUM_PMAP_TYPES)
321     error(USER, "no photon maps defined");
322    
323     if (!nsources)
324     error(USER, "no light sources");
325    
326     /* ===================================================================
327     * INITIALISATION - Set up emission and scattering funcs
328     * =================================================================== */
329     emap.samples = NULL;
330     emap.maxPartitions = MAXSPART;
331     emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1);
332     if (!emap.partitions)
333     error(INTERNAL, "can't allocate source partitions");
334    
335     /* Initialise all defined photon maps */
336     for (t = 0; t < NUM_PMAP_TYPES; t++)
337     initPhotonMap(photonMaps [t], t);
338    
339     initPhotonEmissionFuncs();
340     initPhotonScatterFuncs();
341    
342     /* Get photon ports if specified */
343     if (ambincl == 1)
344     getPhotonPorts();
345    
346     /* Get photon sensor modifiers */
347     getPhotonSensors(photonSensorList);
348    
349     /* Seed RNGs for photon distribution */
350     pmapSeed(randSeed, partState);
351     pmapSeed(randSeed, emitState);
352     pmapSeed(randSeed, cntState);
353     pmapSeed(randSeed, mediumState);
354     pmapSeed(randSeed, scatterState);
355     pmapSeed(randSeed, rouletteState);
356    
357     if (photonRepTime)
358     eputs("\n");
359    
360     /* ===================================================================
361     * FLUX INTEGRATION - Get total photon flux from light sources
362     * =================================================================== */
363     for (srcIdx = 0; srcIdx < nsources; srcIdx++) {
364     unsigned portCnt = 0;
365     emap.src = source + srcIdx;
366    
367     do {
368     emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt
369     : NULL;
370     photonPartition [emap.src -> so -> otype] (&emap);
371    
372     if (photonRepTime) {
373     sprintf(errmsg, "Integrating flux from source %s ",
374     source [srcIdx].so -> oname);
375    
376     if (emap.port) {
377     sprintf(errmsg2, "via port %s ",
378     photonPorts [portCnt].so -> oname);
379     strcat(errmsg, errmsg2);
380     }
381    
382     sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions);
383     strcat(errmsg, errmsg2);
384     eputs(errmsg);
385     fflush(stderr);
386     }
387    
388     for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions;
389     emap.partitionCnt++) {
390     initPhotonEmission(&emap, pdfSamples);
391     totalFlux += colorAvg(emap.partFlux);
392     }
393    
394     portCnt++;
395     } while (portCnt < numPhotonPorts);
396     }
397    
398     if (totalFlux < FTINY)
399     error(USER, "zero flux from light sources");
400    
401     /* Record start time and enable progress report signal handler */
402     repStartTime = time(NULL);
403     signal(SIGCONT, pmapDistribReport);
404     repProgress = prePassCnt = 0;
405    
406     if (photonRepTime)
407     eputs("\n");
408    
409     /* ===================================================================
410     * 2-PASS PHOTON DISTRIBUTION
411     * Pass 1 (pre): emit fraction of target photon count
412     * Pass 2 (main): based on outcome of pass 1, estimate remaining number
413     * of photons to emit to approximate target count
414     * =================================================================== */
415     do {
416     double numEmit;
417    
418     if (!passCnt) {
419     /* INIT PASS 1 */
420     /* Skip if no photons contributed after sufficient iterations; make
421     * it clear to user which photon maps are missing so (s)he can
422     * check the scene geometry and materials */
423     if (++prePassCnt > maxPreDistrib) {
424     sprintf(errmsg, "too many prepasses");
425    
426     for (t = 0; t < NUM_PMAP_TYPES; t++)
427     if (photonMaps [t] && !photonMaps [t] -> heapEnd) {
428     sprintf(errmsg2, ", no %s photons stored", pmapName [t]);
429     strcat(errmsg, errmsg2);
430     }
431    
432     error(USER, errmsg);
433     break;
434     }
435    
436     /* Num to emit is fraction of minimum target count */
437     numEmit = FHUGE;
438    
439     for (t = 0; t < NUM_PMAP_TYPES; t++)
440     if (photonMaps [t])
441     numEmit = min(photonMaps [t] -> distribTarget, numEmit);
442    
443     numEmit *= preDistrib;
444     }
445    
446     else {
447     /* INIT PASS 2 */
448     /* Based on the outcome of the predistribution we can now estimate
449     * how many more photons we have to emit for each photon map to
450     * meet its respective target count. This value is clamped to 0 in
451     * case the target has already been exceeded in the pass 1. Note
452     * repProgress is the number of photons emitted thus far, while
453     * heapEnd is the number of photons stored in each photon map. */
454     double maxDistribRatio = 0;
455    
456     /* Set the distribution ratio for each map; this indicates how many
457     * photons of each respective type are stored per emitted photon,
458     * and is used as probability for storing a photon by addPhoton().
459     * Since this biases the photon density, addPhoton() promotes the
460     * flux of stored photons to compensate. */
461     for (t = 0; t < NUM_PMAP_TYPES; t++)
462     if ((pm = photonMaps [t])) {
463     pm -> distribRatio = (double)pm -> distribTarget /
464     pm -> heapEnd - 1;
465    
466     /* Check if photon map "overflowed", i.e. exceeded its target
467     * count in the prepass; correcting the photon flux via the
468     * distribution ratio is no longer possible, as no more
469     * photons of this type will be stored, so notify the user
470     * rather than deliver incorrect results.
471     * In future we should handle this more intelligently by
472     * using the photonFlux in each photon map to individually
473     * correct the flux after distribution. */
474     if (pm -> distribRatio <= FTINY) {
475     sprintf(errmsg,
476     "%s photon map overflow in prepass, reduce -apD",
477     pmapName [t]);
478     error(INTERNAL, errmsg);
479     }
480    
481     maxDistribRatio = max(pm -> distribRatio, maxDistribRatio);
482     }
483    
484     /* Normalise distribution ratios and calculate number of photons to
485     * emit in main pass */
486     for (t = 0; t < NUM_PMAP_TYPES; t++)
487     if ((pm = photonMaps [t]))
488     pm -> distribRatio /= maxDistribRatio;
489    
490     if ((numEmit = repProgress * maxDistribRatio) < FTINY)
491     /* No photons left to distribute in main pass */
492     break;
493     }
494    
495     /* Set completion count for progress report */
496     repComplete = numEmit + repProgress;
497    
498     /* PHOTON DISTRIBUTION LOOP */
499     for (srcIdx = 0; srcIdx < nsources; srcIdx++) {
500     unsigned portCnt = 0;
501     emap.src = source + srcIdx;
502    
503     do {
504     emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt
505     : NULL;
506     photonPartition [emap.src -> so -> otype] (&emap);
507    
508     if (photonRepTime) {
509     if (!passCnt)
510     sprintf(errmsg, "PREPASS %d on source %s ",
511     prePassCnt, source [srcIdx].so -> oname);
512     else
513     sprintf(errmsg, "MAIN PASS on source %s ",
514     source [srcIdx].so -> oname);
515    
516     if (emap.port) {
517     sprintf(errmsg2, "via port %s ",
518     photonPorts [portCnt].so -> oname);
519     strcat(errmsg, errmsg2);
520     }
521    
522     sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions);
523     strcat(errmsg, errmsg2);
524     eputs(errmsg);
525     fflush(stderr);
526     }
527    
528     for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions;
529     emap.partitionCnt++) {
530     double partNumEmit;
531     unsigned long partEmitCnt;
532    
533     /* Get photon origin within current source partishunn and
534     * build emission map */
535     photonOrigin [emap.src -> so -> otype] (&emap);
536     initPhotonEmission(&emap, pdfSamples);
537    
538     /* Number of photons to emit from ziss partishunn --
539     * proportional to flux; photon ray weight and scalar flux
540     * are uniform (the latter only varying in RGB). */
541     partNumEmit = numEmit * colorAvg(emap.partFlux) / totalFlux;
542     partEmitCnt = (unsigned long)partNumEmit;
543    
544     /* Probabilistically account for fractional photons */
545     if (pmapRandom(cntState) < partNumEmit - partEmitCnt)
546     partEmitCnt++;
547    
548     /* Integer counter avoids FP rounding errors */
549     while (partEmitCnt--) {
550     RAY photonRay;
551    
552     /* Emit photon based on PDF and trace through scene until
553     * absorbed/leaked */
554     emitPhoton(&emap, &photonRay);
555     tracePhoton(&photonRay);
556    
557     /* Record progress */
558     repProgress++;
559    
560     if (photonRepTime > 0 &&
561     time(NULL) >= repLastTime + photonRepTime)
562     pmapDistribReport();
563     #ifndef BSD
564     else signal(SIGCONT, pmapDistribReport);
565     #endif
566     }
567     }
568    
569     portCnt++;
570     } while (portCnt < numPhotonPorts);
571     }
572    
573     for (t = 0; t < NUM_PMAP_TYPES; t++)
574     if (photonMaps [t] && !photonMaps [t] -> heapEnd) {
575     /* Double preDistrib in case a photon map is empty and redo
576     * pass 1 --> possibility of infinite loop for pathological
577     * scenes (e.g. absorbing materials) */
578     preDistrib *= 2;
579     break;
580     }
581    
582     if (t >= NUM_PMAP_TYPES) {
583     /* No empty photon maps found; now do pass 2 */
584     passCnt++;
585     if (photonRepTime)
586     eputs("\n");
587     }
588     } while (passCnt < 2);
589    
590     /* ===================================================================
591     * POST-DISTRIBUTION - Set photon flux and build kd-tree, etc.
592     * =================================================================== */
593     signal(SIGCONT, SIG_DFL);
594     free(emap.samples);
595    
596     /* Set photon flux (repProgress is total num emitted) */
597     totalFlux /= repProgress;
598    
599     for (t = 0; t < NUM_PMAP_TYPES; t++)
600     if (photonMaps [t]) {
601     if (photonRepTime) {
602     sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]);
603     eputs(errmsg);
604     fflush(stderr);
605     }
606    
607     balancePhotons(photonMaps [t], &totalFlux);
608     }
609    
610     /* Precompute photon irradiance if necessary */
611     if (preCompPmap)
612     preComputeGlobal(preCompPmap);
613     }
614    
615    
616    
617     void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad)
618     /* Photon density estimate. Returns irradiance at ray -> rop. */
619     {
620     unsigned i;
621     PhotonSQNode *sq;
622     float r;
623     COLOR flux;
624    
625     setcolor(irrad, 0, 0, 0);
626    
627     if (!pmap -> maxGather)
628     return;
629    
630     /* Ignore sources */
631     if (ray -> ro)
632     if (islight(objptr(ray -> ro -> omod) -> otype))
633     return;
634    
635     pmap -> squeueEnd = 0;
636     findPhotons(pmap, ray);
637    
638     /* Need at least 2 photons */
639     if (pmap -> squeueEnd < 2) {
640     #ifdef PMAP_NONEFOUND
641     sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)",
642     ray -> ro ? ray -> ro -> oname : "<null>",
643     ray -> rop [0], ray -> rop [1], ray -> rop [2]);
644     error(WARNING, errmsg);
645     #endif
646    
647     return;
648     }
649    
650     if (pmap -> minGather == pmap -> maxGather) {
651     /* No bias compensation. Just do a plain vanilla estimate */
652     sq = pmap -> squeue + 1;
653    
654     /* Average radius between furthest two photons to improve accuracy */
655     r = max(sq -> dist, (sq + 1) -> dist);
656     r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r));
657    
658     /* Skip the extra photon */
659     for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) {
660     getPhotonFlux(sq -> photon, flux);
661     #ifdef PMAP_EPANECHNIKOV
662     /* Apply Epanechnikov kernel to photon flux (dists are squared) */
663     scalecolor(flux, 2 * (1 - sq -> dist / r));
664     #endif
665     addcolor(irrad, flux);
666     }
667    
668     /* Divide by search area PI * r^2, 1 / PI required as ambient
669     normalisation factor */
670     scalecolor(irrad, 1 / (PI * PI * r));
671    
672     return;
673     }
674     else
675     /* Apply bias compensation to density estimate */
676     biasComp(pmap, irrad);
677     }
678    
679    
680    
681     void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad)
682     /* Returns precomputed photon density estimate at ray -> rop. */
683     {
684     Photon *p;
685    
686     setcolor(irrad, 0, 0, 0);
687    
688     /* Ignore sources */
689     if (r -> ro && islight(objptr(r -> ro -> omod) -> otype))
690     return;
691    
692     if ((p = find1Photon(preCompPmap, r)))
693     getPhotonFlux(p, irrad);
694     }
695    
696    
697    
698     void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad)
699     /* Photon volume density estimate. Returns irradiance at ray -> rop. */
700     {
701     unsigned i;
702     PhotonSQNode *sq;
703     float gecc2, r, ph;
704     COLOR flux;
705    
706     setcolor(irrad, 0, 0, 0);
707    
708     if (!pmap -> maxGather)
709     return;
710    
711     pmap -> squeueEnd = 0;
712     findPhotons(pmap, ray);
713    
714     /* Need at least 2 photons */
715     if (pmap -> squeueEnd < 2)
716     return;
717    
718     if (pmap -> minGather == pmap -> maxGather) {
719     /* No bias compensation. Just do a plain vanilla estimate */
720     gecc2 = ray -> gecc * ray -> gecc;
721     sq = pmap -> squeue + 1;
722    
723     /* Average radius between furthest two photons to improve accuracy */
724     r = max(sq -> dist, (sq + 1) -> dist);
725     r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r));
726    
727     /* Skip the extra photon */
728     for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) {
729     /* Compute phase function for inscattering from photon */
730     if (gecc2 <= FTINY)
731     ph = 1;
732     else {
733     ph = DOT(ray -> rdir, sq -> photon -> norm) / 127;
734     ph = 1 + gecc2 - 2 * ray -> gecc * ph;
735     ph = (1 - gecc2) / (ph * sqrt(ph));
736     }
737    
738     getPhotonFlux(sq -> photon, flux);
739     scalecolor(flux, ph);
740     addcolor(irrad, flux);
741     }
742    
743     /* Divide by search volume 4 / 3 * PI * r^3 and phase function
744     normalization factor 1 / (4 * PI) */
745     scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r)));
746    
747     return;
748     }
749    
750     else
751     /* Apply bias compensation to density estimate */
752     volumeBiasComp(pmap, ray, irrad);
753     }