1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: p_func.c,v 2.11 2023/12/13 23:26:16 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* p_func.c - routine for procedural patterns. |
6 |
*/ |
7 |
|
8 |
#include "copyright.h" |
9 |
|
10 |
#include "ray.h" |
11 |
#include "func.h" |
12 |
#include "random.h" |
13 |
#include "rtotypes.h" |
14 |
|
15 |
/* |
16 |
* A procedural pattern can either be a brightness or a |
17 |
* color function. A brightness function is given as: |
18 |
* |
19 |
* modifier brightfunc name |
20 |
* 2+ bvarname filename xf |
21 |
* 0 |
22 |
* n A1 A2 .. |
23 |
* |
24 |
* A color function is given as: |
25 |
* |
26 |
* modifier colorfunc name |
27 |
* 4+ rvarname gvarname bvarname filename xf |
28 |
* 0 |
29 |
* n A1 A2 .. |
30 |
* |
31 |
* A spectral function is given as: |
32 |
* |
33 |
* modifier specfunc name |
34 |
* 2+ sfunc filename xf |
35 |
* 0 |
36 |
* 2+ nmA nmB A3 .. |
37 |
* |
38 |
* Filename is the name of the file where the variable definitions |
39 |
* can be found. The list of real arguments can be accessed by |
40 |
* definitions in the file. The xf is a transformation |
41 |
* to get from the original coordinates to the current coordinates. |
42 |
* For the "specfunc" primitive, sfunc(nm) is a function of wavelength |
43 |
* and must be defined from nmA to nmB, and should average to 1 over |
44 |
* its range. |
45 |
*/ |
46 |
|
47 |
|
48 |
int |
49 |
p_bfunc( /* compute brightness pattern */ |
50 |
OBJREC *m, |
51 |
RAY *r |
52 |
) |
53 |
{ |
54 |
double bval; |
55 |
MFUNC *mf; |
56 |
|
57 |
if (m->oargs.nsargs < 2) |
58 |
objerror(m, USER, "bad # arguments"); |
59 |
mf = getfunc(m, 1, 0x1, 0); |
60 |
setfunc(m, r); |
61 |
errno = 0; |
62 |
bval = evalue(mf->ep[0]); |
63 |
if ((errno == EDOM) | (errno == ERANGE)) { |
64 |
objerror(m, WARNING, "compute error"); |
65 |
return(0); |
66 |
} |
67 |
scalescolor(r->pcol, bval); |
68 |
return(0); |
69 |
} |
70 |
|
71 |
|
72 |
int |
73 |
p_cfunc( /* compute color pattern */ |
74 |
OBJREC *m, |
75 |
RAY *r |
76 |
) |
77 |
{ |
78 |
SCOLOR scval; |
79 |
MFUNC *mf; |
80 |
|
81 |
if (m->oargs.nsargs < 4) |
82 |
objerror(m, USER, "bad # arguments"); |
83 |
mf = getfunc(m, 3, 0x7, 0); |
84 |
setfunc(m, r); |
85 |
errno = 0; |
86 |
setscolor(scval, evalue(mf->ep[0]), |
87 |
evalue(mf->ep[1]), |
88 |
evalue(mf->ep[2])); |
89 |
if ((errno == EDOM) | (errno == ERANGE)) { |
90 |
objerror(m, WARNING, "compute error"); |
91 |
return(0); |
92 |
} |
93 |
smultscolor(r->pcol, scval); |
94 |
return(0); |
95 |
} |
96 |
|
97 |
|
98 |
int |
99 |
p_specfunc( /* compute spectral pattern */ |
100 |
OBJREC *m, |
101 |
RAY *r |
102 |
) |
103 |
{ |
104 |
SCOLOR scsamp; |
105 |
SCOLOR scval; |
106 |
double wl, wlmin, wlmax, wlstep; |
107 |
int ns, i; |
108 |
|
109 |
if ((m->oargs.nsargs < 2) | (m->oargs.nfargs < 2)) |
110 |
objerror(m, USER, "bad # arguments"); |
111 |
if (m->oargs.farg[0] < m->oargs.farg[1]) { |
112 |
wlmin = m->oargs.farg[0]; |
113 |
wlmax = m->oargs.farg[1]; |
114 |
} else { |
115 |
wlmin = m->oargs.farg[1]; |
116 |
wlmax = m->oargs.farg[0]; |
117 |
} |
118 |
if (wlmin < WLPART[3]) wlmin = WLPART[3]; |
119 |
if (wlmax > WLPART[0]) wlmax = WLPART[0]; |
120 |
if (wlmin >= wlmax) { |
121 |
objerror(m, WARNING, "incompatible wavelength sampling"); |
122 |
return(0); |
123 |
} |
124 |
wlstep = (wlmax - wlmin)/(double)MAXCSAMP; |
125 |
getfunc(m, 1, 0, 0); |
126 |
setfunc(m, r); |
127 |
errno = 0; |
128 |
ns = (wlmax - wlmin)/wlstep + .1; |
129 |
wl = wlmax - .5*wlstep; |
130 |
for (i = ns; i-- > 0; wl -= wlstep) { |
131 |
double ws = wl + 0.9*(.5-frandom())*wlstep; |
132 |
scsamp[i] = funvalue(m->oargs.sarg[0], 1, &ws); |
133 |
if ((errno == EDOM) | (errno == ERANGE)) { |
134 |
objerror(m, WARNING, "compute error"); |
135 |
return(0); |
136 |
} |
137 |
} |
138 |
convertscolor(scval, NCSAMP, WLPART[0], WLPART[3], |
139 |
scsamp, ns, wlmin, wlmax); |
140 |
smultscolor(r->pcol, scval); |
141 |
return(0); |
142 |
} |