| 1 |
/*
|
| 2 |
=========================================================================
|
| 3 |
k-nearest neighbour lookup routines for out-of-core octree data structure
|
| 4 |
|
| 5 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
|
| 6 |
(c) Lucerne University of Applied Sciences and Arts,
|
| 7 |
supported by the Swiss National Science Foundation (SNSF, #147053)
|
| 8 |
=========================================================================
|
| 9 |
|
| 10 |
$Id: oocnn.c,v 1.30 2015/11/13 18:07:26 taschreg Exp taschreg $
|
| 11 |
*/
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
#include "oocnn.h"
|
| 16 |
#include "oocsort.h"
|
| 17 |
#include <stdlib.h>
|
| 18 |
#include <string.h>
|
| 19 |
#include <math.h>
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
#ifdef DEBUG_OOC_NN
|
| 24 |
static int OOC_SearchQueueCheck (OOC_SearchQueue *queue, const FVECT key,
|
| 25 |
RREAL *(*keyFunc)(const void*),
|
| 26 |
unsigned root)
|
| 27 |
/* Priority queue sanity check */
|
| 28 |
{
|
| 29 |
unsigned kid;
|
| 30 |
const OOC_SearchQueueNode *qn = queue -> node;
|
| 31 |
void *rec;
|
| 32 |
float d2;
|
| 33 |
|
| 34 |
if (root < queue -> tail) {
|
| 35 |
rec = OOC_GetNearest(queue, qn [root].idx);
|
| 36 |
d2 = dist2(keyFunc(rec), key);
|
| 37 |
|
| 38 |
if (qn [root].dist2 != d2)
|
| 39 |
return -1;
|
| 40 |
|
| 41 |
if ((kid = (root << 1) + 1) < queue -> tail) {
|
| 42 |
if (qn [kid].dist2 > qn [root].dist2)
|
| 43 |
return -1;
|
| 44 |
else return OOC_SearchQueueCheck(queue, key, keyFunc, kid);
|
| 45 |
}
|
| 46 |
|
| 47 |
if (++kid < queue -> tail) {
|
| 48 |
if (qn [kid].dist2 > qn [root].dist2)
|
| 49 |
return -1;
|
| 50 |
else return OOC_SearchQueueCheck(queue, key, keyFunc, kid);
|
| 51 |
}
|
| 52 |
}
|
| 53 |
|
| 54 |
return 0;
|
| 55 |
}
|
| 56 |
#endif
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
static float OOC_PutNearest (OOC_SearchQueue *queue, float d2, void *rec)
|
| 61 |
/* Insert data record with SQUARED distance to query point into search
|
| 62 |
* priority queue, maintaining the most distant record at the queue head.
|
| 63 |
* If the queue is full, the new record is only inserted if it is closer
|
| 64 |
* than the queue head.
|
| 65 |
* Returns the new maximum SQUARED distance at the head if the queue is
|
| 66 |
* full. Otherwise returns -1, indicating a maximum for the entire queue is
|
| 67 |
* as yet undefined
|
| 68 |
* The data record is copied into the queue's local record buffa for
|
| 69 |
* post-search retrieval to minimise redundant disk access. Note that it
|
| 70 |
* suffices to only rearrange the corresponding indices in the queue nodes
|
| 71 |
* when restoring the priority queue after every insertion, rather than
|
| 72 |
* moving the actual records. */
|
| 73 |
{
|
| 74 |
OOC_SearchQueueNode *qn = queue -> node;
|
| 75 |
unsigned root, kid, kid2, rootIdx;
|
| 76 |
float d2max = -1; /* Undefined max distance ^2 */
|
| 77 |
|
| 78 |
/* The queue is represented as a linearised binary tree with the root
|
| 79 |
* corresponding to the queue head, and the tail corresponding to the
|
| 80 |
* last leaf */
|
| 81 |
if (queue -> tail < queue -> len) {
|
| 82 |
/* Enlarge queue if not full, insert at tail and resort towards head */
|
| 83 |
kid = queue -> tail++;
|
| 84 |
|
| 85 |
while (kid) {
|
| 86 |
root = (kid - 1) >> 1;
|
| 87 |
|
| 88 |
/* Compare with parent and swap if necessary, else terminate */
|
| 89 |
if (d2 > qn [root].dist2) {
|
| 90 |
qn [kid].dist2 = qn [root].dist2;
|
| 91 |
qn [kid].idx = qn [root].idx;
|
| 92 |
kid = root;
|
| 93 |
}
|
| 94 |
else break;
|
| 95 |
}
|
| 96 |
|
| 97 |
/* Assign tail position as linear index into record buffa
|
| 98 |
* queue -> nnRec and append record */
|
| 99 |
qn [kid].dist2 = d2;
|
| 100 |
qn [kid].idx = queue -> tail - 1;
|
| 101 |
memcpy(OOC_GetNearest(queue, qn [kid].idx), rec, queue -> recSize);
|
| 102 |
}
|
| 103 |
else if (d2 < qn [0].dist2) {
|
| 104 |
/* Queue full and new record closer than maximum at head; replace head
|
| 105 |
* and resort towards tail */
|
| 106 |
root = 0;
|
| 107 |
rootIdx = qn [root].idx;
|
| 108 |
|
| 109 |
while ((kid = (root << 1) + 1) < queue -> tail) {
|
| 110 |
/* Compare with larger kid & swap if necessary, else terminate */
|
| 111 |
if ((kid2 = (kid + 1)) < queue -> tail &&
|
| 112 |
qn [kid2].dist2 > qn [kid].dist2)
|
| 113 |
kid = kid2;
|
| 114 |
|
| 115 |
if (d2 < qn [kid].dist2) {
|
| 116 |
qn [root].dist2 = qn [kid].dist2;
|
| 117 |
qn [root].idx = qn [kid].idx;
|
| 118 |
}
|
| 119 |
else break;
|
| 120 |
|
| 121 |
root = kid;
|
| 122 |
}
|
| 123 |
|
| 124 |
/* Reassign head's previous buffa index and overwrite corresponding
|
| 125 |
* record */
|
| 126 |
qn [root].dist2 = d2;
|
| 127 |
qn [root].idx = rootIdx;
|
| 128 |
memcpy(OOC_GetNearest(queue, qn [root].idx), rec, queue -> recSize);
|
| 129 |
|
| 130 |
/* Update SQUARED maximum distance from head node */
|
| 131 |
d2max = qn [0].dist2;
|
| 132 |
}
|
| 133 |
|
| 134 |
return d2max;
|
| 135 |
}
|
| 136 |
|
| 137 |
|
| 138 |
|
| 139 |
int OOC_InitNearest (OOC_SearchQueue *squeue,
|
| 140 |
unsigned len, unsigned recSize)
|
| 141 |
{
|
| 142 |
squeue -> len = len;
|
| 143 |
squeue -> recSize = recSize;
|
| 144 |
squeue -> node = calloc(len, sizeof(OOC_SearchQueueNode));
|
| 145 |
squeue -> nnRec = calloc(len, recSize);
|
| 146 |
if (!squeue -> node || !squeue -> nnRec) {
|
| 147 |
perror("OOC_InitNearest: failed search queue allocation");
|
| 148 |
return -1;
|
| 149 |
}
|
| 150 |
|
| 151 |
return 0;
|
| 152 |
}
|
| 153 |
|
| 154 |
|
| 155 |
|
| 156 |
void *OOC_GetNearest (const OOC_SearchQueue *squeue, unsigned idx)
|
| 157 |
{
|
| 158 |
return squeue -> nnRec + idx * squeue -> recSize;
|
| 159 |
}
|
| 160 |
|
| 161 |
|
| 162 |
|
| 163 |
static float OOC_BBoxDist2 (const FVECT bbOrg, RREAL bbSiz, const FVECT key)
|
| 164 |
/* Return minimum *SQUARED* distance between key and bounding box defined by
|
| 165 |
* bbOrg and bbSiz; a distance of 0 implies the key lies INSIDE the bbox */
|
| 166 |
{
|
| 167 |
/* Explicit comparison with bbox corners */
|
| 168 |
int i;
|
| 169 |
FVECT d;
|
| 170 |
|
| 171 |
for (i = 0; i < 3; i++) {
|
| 172 |
d [i] = key [i] - bbOrg [i];
|
| 173 |
d [i] = d [i] < 0 ? -d [i] : d [i] - bbSiz;
|
| 174 |
|
| 175 |
/* Set to 0 if inside bbox */
|
| 176 |
if (d [i] < 0)
|
| 177 |
d [i] = 0;
|
| 178 |
}
|
| 179 |
|
| 180 |
return DOT(d, d);
|
| 181 |
}
|
| 182 |
|
| 183 |
|
| 184 |
|
| 185 |
float OOC_FindNearest (OOC_Octree *oct, OOC_Node *node, OOC_DataIdx dataIdx,
|
| 186 |
const FVECT org, float size, const FVECT key,
|
| 187 |
const OOC_SearchFilter *filter,
|
| 188 |
OOC_SearchQueue *queue, float maxDist2)
|
| 189 |
{
|
| 190 |
const float kidSize = size * 0.5;
|
| 191 |
unsigned i, kid, kid0;
|
| 192 |
float d2;
|
| 193 |
char rec [oct -> recSize];
|
| 194 |
FVECT kidOrg;
|
| 195 |
OOC_DataIdx kidDataIdx, recIdx;
|
| 196 |
OOC_Node *kidNode;
|
| 197 |
|
| 198 |
/* Start with suboctant closest to key */
|
| 199 |
for (kid0 = 0, i = 0; i < 3; i++)
|
| 200 |
kid0 |= (key [i] > org [i] + kidSize) << i;
|
| 201 |
|
| 202 |
for (i = 0; i < 7; i++) {
|
| 203 |
kid = kid0 ^ i;
|
| 204 |
kidNode = node;
|
| 205 |
kidDataIdx = dataIdx + OOC_GetKid(oct, &kidNode, kid);
|
| 206 |
|
| 207 |
/* Prune empty suboctant */
|
| 208 |
if ((!kidNode && !OOC_ISLEAF(node)) ||
|
| 209 |
(OOC_ISLEAF(node) && !node -> leaf.num [kid]))
|
| 210 |
continue;
|
| 211 |
|
| 212 |
/* Set up suboctant */
|
| 213 |
VCOPY(kidOrg, org);
|
| 214 |
OOC_OCTORIGIN(kidOrg, kid, kidSize);
|
| 215 |
|
| 216 |
/* Prune suboctant if not overlapped by maxDist2 */
|
| 217 |
if (OOC_BBoxDist2(kidOrg, kidSize, key) > maxDist2)
|
| 218 |
continue;
|
| 219 |
|
| 220 |
if (kidNode) {
|
| 221 |
/* Internal node; recurse into non-empty suboctant */
|
| 222 |
maxDist2 = OOC_FindNearest(oct, kidNode, kidDataIdx, kidOrg,
|
| 223 |
kidSize, key, filter, queue, maxDist2);
|
| 224 |
if (maxDist2 < 0)
|
| 225 |
/* Bail out on error */
|
| 226 |
break;
|
| 227 |
}
|
| 228 |
else if (OOC_ISLEAF(node))
|
| 229 |
/* Leaf node; do linear check of all records in suboctant */
|
| 230 |
for (recIdx = kidDataIdx;
|
| 231 |
recIdx < kidDataIdx + node -> leaf.num [kid]; recIdx++) {
|
| 232 |
if (OOC_GetData(oct, recIdx, rec))
|
| 233 |
return -1;
|
| 234 |
|
| 235 |
if (!filter || filter -> func(rec, filter -> data))
|
| 236 |
/* Insert record in search queue SQUARED dist to key below
|
| 237 |
* maxDist2 and passes filter */
|
| 238 |
if ((d2 = dist2(key, oct -> key(rec))) < maxDist2) {
|
| 239 |
if ((d2 = OOC_PutNearest(queue, d2, rec)) >= 0)
|
| 240 |
/* Update maxDist2 if queue is full */
|
| 241 |
maxDist2 = d2;
|
| 242 |
#ifdef DEBUG_OOC_NN
|
| 243 |
if (OOC_SearchQueueCheck(queue, key, oct -> key, 0)) {
|
| 244 |
fprintf(stderr, "OOC_SearchPush: priority queue "
|
| 245 |
"inconsistency\n");
|
| 246 |
return -1;
|
| 247 |
}
|
| 248 |
#endif
|
| 249 |
}
|
| 250 |
}
|
| 251 |
}
|
| 252 |
|
| 253 |
return maxDist2;
|
| 254 |
}
|
| 255 |
|
| 256 |
|
| 257 |
|
| 258 |
float OOC_Find1Nearest (OOC_Octree *oct, OOC_Node *node, OOC_DataIdx dataIdx,
|
| 259 |
const FVECT org, float size, const FVECT key,
|
| 260 |
const OOC_SearchFilter *filter, void *nnRec,
|
| 261 |
float maxDist2)
|
| 262 |
{
|
| 263 |
const float kidSize = size * 0.5;
|
| 264 |
unsigned i, kid, kid0;
|
| 265 |
float d2;
|
| 266 |
char rec [oct -> recSize];
|
| 267 |
FVECT kidOrg;
|
| 268 |
OOC_DataIdx kidDataIdx, recIdx;
|
| 269 |
OOC_Node *kidNode;
|
| 270 |
|
| 271 |
/* Start with suboctant closest to key */
|
| 272 |
for (kid0 = 0, i = 0; i < 3; i++)
|
| 273 |
kid0 |= (key [i] > org [i] + kidSize) << i;
|
| 274 |
|
| 275 |
for (i = 0; i < 7; i++) {
|
| 276 |
kid = kid0 ^ i;
|
| 277 |
kidNode = node;
|
| 278 |
kidDataIdx = dataIdx + OOC_GetKid(oct, &kidNode, kid);
|
| 279 |
|
| 280 |
/* Prune empty suboctant */
|
| 281 |
if ((!kidNode && !OOC_ISLEAF(node)) ||
|
| 282 |
(OOC_ISLEAF(node) && !node -> leaf.num [kid]))
|
| 283 |
continue;
|
| 284 |
|
| 285 |
/* Set up suboctant */
|
| 286 |
VCOPY(kidOrg, org);
|
| 287 |
OOC_OCTORIGIN(kidOrg, kid, kidSize);
|
| 288 |
|
| 289 |
/* Prune suboctant if not overlapped by maxDist2 */
|
| 290 |
if (OOC_BBoxDist2(kidOrg, kidSize, key) > maxDist2)
|
| 291 |
continue;
|
| 292 |
|
| 293 |
if (kidNode) {
|
| 294 |
/* Internal node; recurse into non-empty suboctant */
|
| 295 |
maxDist2 = OOC_Find1Nearest(oct, kidNode, kidDataIdx, kidOrg,
|
| 296 |
kidSize, key, filter, nnRec, maxDist2);
|
| 297 |
if (maxDist2 < 0)
|
| 298 |
/* Bail out on error */
|
| 299 |
break;
|
| 300 |
}
|
| 301 |
else if (OOC_ISLEAF(node))
|
| 302 |
/* Leaf node; do linear check of all records in suboctant */
|
| 303 |
for (recIdx = kidDataIdx;
|
| 304 |
recIdx < kidDataIdx + node -> leaf.num [kid]; recIdx++) {
|
| 305 |
if (OOC_GetData(oct, recIdx, rec))
|
| 306 |
return -1;
|
| 307 |
|
| 308 |
if (!filter || filter -> func(rec, filter -> data))
|
| 309 |
/* Update closest record and max SQUARED dist to key if it
|
| 310 |
* passes filter */
|
| 311 |
if ((d2 = dist2(key, oct -> key(rec))) < maxDist2) {
|
| 312 |
memcpy(nnRec, rec, oct -> recSize);
|
| 313 |
maxDist2 = d2;
|
| 314 |
}
|
| 315 |
}
|
| 316 |
}
|
| 317 |
|
| 318 |
return maxDist2;
|
| 319 |
}
|
| 320 |
|