ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/o_cone.c
Revision: 2.4
Committed: Tue Mar 11 17:08:55 2003 UTC (21 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R5
Changes since 2.3: +3 -1 lines
Log Message:
First working version of new "mesh" primitive, obj2mesh converter

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * o_cone.c - routine to determine ray intersection with cones.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11
12 #include "otypes.h"
13
14 #include "cone.h"
15
16
17 o_cone(o, r) /* intersect ray with cone */
18 OBJREC *o;
19 register RAY *r;
20 {
21 FVECT rox, rdx;
22 double a, b, c;
23 double root[2];
24 int nroots, rn;
25 register CONE *co;
26 register int i;
27
28 /* get cone structure */
29 co = getcone(o, 1);
30
31 /*
32 * To intersect a ray with a cone, we transform the
33 * ray into the cone's normalized space. This greatly
34 * simplifies the computation.
35 * For a cone or cup, normalization results in the
36 * equation:
37 *
38 * x*x + y*y - z*z == 0
39 *
40 * For a cylinder or tube, the normalized equation is:
41 *
42 * x*x + y*y - r*r == 0
43 *
44 * A normalized ring obeys the following set of equations:
45 *
46 * z == 0 &&
47 * x*x + y*y >= r0*r0 &&
48 * x*x + y*y <= r1*r1
49 */
50
51 /* transform ray */
52 multp3(rox, r->rorg, co->tm);
53 multv3(rdx, r->rdir, co->tm);
54 /* compute intersection */
55
56 if (o->otype == OBJ_CONE || o->otype == OBJ_CUP) {
57
58 a = rdx[0]*rdx[0] + rdx[1]*rdx[1] - rdx[2]*rdx[2];
59 b = 2.0*(rdx[0]*rox[0] + rdx[1]*rox[1] - rdx[2]*rox[2]);
60 c = rox[0]*rox[0] + rox[1]*rox[1] - rox[2]*rox[2];
61
62 } else if (o->otype == OBJ_CYLINDER || o->otype == OBJ_TUBE) {
63
64 a = rdx[0]*rdx[0] + rdx[1]*rdx[1];
65 b = 2.0*(rdx[0]*rox[0] + rdx[1]*rox[1]);
66 c = rox[0]*rox[0] + rox[1]*rox[1] - CO_R0(co)*CO_R0(co);
67
68 } else { /* OBJ_RING */
69
70 if (rdx[2] <= FTINY && rdx[2] >= -FTINY)
71 return(0); /* parallel */
72 root[0] = -rox[2]/rdx[2];
73 if (root[0] <= FTINY || root[0] >= r->rot)
74 return(0); /* distance check */
75 b = root[0]*rdx[0] + rox[0];
76 c = root[0]*rdx[1] + rox[1];
77 a = b*b + c*c;
78 if (a < CO_R0(co)*CO_R0(co) || a > CO_R1(co)*CO_R1(co))
79 return(0); /* outside radii */
80 r->ro = o;
81 r->rot = root[0];
82 for (i = 0; i < 3; i++)
83 r->rop[i] = r->rorg[i] + r->rdir[i]*r->rot;
84 VCOPY(r->ron, co->ad);
85 r->rod = -rdx[2];
86 r->rox = NULL;
87 return(1); /* good */
88 }
89 /* roots for cone, cup, cyl., tube */
90 nroots = quadratic(root, a, b, c);
91
92 for (rn = 0; rn < nroots; rn++) { /* check real roots */
93 if (root[rn] <= FTINY)
94 continue; /* too small */
95 if (root[rn] >= r->rot)
96 break; /* too big */
97 /* check endpoints */
98 for (i = 0; i < 3; i++) {
99 rox[i] = r->rorg[i] + root[rn]*r->rdir[i];
100 rdx[i] = rox[i] - CO_P0(co)[i];
101 }
102 b = DOT(rdx, co->ad);
103 if (b < 0.0)
104 continue; /* before p0 */
105 if (b > co->al)
106 continue; /* after p1 */
107 r->ro = o;
108 r->rot = root[rn];
109 VCOPY(r->rop, rox);
110 /* get normal */
111 if (o->otype == OBJ_CYLINDER)
112 a = CO_R0(co);
113 else if (o->otype == OBJ_TUBE)
114 a = -CO_R0(co);
115 else { /* OBJ_CONE || OBJ_CUP */
116 c = CO_R1(co) - CO_R0(co);
117 a = CO_R0(co) + b*c/co->al;
118 if (o->otype == OBJ_CUP) {
119 c = -c;
120 a = -a;
121 }
122 }
123 for (i = 0; i < 3; i++)
124 r->ron[i] = (rdx[i] - b*co->ad[i])/a;
125 if (o->otype == OBJ_CONE || o->otype == OBJ_CUP)
126 for (i = 0; i < 3; i++)
127 r->ron[i] = (co->al*r->ron[i] - c*co->ad[i])
128 /co->sl;
129 r->rod = -DOT(r->rdir, r->ron);
130 r->pert[0] = r->pert[1] = r->pert[2] = 0.0;
131 r->uv[0] = r->uv[1] = 0.0;
132 r->rox = NULL;
133 return(1); /* good */
134 }
135 return(0);
136 }