ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.80
Committed: Fri Apr 19 19:01:32 2019 UTC (5 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R3
Changes since 2.79: +3 -2 lines
Log Message:
Make sure reflected ray distance is not infinite if there's a reflection

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.79 2019/02/13 02:38:26 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22 #include "pmapmat.h"
23
24 #ifndef MAXITER
25 #define MAXITER 10 /* maximum # specular ray attempts */
26 #endif
27 /* estimate of Fresnel function */
28 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
29 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
30
31
32 /*
33 * This routine implements the isotropic Gaussian
34 * model described by Ward in Siggraph `92 article.
35 * We orient the surface towards the incoming ray, so a single
36 * surface can be used to represent an infinitely thin object.
37 *
38 * Arguments for MAT_PLASTIC and MAT_METAL are:
39 * red grn blu specular-frac. facet-slope
40 *
41 * Arguments for MAT_TRANS are:
42 * red grn blu rspec rough trans tspec
43 */
44
45 /* specularity flags */
46 #define SP_REFL 01 /* has reflected specular component */
47 #define SP_TRAN 02 /* has transmitted specular */
48 #define SP_PURE 04 /* purely specular (zero roughness) */
49 #define SP_FLAT 010 /* flat reflecting surface */
50 #define SP_RBLT 020 /* reflection below sample threshold */
51 #define SP_TBLT 040 /* transmission below threshold */
52
53 typedef struct {
54 OBJREC *mp; /* material pointer */
55 RAY *rp; /* ray pointer */
56 short specfl; /* specularity flags, defined above */
57 COLOR mcolor; /* color of this material */
58 COLOR scolor; /* color of specular component */
59 FVECT vrefl; /* vector in direction of reflected ray */
60 FVECT prdir; /* vector in transmitted direction */
61 double alpha2; /* roughness squared */
62 double rdiff, rspec; /* reflected specular, diffuse */
63 double trans; /* transmissivity */
64 double tdiff, tspec; /* transmitted specular, diffuse */
65 FVECT pnorm; /* perturbed surface normal */
66 double pdot; /* perturbed dot product */
67 } NORMDAT; /* normal material data */
68
69 static void gaussamp(NORMDAT *np);
70
71
72 static void
73 dirnorm( /* compute source contribution */
74 COLOR cval, /* returned coefficient */
75 void *nnp, /* material data */
76 FVECT ldir, /* light source direction */
77 double omega /* light source size */
78 )
79 {
80 NORMDAT *np = nnp;
81 double ldot;
82 double lrdiff, ltdiff;
83 double dtmp, d2, d3, d4;
84 FVECT vtmp;
85 COLOR ctmp;
86
87 setcolor(cval, 0.0, 0.0, 0.0);
88
89 ldot = DOT(np->pnorm, ldir);
90
91 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92 return; /* wrong side */
93
94 /* Fresnel estimate */
95 lrdiff = np->rdiff;
96 ltdiff = np->tdiff;
97 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99 dtmp = 1. - FRESNE(fabs(ldot));
100 lrdiff *= dtmp;
101 ltdiff *= dtmp;
102 }
103
104 if (ldot > FTINY && lrdiff > FTINY) {
105 /*
106 * Compute and add diffuse reflected component to returned
107 * color. The diffuse reflected component will always be
108 * modified by the color of the material.
109 */
110 copycolor(ctmp, np->mcolor);
111 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115
116 if (ldot < -FTINY && ltdiff > FTINY) {
117 /*
118 * Compute diffuse transmission.
119 */
120 copycolor(ctmp, np->mcolor);
121 dtmp = -ldot * omega * ltdiff * (1.0/PI);
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125
126 if (ambRayInPmap(np->rp))
127 return; /* specular already in photon map */
128
129 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
130 /*
131 * Compute specular reflection coefficient using
132 * Gaussian distribution model.
133 */
134 /* roughness */
135 dtmp = np->alpha2;
136 /* + source if flat */
137 if (np->specfl & SP_FLAT)
138 dtmp += omega * (0.25/PI);
139 /* half vector */
140 VSUB(vtmp, ldir, np->rp->rdir);
141 d2 = DOT(vtmp, np->pnorm);
142 d2 *= d2;
143 d3 = DOT(vtmp,vtmp);
144 d4 = (d3 - d2) / d2;
145 /* new W-G-M-D model */
146 dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
147 /* worth using? */
148 if (dtmp > FTINY) {
149 copycolor(ctmp, np->scolor);
150 dtmp *= ldot * omega;
151 scalecolor(ctmp, dtmp);
152 addcolor(cval, ctmp);
153 }
154 }
155
156
157 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
158 /*
159 * Compute specular transmission. Specular transmission
160 * is always modified by material color.
161 */
162 /* roughness + source */
163 dtmp = np->alpha2 + omega*(1.0/PI);
164 /* Gaussian */
165 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
166 /* worth using? */
167 if (dtmp > FTINY) {
168 copycolor(ctmp, np->mcolor);
169 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
170 scalecolor(ctmp, dtmp);
171 addcolor(cval, ctmp);
172 }
173 }
174 }
175
176
177 int
178 m_normal( /* color a ray that hit something normal */
179 OBJREC *m,
180 RAY *r
181 )
182 {
183 NORMDAT nd;
184 double fest;
185 int hastexture;
186 double d;
187 COLOR ctmp;
188 int i;
189
190 /* PMAP: skip transmitted shadow ray if accounted for in photon map */
191 /* No longer needed?
192 if (shadowRayInPmap(r) || ambRayInPmap(r))
193 return(1); */
194
195 /* easy shadow test */
196 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
197 return(1);
198
199 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
200 objerror(m, USER, "bad number of arguments");
201 /* check for back side */
202 if (r->rod < 0.0) {
203 if (!backvis) {
204 raytrans(r);
205 return(1);
206 }
207 raytexture(r, m->omod);
208 flipsurface(r); /* reorient if backvis */
209 } else
210 raytexture(r, m->omod);
211 nd.mp = m;
212 nd.rp = r;
213 /* get material color */
214 setcolor(nd.mcolor, m->oargs.farg[0],
215 m->oargs.farg[1],
216 m->oargs.farg[2]);
217 /* get roughness */
218 nd.specfl = 0;
219 nd.alpha2 = m->oargs.farg[4];
220 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
221 nd.specfl |= SP_PURE;
222
223 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
224 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
225 } else {
226 VCOPY(nd.pnorm, r->ron);
227 nd.pdot = r->rod;
228 }
229 if (r->ro != NULL && isflat(r->ro->otype))
230 nd.specfl |= SP_FLAT;
231 if (nd.pdot < .001)
232 nd.pdot = .001; /* non-zero for dirnorm() */
233 multcolor(nd.mcolor, r->pcol); /* modify material color */
234 nd.rspec = m->oargs.farg[3];
235 /* compute Fresnel approx. */
236 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
237 fest = FRESNE(nd.pdot);
238 nd.rspec += fest*(1. - nd.rspec);
239 } else
240 fest = 0.;
241 /* compute transmission */
242 if (m->otype == MAT_TRANS) {
243 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
244 nd.tspec = nd.trans * m->oargs.farg[6];
245 nd.tdiff = nd.trans - nd.tspec;
246 if (nd.tspec > FTINY) {
247 nd.specfl |= SP_TRAN;
248 /* check threshold */
249 if (!(nd.specfl & SP_PURE) &&
250 specthresh >= nd.tspec-FTINY)
251 nd.specfl |= SP_TBLT;
252 if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
253 VCOPY(nd.prdir, r->rdir);
254 } else {
255 /* perturb */
256 VSUB(nd.prdir, r->rdir, r->pert);
257 if (DOT(nd.prdir, r->ron) < -FTINY)
258 normalize(nd.prdir); /* OK */
259 else
260 VCOPY(nd.prdir, r->rdir);
261 }
262 }
263 } else
264 nd.tdiff = nd.tspec = nd.trans = 0.0;
265 /* diffuse reflection */
266 nd.rdiff = 1.0 - nd.trans - nd.rspec;
267 /* transmitted ray */
268 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
269 RAY lr;
270 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
271 scalecolor(lr.rcoef, nd.tspec);
272 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
273 VCOPY(lr.rdir, nd.prdir);
274 rayvalue(&lr);
275 multcolor(lr.rcol, lr.rcoef);
276 addcolor(r->rcol, lr.rcol);
277 if (nd.tspec >= 1.0-FTINY) {
278 /* completely transparent */
279 multcolor(lr.mcol, lr.rcoef);
280 copycolor(r->mcol, lr.mcol);
281 r->rmt = r->rot + lr.rmt;
282 r->rxt = r->rot + lr.rxt;
283 } else if (nd.tspec > nd.tdiff + nd.rdiff)
284 r->rxt = r->rot + raydistance(&lr);
285 }
286 }
287
288 if (r->crtype & SHADOW) /* the rest is shadow */
289 return(1);
290 /* get specular reflection */
291 if (nd.rspec > FTINY) {
292 nd.specfl |= SP_REFL;
293 /* compute specular color */
294 if (m->otype != MAT_METAL) {
295 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
296 } else if (fest > FTINY) {
297 d = m->oargs.farg[3]*(1. - fest);
298 for (i = 0; i < 3; i++)
299 colval(nd.scolor,i) = fest +
300 colval(nd.mcolor,i)*d;
301 } else {
302 copycolor(nd.scolor, nd.mcolor);
303 scalecolor(nd.scolor, nd.rspec);
304 }
305 /* check threshold */
306 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
307 nd.specfl |= SP_RBLT;
308 /* compute reflected ray */
309 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
310 /* penetration? */
311 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
312 VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
313 checknorm(nd.vrefl);
314 }
315 /* reflected ray */
316 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
317 RAY lr;
318 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
319 VCOPY(lr.rdir, nd.vrefl);
320 rayvalue(&lr);
321 multcolor(lr.rcol, lr.rcoef);
322 copycolor(r->mcol, lr.rcol);
323 addcolor(r->rcol, lr.rcol);
324 r->rmt = r->rot;
325 if (nd.specfl & SP_FLAT &&
326 !hastexture | (r->crtype & AMBIENT))
327 r->rmt += raydistance(&lr);
328 }
329 }
330
331 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
332 return(1); /* 100% pure specular */
333
334 if (!(nd.specfl & SP_PURE))
335 gaussamp(&nd); /* checks *BLT flags */
336
337 if (nd.rdiff > FTINY) { /* ambient from this side */
338 copycolor(ctmp, nd.mcolor); /* modified by material color */
339 scalecolor(ctmp, nd.rdiff);
340 if (nd.specfl & SP_RBLT) /* add in specular as well? */
341 addcolor(ctmp, nd.scolor);
342 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
343 addcolor(r->rcol, ctmp); /* add to returned color */
344 }
345 if (nd.tdiff > FTINY) { /* ambient from other side */
346 copycolor(ctmp, nd.mcolor); /* modified by color */
347 if (nd.specfl & SP_TBLT)
348 scalecolor(ctmp, nd.trans);
349 else
350 scalecolor(ctmp, nd.tdiff);
351 flipsurface(r);
352 if (hastexture) {
353 FVECT bnorm;
354 bnorm[0] = -nd.pnorm[0];
355 bnorm[1] = -nd.pnorm[1];
356 bnorm[2] = -nd.pnorm[2];
357 multambient(ctmp, r, bnorm);
358 } else
359 multambient(ctmp, r, r->ron);
360 addcolor(r->rcol, ctmp);
361 flipsurface(r);
362 }
363 /* add direct component */
364 direct(r, dirnorm, &nd);
365
366 return(1);
367 }
368
369
370 static void
371 gaussamp( /* sample Gaussian specular */
372 NORMDAT *np
373 )
374 {
375 RAY sr;
376 FVECT u, v, h;
377 double rv[2];
378 double d, sinp, cosp;
379 COLOR scol;
380 int maxiter, ntrials, nstarget, nstaken;
381 int i;
382 /* quick test */
383 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
384 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
385 return;
386 /* set up sample coordinates */
387 getperpendicular(u, np->pnorm, rand_samp);
388 fcross(v, np->pnorm, u);
389 /* compute reflection */
390 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
391 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
392 nstarget = 1;
393 if (specjitter > 1.5) { /* multiple samples? */
394 nstarget = specjitter*np->rp->rweight + .5;
395 if (sr.rweight <= minweight*nstarget)
396 nstarget = sr.rweight/minweight;
397 if (nstarget > 1) {
398 d = 1./nstarget;
399 scalecolor(sr.rcoef, d);
400 sr.rweight *= d;
401 } else
402 nstarget = 1;
403 }
404 setcolor(scol, 0., 0., 0.);
405 dimlist[ndims++] = (int)(size_t)np->mp;
406 maxiter = MAXITER*nstarget;
407 for (nstaken = ntrials = 0; nstaken < nstarget &&
408 ntrials < maxiter; ntrials++) {
409 if (ntrials)
410 d = frandom();
411 else
412 d = urand(ilhash(dimlist,ndims)+samplendx);
413 multisamp(rv, 2, d);
414 d = 2.0*PI * rv[0];
415 cosp = tcos(d);
416 sinp = tsin(d);
417 if ((0. <= specjitter) & (specjitter < 1.))
418 rv[1] = 1.0 - specjitter*rv[1];
419 if (rv[1] <= FTINY)
420 d = 1.0;
421 else
422 d = sqrt( np->alpha2 * -log(rv[1]) );
423 for (i = 0; i < 3; i++)
424 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
425 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
426 VSUM(sr.rdir, np->rp->rdir, h, d);
427 /* sample rejection test */
428 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
429 continue;
430 checknorm(sr.rdir);
431 if (nstarget > 1) { /* W-G-M-D adjustment */
432 if (nstaken) rayclear(&sr);
433 rayvalue(&sr);
434 d = 2./(1. + np->rp->rod/d);
435 scalecolor(sr.rcol, d);
436 addcolor(scol, sr.rcol);
437 } else {
438 rayvalue(&sr);
439 multcolor(sr.rcol, sr.rcoef);
440 addcolor(np->rp->rcol, sr.rcol);
441 }
442 ++nstaken;
443 }
444 if (nstarget > 1) { /* final W-G-M-D weighting */
445 multcolor(scol, sr.rcoef);
446 d = (double)nstarget/ntrials;
447 scalecolor(scol, d);
448 addcolor(np->rp->rcol, scol);
449 }
450 ndims--;
451 }
452 /* compute transmission */
453 copycolor(sr.rcoef, np->mcolor); /* modified by color */
454 scalecolor(sr.rcoef, np->tspec);
455 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
456 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
457 nstarget = 1;
458 if (specjitter > 1.5) { /* multiple samples? */
459 nstarget = specjitter*np->rp->rweight + .5;
460 if (sr.rweight <= minweight*nstarget)
461 nstarget = sr.rweight/minweight;
462 if (nstarget > 1) {
463 d = 1./nstarget;
464 scalecolor(sr.rcoef, d);
465 sr.rweight *= d;
466 } else
467 nstarget = 1;
468 }
469 dimlist[ndims++] = (int)(size_t)np->mp;
470 maxiter = MAXITER*nstarget;
471 for (nstaken = ntrials = 0; nstaken < nstarget &&
472 ntrials < maxiter; ntrials++) {
473 if (ntrials)
474 d = frandom();
475 else
476 d = urand(ilhash(dimlist,ndims)+samplendx);
477 multisamp(rv, 2, d);
478 d = 2.0*PI * rv[0];
479 cosp = tcos(d);
480 sinp = tsin(d);
481 if ((0. <= specjitter) & (specjitter < 1.))
482 rv[1] = 1.0 - specjitter*rv[1];
483 if (rv[1] <= FTINY)
484 d = 1.0;
485 else
486 d = sqrt( np->alpha2 * -log(rv[1]) );
487 for (i = 0; i < 3; i++)
488 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
489 /* sample rejection test */
490 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
491 continue;
492 normalize(sr.rdir); /* OK, normalize */
493 if (nstaken) /* multi-sampling */
494 rayclear(&sr);
495 rayvalue(&sr);
496 multcolor(sr.rcol, sr.rcoef);
497 addcolor(np->rp->rcol, sr.rcol);
498 ++nstaken;
499 }
500 ndims--;
501 }
502 }