ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.72
Committed: Wed Sep 2 18:59:01 2015 UTC (8 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R0
Changes since 2.71: +6 -3 lines
Log Message:
Had to reinstate ambRayInPmap() macro to avoid over-counting bug

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.71 2015/05/26 13:21:07 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22 #include "pmapmat.h"
23
24 #ifndef MAXITER
25 #define MAXITER 10 /* maximum # specular ray attempts */
26 #endif
27 /* estimate of Fresnel function */
28 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
29 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
30
31
32 /*
33 * This routine implements the isotropic Gaussian
34 * model described by Ward in Siggraph `92 article.
35 * We orient the surface towards the incoming ray, so a single
36 * surface can be used to represent an infinitely thin object.
37 *
38 * Arguments for MAT_PLASTIC and MAT_METAL are:
39 * red grn blu specular-frac. facet-slope
40 *
41 * Arguments for MAT_TRANS are:
42 * red grn blu rspec rough trans tspec
43 */
44
45 /* specularity flags */
46 #define SP_REFL 01 /* has reflected specular component */
47 #define SP_TRAN 02 /* has transmitted specular */
48 #define SP_PURE 04 /* purely specular (zero roughness) */
49 #define SP_FLAT 010 /* flat reflecting surface */
50 #define SP_RBLT 020 /* reflection below sample threshold */
51 #define SP_TBLT 040 /* transmission below threshold */
52
53 typedef struct {
54 OBJREC *mp; /* material pointer */
55 RAY *rp; /* ray pointer */
56 short specfl; /* specularity flags, defined above */
57 COLOR mcolor; /* color of this material */
58 COLOR scolor; /* color of specular component */
59 FVECT vrefl; /* vector in direction of reflected ray */
60 FVECT prdir; /* vector in transmitted direction */
61 double alpha2; /* roughness squared */
62 double rdiff, rspec; /* reflected specular, diffuse */
63 double trans; /* transmissivity */
64 double tdiff, tspec; /* transmitted specular, diffuse */
65 FVECT pnorm; /* perturbed surface normal */
66 double pdot; /* perturbed dot product */
67 } NORMDAT; /* normal material data */
68
69 static void gaussamp(NORMDAT *np);
70
71
72 static void
73 dirnorm( /* compute source contribution */
74 COLOR cval, /* returned coefficient */
75 void *nnp, /* material data */
76 FVECT ldir, /* light source direction */
77 double omega /* light source size */
78 )
79 {
80 NORMDAT *np = nnp;
81 double ldot;
82 double lrdiff, ltdiff;
83 double dtmp, d2, d3, d4;
84 FVECT vtmp;
85 COLOR ctmp;
86
87 setcolor(cval, 0.0, 0.0, 0.0);
88
89 ldot = DOT(np->pnorm, ldir);
90
91 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92 return; /* wrong side */
93
94 /* Fresnel estimate */
95 lrdiff = np->rdiff;
96 ltdiff = np->tdiff;
97 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99 dtmp = 1. - FRESNE(fabs(ldot));
100 lrdiff *= dtmp;
101 ltdiff *= dtmp;
102 }
103
104 if (ldot > FTINY && lrdiff > FTINY) {
105 /*
106 * Compute and add diffuse reflected component to returned
107 * color. The diffuse reflected component will always be
108 * modified by the color of the material.
109 */
110 copycolor(ctmp, np->mcolor);
111 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115
116 if (ldot < -FTINY && ltdiff > FTINY) {
117 /*
118 * Compute diffuse transmission.
119 */
120 copycolor(ctmp, np->mcolor);
121 dtmp = -ldot * omega * ltdiff * (1.0/PI);
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125
126 if (ambRayInPmap(np->rp))
127 return; /* specular already in photon map */
128
129 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
130 /*
131 * Compute specular reflection coefficient using
132 * Gaussian distribution model.
133 */
134 /* roughness */
135 dtmp = np->alpha2;
136 /* + source if flat */
137 if (np->specfl & SP_FLAT)
138 dtmp += omega * (0.25/PI);
139 /* half vector */
140 VSUB(vtmp, ldir, np->rp->rdir);
141 d2 = DOT(vtmp, np->pnorm);
142 d2 *= d2;
143 d3 = DOT(vtmp,vtmp);
144 d4 = (d3 - d2) / d2;
145 /* new W-G-M-D model */
146 dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
147 /* worth using? */
148 if (dtmp > FTINY) {
149 copycolor(ctmp, np->scolor);
150 dtmp *= ldot * omega;
151 scalecolor(ctmp, dtmp);
152 addcolor(cval, ctmp);
153 }
154 }
155
156
157 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
158 /*
159 * Compute specular transmission. Specular transmission
160 * is always modified by material color.
161 */
162 /* roughness + source */
163 dtmp = np->alpha2 + omega*(1.0/PI);
164 /* Gaussian */
165 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
166 /* worth using? */
167 if (dtmp > FTINY) {
168 copycolor(ctmp, np->mcolor);
169 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
170 scalecolor(ctmp, dtmp);
171 addcolor(cval, ctmp);
172 }
173 }
174 }
175
176
177 int
178 m_normal( /* color a ray that hit something normal */
179 OBJREC *m,
180 RAY *r
181 )
182 {
183 NORMDAT nd;
184 double fest;
185 double transtest, transdist;
186 double mirtest, mirdist;
187 int hastexture;
188 double d;
189 COLOR ctmp;
190 int i;
191
192 /* PMAP: skip transmitted shadow ray if accounted for in photon map */
193 if (shadowRayInPmap(r))
194 return(1);
195 /* easy shadow test */
196 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
197 return(1);
198
199 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
200 objerror(m, USER, "bad number of arguments");
201 /* check for back side */
202 if (r->rod < 0.0) {
203 if (!backvis) {
204 raytrans(r);
205 return(1);
206 }
207 raytexture(r, m->omod);
208 flipsurface(r); /* reorient if backvis */
209 } else
210 raytexture(r, m->omod);
211 nd.mp = m;
212 nd.rp = r;
213 /* get material color */
214 setcolor(nd.mcolor, m->oargs.farg[0],
215 m->oargs.farg[1],
216 m->oargs.farg[2]);
217 /* get roughness */
218 nd.specfl = 0;
219 nd.alpha2 = m->oargs.farg[4];
220 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
221 nd.specfl |= SP_PURE;
222
223 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
224 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
225 } else {
226 VCOPY(nd.pnorm, r->ron);
227 nd.pdot = r->rod;
228 }
229 if (r->ro != NULL && isflat(r->ro->otype))
230 nd.specfl |= SP_FLAT;
231 if (nd.pdot < .001)
232 nd.pdot = .001; /* non-zero for dirnorm() */
233 multcolor(nd.mcolor, r->pcol); /* modify material color */
234 mirtest = transtest = 0;
235 mirdist = transdist = r->rot;
236 nd.rspec = m->oargs.farg[3];
237 /* compute Fresnel approx. */
238 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
239 fest = FRESNE(nd.pdot);
240 nd.rspec += fest*(1. - nd.rspec);
241 } else
242 fest = 0.;
243 /* compute transmission */
244 if (m->otype == MAT_TRANS) {
245 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
246 nd.tspec = nd.trans * m->oargs.farg[6];
247 nd.tdiff = nd.trans - nd.tspec;
248 if (nd.tspec > FTINY) {
249 nd.specfl |= SP_TRAN;
250 /* check threshold */
251 if (!(nd.specfl & SP_PURE) &&
252 specthresh >= nd.tspec-FTINY)
253 nd.specfl |= SP_TBLT;
254 if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
255 VCOPY(nd.prdir, r->rdir);
256 transtest = 2;
257 } else {
258 for (i = 0; i < 3; i++) /* perturb */
259 nd.prdir[i] = r->rdir[i] - r->pert[i];
260 if (DOT(nd.prdir, r->ron) < -FTINY)
261 normalize(nd.prdir); /* OK */
262 else
263 VCOPY(nd.prdir, r->rdir);
264 }
265 }
266 } else
267 nd.tdiff = nd.tspec = nd.trans = 0.0;
268 /* transmitted ray */
269
270 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
271 RAY lr;
272 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
273 scalecolor(lr.rcoef, nd.tspec);
274 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
275 VCOPY(lr.rdir, nd.prdir);
276 rayvalue(&lr);
277 multcolor(lr.rcol, lr.rcoef);
278 addcolor(r->rcol, lr.rcol);
279 transtest *= bright(lr.rcol);
280 transdist = r->rot + lr.rt;
281 }
282 } else
283 transtest = 0;
284
285 if (r->crtype & SHADOW) { /* the rest is shadow */
286 r->rt = transdist;
287 return(1);
288 }
289 /* get specular reflection */
290 if (nd.rspec > FTINY) {
291 nd.specfl |= SP_REFL;
292 /* compute specular color */
293 if (m->otype != MAT_METAL) {
294 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
295 } else if (fest > FTINY) {
296 d = m->oargs.farg[3]*(1. - fest);
297 for (i = 0; i < 3; i++)
298 colval(nd.scolor,i) = fest +
299 colval(nd.mcolor,i)*d;
300 } else {
301 copycolor(nd.scolor, nd.mcolor);
302 scalecolor(nd.scolor, nd.rspec);
303 }
304 /* check threshold */
305 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
306 nd.specfl |= SP_RBLT;
307 /* compute reflected ray */
308 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
309 /* penetration? */
310 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
311 VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
312 checknorm(nd.vrefl);
313 }
314 /* reflected ray */
315 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
316 RAY lr;
317 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
318 VCOPY(lr.rdir, nd.vrefl);
319 rayvalue(&lr);
320 multcolor(lr.rcol, lr.rcoef);
321 addcolor(r->rcol, lr.rcol);
322 if (nd.specfl & SP_FLAT &&
323 !hastexture | (r->crtype & AMBIENT)) {
324 mirtest = 2.*bright(lr.rcol);
325 mirdist = r->rot + lr.rt;
326 }
327 }
328 }
329 /* diffuse reflection */
330 nd.rdiff = 1.0 - nd.trans - nd.rspec;
331
332 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
333 return(1); /* 100% pure specular */
334
335 if (!(nd.specfl & SP_PURE))
336 gaussamp(&nd); /* checks *BLT flags */
337
338 if (nd.rdiff > FTINY) { /* ambient from this side */
339 copycolor(ctmp, nd.mcolor); /* modified by material color */
340 scalecolor(ctmp, nd.rdiff);
341 if (nd.specfl & SP_RBLT) /* add in specular as well? */
342 addcolor(ctmp, nd.scolor);
343 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
344 addcolor(r->rcol, ctmp); /* add to returned color */
345 }
346 if (nd.tdiff > FTINY) { /* ambient from other side */
347 copycolor(ctmp, nd.mcolor); /* modified by color */
348 if (nd.specfl & SP_TBLT)
349 scalecolor(ctmp, nd.trans);
350 else
351 scalecolor(ctmp, nd.tdiff);
352 flipsurface(r);
353 if (hastexture) {
354 FVECT bnorm;
355 bnorm[0] = -nd.pnorm[0];
356 bnorm[1] = -nd.pnorm[1];
357 bnorm[2] = -nd.pnorm[2];
358 multambient(ctmp, r, bnorm);
359 } else
360 multambient(ctmp, r, r->ron);
361 addcolor(r->rcol, ctmp);
362 flipsurface(r);
363 }
364 /* add direct component */
365 direct(r, dirnorm, &nd);
366 /* check distance */
367 d = bright(r->rcol);
368 if (transtest > d)
369 r->rt = transdist;
370 else if (mirtest > d)
371 r->rt = mirdist;
372
373 return(1);
374 }
375
376
377 static void
378 gaussamp( /* sample Gaussian specular */
379 NORMDAT *np
380 )
381 {
382 RAY sr;
383 FVECT u, v, h;
384 double rv[2];
385 double d, sinp, cosp;
386 COLOR scol;
387 int maxiter, ntrials, nstarget, nstaken;
388 int i;
389 /* quick test */
390 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
391 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
392 return;
393 /* set up sample coordinates */
394 getperpendicular(u, np->pnorm, rand_samp);
395 fcross(v, np->pnorm, u);
396 /* compute reflection */
397 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
398 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
399 nstarget = 1;
400 if (specjitter > 1.5) { /* multiple samples? */
401 nstarget = specjitter*np->rp->rweight + .5;
402 if (sr.rweight <= minweight*nstarget)
403 nstarget = sr.rweight/minweight;
404 if (nstarget > 1) {
405 d = 1./nstarget;
406 scalecolor(sr.rcoef, d);
407 sr.rweight *= d;
408 } else
409 nstarget = 1;
410 }
411 setcolor(scol, 0., 0., 0.);
412 dimlist[ndims++] = (int)(size_t)np->mp;
413 maxiter = MAXITER*nstarget;
414 for (nstaken = ntrials = 0; nstaken < nstarget &&
415 ntrials < maxiter; ntrials++) {
416 if (ntrials)
417 d = frandom();
418 else
419 d = urand(ilhash(dimlist,ndims)+samplendx);
420 multisamp(rv, 2, d);
421 d = 2.0*PI * rv[0];
422 cosp = tcos(d);
423 sinp = tsin(d);
424 if ((0. <= specjitter) & (specjitter < 1.))
425 rv[1] = 1.0 - specjitter*rv[1];
426 if (rv[1] <= FTINY)
427 d = 1.0;
428 else
429 d = sqrt( np->alpha2 * -log(rv[1]) );
430 for (i = 0; i < 3; i++)
431 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
432 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
433 VSUM(sr.rdir, np->rp->rdir, h, d);
434 /* sample rejection test */
435 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
436 continue;
437 checknorm(sr.rdir);
438 if (nstarget > 1) { /* W-G-M-D adjustment */
439 if (nstaken) rayclear(&sr);
440 rayvalue(&sr);
441 d = 2./(1. + np->rp->rod/d);
442 scalecolor(sr.rcol, d);
443 addcolor(scol, sr.rcol);
444 } else {
445 rayvalue(&sr);
446 multcolor(sr.rcol, sr.rcoef);
447 addcolor(np->rp->rcol, sr.rcol);
448 }
449 ++nstaken;
450 }
451 if (nstarget > 1) { /* final W-G-M-D weighting */
452 multcolor(scol, sr.rcoef);
453 d = (double)nstarget/ntrials;
454 scalecolor(scol, d);
455 addcolor(np->rp->rcol, scol);
456 }
457 ndims--;
458 }
459 /* compute transmission */
460 copycolor(sr.rcoef, np->mcolor); /* modified by color */
461 scalecolor(sr.rcoef, np->tspec);
462 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
463 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
464 nstarget = 1;
465 if (specjitter > 1.5) { /* multiple samples? */
466 nstarget = specjitter*np->rp->rweight + .5;
467 if (sr.rweight <= minweight*nstarget)
468 nstarget = sr.rweight/minweight;
469 if (nstarget > 1) {
470 d = 1./nstarget;
471 scalecolor(sr.rcoef, d);
472 sr.rweight *= d;
473 } else
474 nstarget = 1;
475 }
476 dimlist[ndims++] = (int)(size_t)np->mp;
477 maxiter = MAXITER*nstarget;
478 for (nstaken = ntrials = 0; nstaken < nstarget &&
479 ntrials < maxiter; ntrials++) {
480 if (ntrials)
481 d = frandom();
482 else
483 d = urand(ilhash(dimlist,ndims)+samplendx);
484 multisamp(rv, 2, d);
485 d = 2.0*PI * rv[0];
486 cosp = tcos(d);
487 sinp = tsin(d);
488 if ((0. <= specjitter) & (specjitter < 1.))
489 rv[1] = 1.0 - specjitter*rv[1];
490 if (rv[1] <= FTINY)
491 d = 1.0;
492 else
493 d = sqrt( np->alpha2 * -log(rv[1]) );
494 for (i = 0; i < 3; i++)
495 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
496 /* sample rejection test */
497 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
498 continue;
499 normalize(sr.rdir); /* OK, normalize */
500 if (nstaken) /* multi-sampling */
501 rayclear(&sr);
502 rayvalue(&sr);
503 multcolor(sr.rcol, sr.rcoef);
504 addcolor(np->rp->rcol, sr.rcol);
505 ++nstaken;
506 }
507 ndims--;
508 }
509 }