ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.70
Committed: Thu May 21 05:54:54 2015 UTC (8 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.69: +2 -2 lines
Log Message:
Made axis randomization optional in getperpendicular()

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.69 2015/02/24 19:39:26 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22 #include "pmapmat.h"
23
24 #ifndef MAXITER
25 #define MAXITER 10 /* maximum # specular ray attempts */
26 #endif
27 /* estimate of Fresnel function */
28 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
29 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
30
31
32 /*
33 * This routine implements the isotropic Gaussian
34 * model described by Ward in Siggraph `92 article.
35 * We orient the surface towards the incoming ray, so a single
36 * surface can be used to represent an infinitely thin object.
37 *
38 * Arguments for MAT_PLASTIC and MAT_METAL are:
39 * red grn blu specular-frac. facet-slope
40 *
41 * Arguments for MAT_TRANS are:
42 * red grn blu rspec rough trans tspec
43 */
44
45 /* specularity flags */
46 #define SP_REFL 01 /* has reflected specular component */
47 #define SP_TRAN 02 /* has transmitted specular */
48 #define SP_PURE 04 /* purely specular (zero roughness) */
49 #define SP_FLAT 010 /* flat reflecting surface */
50 #define SP_RBLT 020 /* reflection below sample threshold */
51 #define SP_TBLT 040 /* transmission below threshold */
52
53 typedef struct {
54 OBJREC *mp; /* material pointer */
55 RAY *rp; /* ray pointer */
56 short specfl; /* specularity flags, defined above */
57 COLOR mcolor; /* color of this material */
58 COLOR scolor; /* color of specular component */
59 FVECT vrefl; /* vector in direction of reflected ray */
60 FVECT prdir; /* vector in transmitted direction */
61 double alpha2; /* roughness squared */
62 double rdiff, rspec; /* reflected specular, diffuse */
63 double trans; /* transmissivity */
64 double tdiff, tspec; /* transmitted specular, diffuse */
65 FVECT pnorm; /* perturbed surface normal */
66 double pdot; /* perturbed dot product */
67 } NORMDAT; /* normal material data */
68
69 static void gaussamp(NORMDAT *np);
70
71
72 static void
73 dirnorm( /* compute source contribution */
74 COLOR cval, /* returned coefficient */
75 void *nnp, /* material data */
76 FVECT ldir, /* light source direction */
77 double omega /* light source size */
78 )
79 {
80 NORMDAT *np = nnp;
81 double ldot;
82 double lrdiff, ltdiff;
83 double dtmp, d2, d3, d4;
84 FVECT vtmp;
85 COLOR ctmp;
86
87 setcolor(cval, 0.0, 0.0, 0.0);
88
89 ldot = DOT(np->pnorm, ldir);
90
91 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92 return; /* wrong side */
93
94 /* Fresnel estimate */
95 lrdiff = np->rdiff;
96 ltdiff = np->tdiff;
97 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99 dtmp = 1. - FRESNE(fabs(ldot));
100 lrdiff *= dtmp;
101 ltdiff *= dtmp;
102 }
103
104 if (ldot > FTINY && lrdiff > FTINY) {
105 /*
106 * Compute and add diffuse reflected component to returned
107 * color. The diffuse reflected component will always be
108 * modified by the color of the material.
109 */
110 copycolor(ctmp, np->mcolor);
111 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115
116 if (ldot < -FTINY && ltdiff > FTINY) {
117 /*
118 * Compute diffuse transmission.
119 */
120 copycolor(ctmp, np->mcolor);
121 dtmp = -ldot * omega * ltdiff * (1.0/PI);
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125
126 /* PMAP: skip direct specular via ambient bounce if already accounted for
127 * in photon map */
128 if (ambRayInPmap(np->rp))
129 return;
130
131 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
132 /*
133 * Compute specular reflection coefficient using
134 * Gaussian distribution model.
135 */
136 /* roughness */
137 dtmp = np->alpha2;
138 /* + source if flat */
139 if (np->specfl & SP_FLAT)
140 dtmp += omega * (0.25/PI);
141 /* half vector */
142 VSUB(vtmp, ldir, np->rp->rdir);
143 d2 = DOT(vtmp, np->pnorm);
144 d2 *= d2;
145 d3 = DOT(vtmp,vtmp);
146 d4 = (d3 - d2) / d2;
147 /* new W-G-M-D model */
148 dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
149 /* worth using? */
150 if (dtmp > FTINY) {
151 copycolor(ctmp, np->scolor);
152 dtmp *= ldot * omega;
153 scalecolor(ctmp, dtmp);
154 addcolor(cval, ctmp);
155 }
156 }
157
158
159 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
160 /*
161 * Compute specular transmission. Specular transmission
162 * is always modified by material color.
163 */
164 /* roughness + source */
165 dtmp = np->alpha2 + omega*(1.0/PI);
166 /* Gaussian */
167 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
168 /* worth using? */
169 if (dtmp > FTINY) {
170 copycolor(ctmp, np->mcolor);
171 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
172 scalecolor(ctmp, dtmp);
173 addcolor(cval, ctmp);
174 }
175 }
176 }
177
178
179 int
180 m_normal( /* color a ray that hit something normal */
181 OBJREC *m,
182 RAY *r
183 )
184 {
185 NORMDAT nd;
186 double fest;
187 double transtest, transdist;
188 double mirtest, mirdist;
189 int hastexture;
190 double d;
191 COLOR ctmp;
192 int i;
193
194 /* PMAP: skip transmitted shadow ray if accounted for in photon map */
195 if (shadowRayInPmap(r))
196 return(1);
197 /* easy shadow test */
198 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
199 return(1);
200
201 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
202 objerror(m, USER, "bad number of arguments");
203 /* check for back side */
204 if (r->rod < 0.0) {
205 if (!backvis) {
206 raytrans(r);
207 return(1);
208 }
209 raytexture(r, m->omod);
210 flipsurface(r); /* reorient if backvis */
211 } else
212 raytexture(r, m->omod);
213 nd.mp = m;
214 nd.rp = r;
215 /* get material color */
216 setcolor(nd.mcolor, m->oargs.farg[0],
217 m->oargs.farg[1],
218 m->oargs.farg[2]);
219 /* get roughness */
220 nd.specfl = 0;
221 nd.alpha2 = m->oargs.farg[4];
222 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
223 nd.specfl |= SP_PURE;
224
225 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
226 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
227 } else {
228 VCOPY(nd.pnorm, r->ron);
229 nd.pdot = r->rod;
230 }
231 if (r->ro != NULL && isflat(r->ro->otype))
232 nd.specfl |= SP_FLAT;
233 if (nd.pdot < .001)
234 nd.pdot = .001; /* non-zero for dirnorm() */
235 multcolor(nd.mcolor, r->pcol); /* modify material color */
236 mirtest = transtest = 0;
237 mirdist = transdist = r->rot;
238 nd.rspec = m->oargs.farg[3];
239 /* compute Fresnel approx. */
240 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
241 fest = FRESNE(nd.pdot);
242 nd.rspec += fest*(1. - nd.rspec);
243 } else
244 fest = 0.;
245 /* compute transmission */
246 if (m->otype == MAT_TRANS) {
247 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
248 nd.tspec = nd.trans * m->oargs.farg[6];
249 nd.tdiff = nd.trans - nd.tspec;
250 if (nd.tspec > FTINY) {
251 nd.specfl |= SP_TRAN;
252 /* check threshold */
253 if (!(nd.specfl & SP_PURE) &&
254 specthresh >= nd.tspec-FTINY)
255 nd.specfl |= SP_TBLT;
256 if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
257 VCOPY(nd.prdir, r->rdir);
258 transtest = 2;
259 } else {
260 for (i = 0; i < 3; i++) /* perturb */
261 nd.prdir[i] = r->rdir[i] - r->pert[i];
262 if (DOT(nd.prdir, r->ron) < -FTINY)
263 normalize(nd.prdir); /* OK */
264 else
265 VCOPY(nd.prdir, r->rdir);
266 }
267 }
268 } else
269 nd.tdiff = nd.tspec = nd.trans = 0.0;
270 /* transmitted ray */
271
272 /* PMAP: skip indirect specular trans via ambient bounce if already
273 * accounted for in photon map */
274 if (!ambRayInPmap(r) &&
275 (nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
276 RAY lr;
277 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
278 scalecolor(lr.rcoef, nd.tspec);
279 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
280 VCOPY(lr.rdir, nd.prdir);
281 rayvalue(&lr);
282 multcolor(lr.rcol, lr.rcoef);
283 addcolor(r->rcol, lr.rcol);
284 transtest *= bright(lr.rcol);
285 transdist = r->rot + lr.rt;
286 }
287 } else
288 transtest = 0;
289
290 if (r->crtype & SHADOW) { /* the rest is shadow */
291 r->rt = transdist;
292 return(1);
293 }
294 /* get specular reflection */
295 if (nd.rspec > FTINY) {
296 nd.specfl |= SP_REFL;
297 /* compute specular color */
298 if (m->otype != MAT_METAL) {
299 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
300 } else if (fest > FTINY) {
301 d = m->oargs.farg[3]*(1. - fest);
302 for (i = 0; i < 3; i++)
303 colval(nd.scolor,i) = fest +
304 colval(nd.mcolor,i)*d;
305 } else {
306 copycolor(nd.scolor, nd.mcolor);
307 scalecolor(nd.scolor, nd.rspec);
308 }
309 /* check threshold */
310 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
311 nd.specfl |= SP_RBLT;
312 /* compute reflected ray */
313 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
314 /* penetration? */
315 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
316 VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
317 checknorm(nd.vrefl);
318 }
319 /* reflected ray */
320 /* PMAP: skip indirect specular refl via ambient ray if already accounted
321 * for in photon map */
322 if (!ambRayInPmap(r) &&
323 (nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
324 RAY lr;
325 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
326 VCOPY(lr.rdir, nd.vrefl);
327 rayvalue(&lr);
328 multcolor(lr.rcol, lr.rcoef);
329 addcolor(r->rcol, lr.rcol);
330 if (nd.specfl & SP_FLAT &&
331 !hastexture | (r->crtype & AMBIENT)) {
332 mirtest = 2.*bright(lr.rcol);
333 mirdist = r->rot + lr.rt;
334 }
335 }
336 }
337 /* diffuse reflection */
338 nd.rdiff = 1.0 - nd.trans - nd.rspec;
339
340 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
341 return(1); /* 100% pure specular */
342
343 /* PMAP: skip indirect gaussian via ambient bounce if already accounted
344 * for in photon map */
345 if (!ambRayInPmap(r))
346 if (!(nd.specfl & SP_PURE))
347 gaussamp(&nd); /* checks *BLT flags */
348
349 if (nd.rdiff > FTINY) { /* ambient from this side */
350 copycolor(ctmp, nd.mcolor); /* modified by material color */
351 scalecolor(ctmp, nd.rdiff);
352 if (nd.specfl & SP_RBLT) /* add in specular as well? */
353 addcolor(ctmp, nd.scolor);
354 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
355 addcolor(r->rcol, ctmp); /* add to returned color */
356 }
357 if (nd.tdiff > FTINY) { /* ambient from other side */
358 copycolor(ctmp, nd.mcolor); /* modified by color */
359 if (nd.specfl & SP_TBLT)
360 scalecolor(ctmp, nd.trans);
361 else
362 scalecolor(ctmp, nd.tdiff);
363 flipsurface(r);
364 if (hastexture) {
365 FVECT bnorm;
366 bnorm[0] = -nd.pnorm[0];
367 bnorm[1] = -nd.pnorm[1];
368 bnorm[2] = -nd.pnorm[2];
369 multambient(ctmp, r, bnorm);
370 } else
371 multambient(ctmp, r, r->ron);
372 addcolor(r->rcol, ctmp);
373 flipsurface(r);
374 }
375 /* add direct component */
376 direct(r, dirnorm, &nd);
377 /* check distance */
378 d = bright(r->rcol);
379 if (transtest > d)
380 r->rt = transdist;
381 else if (mirtest > d)
382 r->rt = mirdist;
383
384 return(1);
385 }
386
387
388 static void
389 gaussamp( /* sample Gaussian specular */
390 NORMDAT *np
391 )
392 {
393 RAY sr;
394 FVECT u, v, h;
395 double rv[2];
396 double d, sinp, cosp;
397 COLOR scol;
398 int maxiter, ntrials, nstarget, nstaken;
399 int i;
400 /* quick test */
401 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
402 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
403 return;
404 /* set up sample coordinates */
405 getperpendicular(u, np->pnorm, rand_samp);
406 fcross(v, np->pnorm, u);
407 /* compute reflection */
408 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
409 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
410 nstarget = 1;
411 if (specjitter > 1.5) { /* multiple samples? */
412 nstarget = specjitter*np->rp->rweight + .5;
413 if (sr.rweight <= minweight*nstarget)
414 nstarget = sr.rweight/minweight;
415 if (nstarget > 1) {
416 d = 1./nstarget;
417 scalecolor(sr.rcoef, d);
418 sr.rweight *= d;
419 } else
420 nstarget = 1;
421 }
422 setcolor(scol, 0., 0., 0.);
423 dimlist[ndims++] = (int)(size_t)np->mp;
424 maxiter = MAXITER*nstarget;
425 for (nstaken = ntrials = 0; nstaken < nstarget &&
426 ntrials < maxiter; ntrials++) {
427 if (ntrials)
428 d = frandom();
429 else
430 d = urand(ilhash(dimlist,ndims)+samplendx);
431 multisamp(rv, 2, d);
432 d = 2.0*PI * rv[0];
433 cosp = tcos(d);
434 sinp = tsin(d);
435 if ((0. <= specjitter) & (specjitter < 1.))
436 rv[1] = 1.0 - specjitter*rv[1];
437 if (rv[1] <= FTINY)
438 d = 1.0;
439 else
440 d = sqrt( np->alpha2 * -log(rv[1]) );
441 for (i = 0; i < 3; i++)
442 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
443 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
444 VSUM(sr.rdir, np->rp->rdir, h, d);
445 /* sample rejection test */
446 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
447 continue;
448 checknorm(sr.rdir);
449 if (nstarget > 1) { /* W-G-M-D adjustment */
450 if (nstaken) rayclear(&sr);
451 rayvalue(&sr);
452 d = 2./(1. + np->rp->rod/d);
453 scalecolor(sr.rcol, d);
454 addcolor(scol, sr.rcol);
455 } else {
456 rayvalue(&sr);
457 multcolor(sr.rcol, sr.rcoef);
458 addcolor(np->rp->rcol, sr.rcol);
459 }
460 ++nstaken;
461 }
462 if (nstarget > 1) { /* final W-G-M-D weighting */
463 multcolor(scol, sr.rcoef);
464 d = (double)nstarget/ntrials;
465 scalecolor(scol, d);
466 addcolor(np->rp->rcol, scol);
467 }
468 ndims--;
469 }
470 /* compute transmission */
471 copycolor(sr.rcoef, np->mcolor); /* modified by color */
472 scalecolor(sr.rcoef, np->tspec);
473 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
474 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
475 nstarget = 1;
476 if (specjitter > 1.5) { /* multiple samples? */
477 nstarget = specjitter*np->rp->rweight + .5;
478 if (sr.rweight <= minweight*nstarget)
479 nstarget = sr.rweight/minweight;
480 if (nstarget > 1) {
481 d = 1./nstarget;
482 scalecolor(sr.rcoef, d);
483 sr.rweight *= d;
484 } else
485 nstarget = 1;
486 }
487 dimlist[ndims++] = (int)(size_t)np->mp;
488 maxiter = MAXITER*nstarget;
489 for (nstaken = ntrials = 0; nstaken < nstarget &&
490 ntrials < maxiter; ntrials++) {
491 if (ntrials)
492 d = frandom();
493 else
494 d = urand(ilhash(dimlist,ndims)+samplendx);
495 multisamp(rv, 2, d);
496 d = 2.0*PI * rv[0];
497 cosp = tcos(d);
498 sinp = tsin(d);
499 if ((0. <= specjitter) & (specjitter < 1.))
500 rv[1] = 1.0 - specjitter*rv[1];
501 if (rv[1] <= FTINY)
502 d = 1.0;
503 else
504 d = sqrt( np->alpha2 * -log(rv[1]) );
505 for (i = 0; i < 3; i++)
506 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
507 /* sample rejection test */
508 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
509 continue;
510 normalize(sr.rdir); /* OK, normalize */
511 if (nstaken) /* multi-sampling */
512 rayclear(&sr);
513 rayvalue(&sr);
514 multcolor(sr.rcol, sr.rcoef);
515 addcolor(np->rp->rcol, sr.rcol);
516 ++nstaken;
517 }
518 ndims--;
519 }
520 }