ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.54
Committed: Fri Oct 1 18:11:18 2010 UTC (13 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.53: +10 -9 lines
Log Message:
Updated reflection model to match paper by Geisler-Moroder an Duer

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.53 2010/09/26 15:51:15 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22
23 #ifndef MAXITER
24 #define MAXITER 10 /* maximum # specular ray attempts */
25 #endif
26 /* estimate of Fresnel function */
27 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
29
30
31 /*
32 * This routine implements the isotropic Gaussian
33 * model described by Ward in Siggraph `92 article.
34 * We orient the surface towards the incoming ray, so a single
35 * surface can be used to represent an infinitely thin object.
36 *
37 * Arguments for MAT_PLASTIC and MAT_METAL are:
38 * red grn blu specular-frac. facet-slope
39 *
40 * Arguments for MAT_TRANS are:
41 * red grn blu rspec rough trans tspec
42 */
43
44 /* specularity flags */
45 #define SP_REFL 01 /* has reflected specular component */
46 #define SP_TRAN 02 /* has transmitted specular */
47 #define SP_PURE 04 /* purely specular (zero roughness) */
48 #define SP_FLAT 010 /* flat reflecting surface */
49 #define SP_RBLT 020 /* reflection below sample threshold */
50 #define SP_TBLT 040 /* transmission below threshold */
51
52 typedef struct {
53 OBJREC *mp; /* material pointer */
54 RAY *rp; /* ray pointer */
55 short specfl; /* specularity flags, defined above */
56 COLOR mcolor; /* color of this material */
57 COLOR scolor; /* color of specular component */
58 FVECT vrefl; /* vector in direction of reflected ray */
59 FVECT prdir; /* vector in transmitted direction */
60 double alpha2; /* roughness squared */
61 double rdiff, rspec; /* reflected specular, diffuse */
62 double trans; /* transmissivity */
63 double tdiff, tspec; /* transmitted specular, diffuse */
64 FVECT pnorm; /* perturbed surface normal */
65 double pdot; /* perturbed dot product */
66 } NORMDAT; /* normal material data */
67
68 static srcdirf_t dirnorm;
69 static void gaussamp(RAY *r, NORMDAT *np);
70
71
72 static void
73 dirnorm( /* compute source contribution */
74 COLOR cval, /* returned coefficient */
75 void *nnp, /* material data */
76 FVECT ldir, /* light source direction */
77 double omega /* light source size */
78 )
79 {
80 register NORMDAT *np = nnp;
81 double ldot;
82 double lrdiff, ltdiff;
83 double dtmp, d2, d3, d4;
84 FVECT vtmp;
85 COLOR ctmp;
86
87 setcolor(cval, 0.0, 0.0, 0.0);
88
89 ldot = DOT(np->pnorm, ldir);
90
91 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92 return; /* wrong side */
93
94 /* Fresnel estimate */
95 lrdiff = np->rdiff;
96 ltdiff = np->tdiff;
97 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99 dtmp = 1. - FRESNE(fabs(ldot));
100 lrdiff *= dtmp;
101 ltdiff *= dtmp;
102 }
103
104 if (ldot > FTINY && lrdiff > FTINY) {
105 /*
106 * Compute and add diffuse reflected component to returned
107 * color. The diffuse reflected component will always be
108 * modified by the color of the material.
109 */
110 copycolor(ctmp, np->mcolor);
111 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
116 /*
117 * Compute specular reflection coefficient using
118 * Gaussian distribution model.
119 */
120 /* roughness */
121 dtmp = np->alpha2;
122 /* + source if flat */
123 if (np->specfl & SP_FLAT)
124 dtmp += omega * (0.25/PI);
125 /* half vector */
126 vtmp[0] = ldir[0] - np->rp->rdir[0];
127 vtmp[1] = ldir[1] - np->rp->rdir[1];
128 vtmp[2] = ldir[2] - np->rp->rdir[2];
129 d2 = DOT(vtmp, np->pnorm);
130 d2 *= d2;
131 d3 = DOT(vtmp,vtmp);
132 d4 = (d3 - d2) / d2;
133 /* new W-G-M-D model */
134 dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
135 /* worth using? */
136 if (dtmp > FTINY) {
137 copycolor(ctmp, np->scolor);
138 dtmp *= ldot * omega;
139 scalecolor(ctmp, dtmp);
140 addcolor(cval, ctmp);
141 }
142 }
143 if (ldot < -FTINY && ltdiff > FTINY) {
144 /*
145 * Compute diffuse transmission.
146 */
147 copycolor(ctmp, np->mcolor);
148 dtmp = -ldot * omega * ltdiff * (1.0/PI);
149 scalecolor(ctmp, dtmp);
150 addcolor(cval, ctmp);
151 }
152 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
153 /*
154 * Compute specular transmission. Specular transmission
155 * is always modified by material color.
156 */
157 /* roughness + source */
158 dtmp = np->alpha2 + omega*(1.0/PI);
159 /* Gaussian */
160 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
161 /* worth using? */
162 if (dtmp > FTINY) {
163 copycolor(ctmp, np->mcolor);
164 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
165 scalecolor(ctmp, dtmp);
166 addcolor(cval, ctmp);
167 }
168 }
169 }
170
171
172 extern int
173 m_normal( /* color a ray that hit something normal */
174 register OBJREC *m,
175 register RAY *r
176 )
177 {
178 NORMDAT nd;
179 double fest;
180 double transtest, transdist;
181 double mirtest, mirdist;
182 int hastexture;
183 double d;
184 COLOR ctmp;
185 register int i;
186 /* easy shadow test */
187 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
188 return(1);
189
190 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
191 objerror(m, USER, "bad number of arguments");
192 /* check for back side */
193 if (r->rod < 0.0) {
194 if (!backvis && m->otype != MAT_TRANS) {
195 raytrans(r);
196 return(1);
197 }
198 raytexture(r, m->omod);
199 flipsurface(r); /* reorient if backvis */
200 } else
201 raytexture(r, m->omod);
202 nd.mp = m;
203 nd.rp = r;
204 /* get material color */
205 setcolor(nd.mcolor, m->oargs.farg[0],
206 m->oargs.farg[1],
207 m->oargs.farg[2]);
208 /* get roughness */
209 nd.specfl = 0;
210 nd.alpha2 = m->oargs.farg[4];
211 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
212 nd.specfl |= SP_PURE;
213
214 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
215 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
216 } else {
217 VCOPY(nd.pnorm, r->ron);
218 nd.pdot = r->rod;
219 }
220 if (r->ro != NULL && isflat(r->ro->otype))
221 nd.specfl |= SP_FLAT;
222 if (nd.pdot < .001)
223 nd.pdot = .001; /* non-zero for dirnorm() */
224 multcolor(nd.mcolor, r->pcol); /* modify material color */
225 mirtest = transtest = 0;
226 mirdist = transdist = r->rot;
227 nd.rspec = m->oargs.farg[3];
228 /* compute Fresnel approx. */
229 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
230 fest = FRESNE(r->rod);
231 nd.rspec += fest*(1. - nd.rspec);
232 } else
233 fest = 0.;
234 /* compute transmission */
235 if (m->otype == MAT_TRANS) {
236 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
237 nd.tspec = nd.trans * m->oargs.farg[6];
238 nd.tdiff = nd.trans - nd.tspec;
239 if (nd.tspec > FTINY) {
240 nd.specfl |= SP_TRAN;
241 /* check threshold */
242 if (!(nd.specfl & SP_PURE) &&
243 specthresh >= nd.tspec-FTINY)
244 nd.specfl |= SP_TBLT;
245 if (!hastexture || r->crtype & SHADOW) {
246 VCOPY(nd.prdir, r->rdir);
247 transtest = 2;
248 } else {
249 for (i = 0; i < 3; i++) /* perturb */
250 nd.prdir[i] = r->rdir[i] - r->pert[i];
251 if (DOT(nd.prdir, r->ron) < -FTINY)
252 normalize(nd.prdir); /* OK */
253 else
254 VCOPY(nd.prdir, r->rdir);
255 }
256 }
257 } else
258 nd.tdiff = nd.tspec = nd.trans = 0.0;
259 /* transmitted ray */
260 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
261 RAY lr;
262 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
263 scalecolor(lr.rcoef, nd.tspec);
264 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
265 VCOPY(lr.rdir, nd.prdir);
266 rayvalue(&lr);
267 multcolor(lr.rcol, lr.rcoef);
268 addcolor(r->rcol, lr.rcol);
269 transtest *= bright(lr.rcol);
270 transdist = r->rot + lr.rt;
271 }
272 } else
273 transtest = 0;
274
275 if (r->crtype & SHADOW) { /* the rest is shadow */
276 r->rt = transdist;
277 return(1);
278 }
279 /* get specular reflection */
280 if (nd.rspec > FTINY) {
281 nd.specfl |= SP_REFL;
282 /* compute specular color */
283 if (m->otype != MAT_METAL) {
284 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
285 } else if (fest > FTINY) {
286 d = nd.rspec*(1. - fest);
287 for (i = 0; i < 3; i++)
288 nd.scolor[i] = fest + nd.mcolor[i]*d;
289 } else {
290 copycolor(nd.scolor, nd.mcolor);
291 scalecolor(nd.scolor, nd.rspec);
292 }
293 /* check threshold */
294 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
295 nd.specfl |= SP_RBLT;
296 /* compute reflected ray */
297 for (i = 0; i < 3; i++)
298 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
299 /* penetration? */
300 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
301 for (i = 0; i < 3; i++) /* safety measure */
302 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
303 checknorm(nd.vrefl);
304 }
305 /* reflected ray */
306 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
307 RAY lr;
308 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
309 VCOPY(lr.rdir, nd.vrefl);
310 rayvalue(&lr);
311 multcolor(lr.rcol, lr.rcoef);
312 addcolor(r->rcol, lr.rcol);
313 if (!hastexture && nd.specfl & SP_FLAT) {
314 mirtest = 2.*bright(lr.rcol);
315 mirdist = r->rot + lr.rt;
316 }
317 }
318 }
319 /* diffuse reflection */
320 nd.rdiff = 1.0 - nd.trans - nd.rspec;
321
322 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
323 return(1); /* 100% pure specular */
324
325 if (!(nd.specfl & SP_PURE))
326 gaussamp(r, &nd); /* checks *BLT flags */
327
328 if (nd.rdiff > FTINY) { /* ambient from this side */
329 copycolor(ctmp, nd.mcolor); /* modified by material color */
330 if (nd.specfl & SP_RBLT)
331 scalecolor(ctmp, 1.0-nd.trans);
332 else
333 scalecolor(ctmp, nd.rdiff);
334 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
335 addcolor(r->rcol, ctmp); /* add to returned color */
336 }
337 if (nd.tdiff > FTINY) { /* ambient from other side */
338 copycolor(ctmp, nd.mcolor); /* modified by color */
339 if (nd.specfl & SP_TBLT)
340 scalecolor(ctmp, nd.trans);
341 else
342 scalecolor(ctmp, nd.tdiff);
343 flipsurface(r);
344 if (hastexture) {
345 FVECT bnorm;
346 bnorm[0] = -nd.pnorm[0];
347 bnorm[1] = -nd.pnorm[1];
348 bnorm[2] = -nd.pnorm[2];
349 multambient(ctmp, r, bnorm);
350 } else
351 multambient(ctmp, r, r->ron);
352 addcolor(r->rcol, ctmp);
353 flipsurface(r);
354 }
355 /* add direct component */
356 direct(r, dirnorm, &nd);
357 /* check distance */
358 d = bright(r->rcol);
359 if (transtest > d)
360 r->rt = transdist;
361 else if (mirtest > d)
362 r->rt = mirdist;
363
364 return(1);
365 }
366
367
368 static void
369 gaussamp( /* sample Gaussian specular */
370 RAY *r,
371 register NORMDAT *np
372 )
373 {
374 RAY sr;
375 FVECT u, v, h;
376 double rv[2];
377 double d, sinp, cosp;
378 int niter;
379 register int i;
380 /* quick test */
381 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
382 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
383 return;
384 /* set up sample coordinates */
385 v[0] = v[1] = v[2] = 0.0;
386 for (i = 0; i < 3; i++)
387 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
388 break;
389 v[i] = 1.0;
390 fcross(u, v, np->pnorm);
391 normalize(u);
392 fcross(v, np->pnorm, u);
393 /* compute reflection */
394 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
395 rayorigin(&sr, SPECULAR, r, np->scolor) == 0) {
396 dimlist[ndims++] = (int)np->mp;
397 for (niter = 0; niter < MAXITER; niter++) {
398 if (niter)
399 d = frandom();
400 else
401 d = urand(ilhash(dimlist,ndims)+samplendx);
402 multisamp(rv, 2, d);
403 d = 2.0*PI * rv[0];
404 cosp = tcos(d);
405 sinp = tsin(d);
406 rv[1] = 1.0 - specjitter*rv[1];
407 if (rv[1] <= FTINY)
408 d = 1.0;
409 else
410 d = sqrt( np->alpha2 * -log(rv[1]) );
411 for (i = 0; i < 3; i++)
412 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
413 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
414 for (i = 0; i < 3; i++)
415 sr.rdir[i] = r->rdir[i] + d*h[i];
416 if (DOT(sr.rdir, r->ron) > FTINY) {
417 rayvalue(&sr);
418 multcolor(sr.rcol, sr.rcoef);
419 addcolor(r->rcol, sr.rcol);
420 break;
421 }
422 }
423 ndims--;
424 }
425 /* compute transmission */
426 copycolor(sr.rcoef, np->mcolor); /* modified by color */
427 scalecolor(sr.rcoef, np->tspec);
428 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
429 rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) {
430 dimlist[ndims++] = (int)np->mp;
431 for (niter = 0; niter < MAXITER; niter++) {
432 if (niter)
433 d = frandom();
434 else
435 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
436 multisamp(rv, 2, d);
437 d = 2.0*PI * rv[0];
438 cosp = tcos(d);
439 sinp = tsin(d);
440 rv[1] = 1.0 - specjitter*rv[1];
441 if (rv[1] <= FTINY)
442 d = 1.0;
443 else
444 d = sqrt( np->alpha2 * -log(rv[1]) );
445 for (i = 0; i < 3; i++)
446 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
447 if (DOT(sr.rdir, r->ron) < -FTINY) {
448 normalize(sr.rdir); /* OK, normalize */
449 rayvalue(&sr);
450 multcolor(sr.rcol, sr.rcoef);
451 addcolor(r->rcol, sr.rcol);
452 break;
453 }
454 }
455 ndims--;
456 }
457 }