ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.53
Committed: Sun Sep 26 15:51:15 2010 UTC (13 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.52: +3 -2 lines
Log Message:
Added checknorm() macro to avoid normalization errors with gcc --fast-math

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.52 2010/05/07 15:44:52 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22
23 #ifndef MAXITER
24 #define MAXITER 10 /* maximum # specular ray attempts */
25 #endif
26 /* estimate of Fresnel function */
27 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
29
30
31 /*
32 * This routine implements the isotropic Gaussian
33 * model described by Ward in Siggraph `92 article.
34 * We orient the surface towards the incoming ray, so a single
35 * surface can be used to represent an infinitely thin object.
36 *
37 * Arguments for MAT_PLASTIC and MAT_METAL are:
38 * red grn blu specular-frac. facet-slope
39 *
40 * Arguments for MAT_TRANS are:
41 * red grn blu rspec rough trans tspec
42 */
43
44 /* specularity flags */
45 #define SP_REFL 01 /* has reflected specular component */
46 #define SP_TRAN 02 /* has transmitted specular */
47 #define SP_PURE 04 /* purely specular (zero roughness) */
48 #define SP_FLAT 010 /* flat reflecting surface */
49 #define SP_RBLT 020 /* reflection below sample threshold */
50 #define SP_TBLT 040 /* transmission below threshold */
51
52 typedef struct {
53 OBJREC *mp; /* material pointer */
54 RAY *rp; /* ray pointer */
55 short specfl; /* specularity flags, defined above */
56 COLOR mcolor; /* color of this material */
57 COLOR scolor; /* color of specular component */
58 FVECT vrefl; /* vector in direction of reflected ray */
59 FVECT prdir; /* vector in transmitted direction */
60 double alpha2; /* roughness squared */
61 double rdiff, rspec; /* reflected specular, diffuse */
62 double trans; /* transmissivity */
63 double tdiff, tspec; /* transmitted specular, diffuse */
64 FVECT pnorm; /* perturbed surface normal */
65 double pdot; /* perturbed dot product */
66 } NORMDAT; /* normal material data */
67
68 static srcdirf_t dirnorm;
69 static void gaussamp(RAY *r, NORMDAT *np);
70
71
72 static void
73 dirnorm( /* compute source contribution */
74 COLOR cval, /* returned coefficient */
75 void *nnp, /* material data */
76 FVECT ldir, /* light source direction */
77 double omega /* light source size */
78 )
79 {
80 register NORMDAT *np = nnp;
81 double ldot;
82 double lrdiff, ltdiff;
83 double dtmp, d2;
84 FVECT vtmp;
85 COLOR ctmp;
86
87 setcolor(cval, 0.0, 0.0, 0.0);
88
89 ldot = DOT(np->pnorm, ldir);
90
91 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92 return; /* wrong side */
93
94 /* Fresnel estimate */
95 lrdiff = np->rdiff;
96 ltdiff = np->tdiff;
97 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99 dtmp = 1. - FRESNE(fabs(ldot));
100 lrdiff *= dtmp;
101 ltdiff *= dtmp;
102 }
103
104 if (ldot > FTINY && lrdiff > FTINY) {
105 /*
106 * Compute and add diffuse reflected component to returned
107 * color. The diffuse reflected component will always be
108 * modified by the color of the material.
109 */
110 copycolor(ctmp, np->mcolor);
111 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
116 /*
117 * Compute specular reflection coefficient using
118 * gaussian distribution model.
119 */
120 /* roughness */
121 dtmp = np->alpha2;
122 /* + source if flat */
123 if (np->specfl & SP_FLAT)
124 dtmp += omega * (0.25/PI);
125 /* half vector */
126 vtmp[0] = ldir[0] - np->rp->rdir[0];
127 vtmp[1] = ldir[1] - np->rp->rdir[1];
128 vtmp[2] = ldir[2] - np->rp->rdir[2];
129 d2 = DOT(vtmp, np->pnorm);
130 d2 *= d2;
131 d2 = (DOT(vtmp,vtmp) - d2) / d2;
132 /* gaussian */
133 dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp);
134 /* worth using? */
135 if (dtmp > FTINY) {
136 copycolor(ctmp, np->scolor);
137 dtmp *= omega;
138 scalecolor(ctmp, dtmp);
139 addcolor(cval, ctmp);
140 }
141 }
142 if (ldot < -FTINY && ltdiff > FTINY) {
143 /*
144 * Compute diffuse transmission.
145 */
146 copycolor(ctmp, np->mcolor);
147 dtmp = -ldot * omega * ltdiff * (1.0/PI);
148 scalecolor(ctmp, dtmp);
149 addcolor(cval, ctmp);
150 }
151 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
152 /*
153 * Compute specular transmission. Specular transmission
154 * is always modified by material color.
155 */
156 /* roughness + source */
157 dtmp = np->alpha2 + omega*(1.0/PI);
158 /* gaussian */
159 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
160 /* worth using? */
161 if (dtmp > FTINY) {
162 copycolor(ctmp, np->mcolor);
163 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
164 scalecolor(ctmp, dtmp);
165 addcolor(cval, ctmp);
166 }
167 }
168 }
169
170
171 extern int
172 m_normal( /* color a ray that hit something normal */
173 register OBJREC *m,
174 register RAY *r
175 )
176 {
177 NORMDAT nd;
178 double fest;
179 double transtest, transdist;
180 double mirtest, mirdist;
181 int hastexture;
182 double d;
183 COLOR ctmp;
184 register int i;
185 /* easy shadow test */
186 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
187 return(1);
188
189 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
190 objerror(m, USER, "bad number of arguments");
191 /* check for back side */
192 if (r->rod < 0.0) {
193 if (!backvis && m->otype != MAT_TRANS) {
194 raytrans(r);
195 return(1);
196 }
197 raytexture(r, m->omod);
198 flipsurface(r); /* reorient if backvis */
199 } else
200 raytexture(r, m->omod);
201 nd.mp = m;
202 nd.rp = r;
203 /* get material color */
204 setcolor(nd.mcolor, m->oargs.farg[0],
205 m->oargs.farg[1],
206 m->oargs.farg[2]);
207 /* get roughness */
208 nd.specfl = 0;
209 nd.alpha2 = m->oargs.farg[4];
210 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
211 nd.specfl |= SP_PURE;
212
213 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
214 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
215 } else {
216 VCOPY(nd.pnorm, r->ron);
217 nd.pdot = r->rod;
218 }
219 if (r->ro != NULL && isflat(r->ro->otype))
220 nd.specfl |= SP_FLAT;
221 if (nd.pdot < .001)
222 nd.pdot = .001; /* non-zero for dirnorm() */
223 multcolor(nd.mcolor, r->pcol); /* modify material color */
224 mirtest = transtest = 0;
225 mirdist = transdist = r->rot;
226 nd.rspec = m->oargs.farg[3];
227 /* compute Fresnel approx. */
228 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
229 fest = FRESNE(r->rod);
230 nd.rspec += fest*(1. - nd.rspec);
231 } else
232 fest = 0.;
233 /* compute transmission */
234 if (m->otype == MAT_TRANS) {
235 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
236 nd.tspec = nd.trans * m->oargs.farg[6];
237 nd.tdiff = nd.trans - nd.tspec;
238 if (nd.tspec > FTINY) {
239 nd.specfl |= SP_TRAN;
240 /* check threshold */
241 if (!(nd.specfl & SP_PURE) &&
242 specthresh >= nd.tspec-FTINY)
243 nd.specfl |= SP_TBLT;
244 if (!hastexture || r->crtype & SHADOW) {
245 VCOPY(nd.prdir, r->rdir);
246 transtest = 2;
247 } else {
248 for (i = 0; i < 3; i++) /* perturb */
249 nd.prdir[i] = r->rdir[i] - r->pert[i];
250 if (DOT(nd.prdir, r->ron) < -FTINY)
251 normalize(nd.prdir); /* OK */
252 else
253 VCOPY(nd.prdir, r->rdir);
254 }
255 }
256 } else
257 nd.tdiff = nd.tspec = nd.trans = 0.0;
258 /* transmitted ray */
259 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
260 RAY lr;
261 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
262 scalecolor(lr.rcoef, nd.tspec);
263 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
264 VCOPY(lr.rdir, nd.prdir);
265 rayvalue(&lr);
266 multcolor(lr.rcol, lr.rcoef);
267 addcolor(r->rcol, lr.rcol);
268 transtest *= bright(lr.rcol);
269 transdist = r->rot + lr.rt;
270 }
271 } else
272 transtest = 0;
273
274 if (r->crtype & SHADOW) { /* the rest is shadow */
275 r->rt = transdist;
276 return(1);
277 }
278 /* get specular reflection */
279 if (nd.rspec > FTINY) {
280 nd.specfl |= SP_REFL;
281 /* compute specular color */
282 if (m->otype != MAT_METAL) {
283 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
284 } else if (fest > FTINY) {
285 d = nd.rspec*(1. - fest);
286 for (i = 0; i < 3; i++)
287 nd.scolor[i] = fest + nd.mcolor[i]*d;
288 } else {
289 copycolor(nd.scolor, nd.mcolor);
290 scalecolor(nd.scolor, nd.rspec);
291 }
292 /* check threshold */
293 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
294 nd.specfl |= SP_RBLT;
295 /* compute reflected ray */
296 for (i = 0; i < 3; i++)
297 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
298 /* penetration? */
299 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
300 for (i = 0; i < 3; i++) /* safety measure */
301 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
302 checknorm(nd.vrefl);
303 }
304 /* reflected ray */
305 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
306 RAY lr;
307 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
308 VCOPY(lr.rdir, nd.vrefl);
309 rayvalue(&lr);
310 multcolor(lr.rcol, lr.rcoef);
311 addcolor(r->rcol, lr.rcol);
312 if (!hastexture && nd.specfl & SP_FLAT) {
313 mirtest = 2.*bright(lr.rcol);
314 mirdist = r->rot + lr.rt;
315 }
316 }
317 }
318 /* diffuse reflection */
319 nd.rdiff = 1.0 - nd.trans - nd.rspec;
320
321 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
322 return(1); /* 100% pure specular */
323
324 if (!(nd.specfl & SP_PURE))
325 gaussamp(r, &nd); /* checks *BLT flags */
326
327 if (nd.rdiff > FTINY) { /* ambient from this side */
328 copycolor(ctmp, nd.mcolor); /* modified by material color */
329 if (nd.specfl & SP_RBLT)
330 scalecolor(ctmp, 1.0-nd.trans);
331 else
332 scalecolor(ctmp, nd.rdiff);
333 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
334 addcolor(r->rcol, ctmp); /* add to returned color */
335 }
336 if (nd.tdiff > FTINY) { /* ambient from other side */
337 copycolor(ctmp, nd.mcolor); /* modified by color */
338 if (nd.specfl & SP_TBLT)
339 scalecolor(ctmp, nd.trans);
340 else
341 scalecolor(ctmp, nd.tdiff);
342 flipsurface(r);
343 if (hastexture) {
344 FVECT bnorm;
345 bnorm[0] = -nd.pnorm[0];
346 bnorm[1] = -nd.pnorm[1];
347 bnorm[2] = -nd.pnorm[2];
348 multambient(ctmp, r, bnorm);
349 } else
350 multambient(ctmp, r, r->ron);
351 addcolor(r->rcol, ctmp);
352 flipsurface(r);
353 }
354 /* add direct component */
355 direct(r, dirnorm, &nd);
356 /* check distance */
357 d = bright(r->rcol);
358 if (transtest > d)
359 r->rt = transdist;
360 else if (mirtest > d)
361 r->rt = mirdist;
362
363 return(1);
364 }
365
366
367 static void
368 gaussamp( /* sample gaussian specular */
369 RAY *r,
370 register NORMDAT *np
371 )
372 {
373 RAY sr;
374 FVECT u, v, h;
375 double rv[2];
376 double d, sinp, cosp;
377 int niter;
378 register int i;
379 /* quick test */
380 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
381 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
382 return;
383 /* set up sample coordinates */
384 v[0] = v[1] = v[2] = 0.0;
385 for (i = 0; i < 3; i++)
386 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
387 break;
388 v[i] = 1.0;
389 fcross(u, v, np->pnorm);
390 normalize(u);
391 fcross(v, np->pnorm, u);
392 /* compute reflection */
393 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
394 rayorigin(&sr, SPECULAR, r, np->scolor) == 0) {
395 dimlist[ndims++] = (int)np->mp;
396 for (niter = 0; niter < MAXITER; niter++) {
397 if (niter)
398 d = frandom();
399 else
400 d = urand(ilhash(dimlist,ndims)+samplendx);
401 multisamp(rv, 2, d);
402 d = 2.0*PI * rv[0];
403 cosp = tcos(d);
404 sinp = tsin(d);
405 rv[1] = 1.0 - specjitter*rv[1];
406 if (rv[1] <= FTINY)
407 d = 1.0;
408 else
409 d = sqrt( np->alpha2 * -log(rv[1]) );
410 for (i = 0; i < 3; i++)
411 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
412 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
413 for (i = 0; i < 3; i++)
414 sr.rdir[i] = r->rdir[i] + d*h[i];
415 if (DOT(sr.rdir, r->ron) > FTINY) {
416 rayvalue(&sr);
417 multcolor(sr.rcol, sr.rcoef);
418 addcolor(r->rcol, sr.rcol);
419 break;
420 }
421 }
422 ndims--;
423 }
424 /* compute transmission */
425 copycolor(sr.rcoef, np->mcolor); /* modified by color */
426 scalecolor(sr.rcoef, np->tspec);
427 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
428 rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) {
429 dimlist[ndims++] = (int)np->mp;
430 for (niter = 0; niter < MAXITER; niter++) {
431 if (niter)
432 d = frandom();
433 else
434 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
435 multisamp(rv, 2, d);
436 d = 2.0*PI * rv[0];
437 cosp = tcos(d);
438 sinp = tsin(d);
439 rv[1] = 1.0 - specjitter*rv[1];
440 if (rv[1] <= FTINY)
441 d = 1.0;
442 else
443 d = sqrt( np->alpha2 * -log(rv[1]) );
444 for (i = 0; i < 3; i++)
445 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
446 if (DOT(sr.rdir, r->ron) < -FTINY) {
447 normalize(sr.rdir); /* OK, normalize */
448 rayvalue(&sr);
449 multcolor(sr.rcol, sr.rcoef);
450 addcolor(r->rcol, sr.rcol);
451 break;
452 }
453 }
454 ndims--;
455 }
456 }