ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.50
Committed: Tue Apr 19 01:15:06 2005 UTC (19 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1
Changes since 2.49: +22 -20 lines
Log Message:
Extensive changes to enable rtrace -oTW option for tracking ray contributions

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.49 2005/01/05 19:34:11 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22
23 #ifndef MAXITER
24 #define MAXITER 10 /* maximum # specular ray attempts */
25 #endif
26 /* estimate of Fresnel function */
27 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28
29
30 /*
31 * This routine implements the isotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC and MAT_METAL are:
37 * red grn blu specular-frac. facet-slope
38 *
39 * Arguments for MAT_TRANS are:
40 * red grn blu rspec rough trans tspec
41 */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67 static srcdirf_t dirnorm;
68 static void gaussamp(RAY *r, NORMDAT *np);
69
70
71 static void
72 dirnorm( /* compute source contribution */
73 COLOR cval, /* returned coefficient */
74 void *nnp, /* material data */
75 FVECT ldir, /* light source direction */
76 double omega /* light source size */
77 )
78 {
79 register NORMDAT *np = nnp;
80 double ldot;
81 double lrdiff, ltdiff;
82 double dtmp, d2;
83 FVECT vtmp;
84 COLOR ctmp;
85
86 setcolor(cval, 0.0, 0.0, 0.0);
87
88 ldot = DOT(np->pnorm, ldir);
89
90 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91 return; /* wrong side */
92
93 /* Fresnel estimate */
94 lrdiff = np->rdiff;
95 ltdiff = np->tdiff;
96 if (np->specfl & SP_PURE && np->rspec > FTINY &&
97 (lrdiff > FTINY) | (ltdiff > FTINY)) {
98 dtmp = 1. - FRESNE(fabs(ldot));
99 lrdiff *= dtmp;
100 ltdiff *= dtmp;
101 }
102
103 if (ldot > FTINY && lrdiff > FTINY) {
104 /*
105 * Compute and add diffuse reflected component to returned
106 * color. The diffuse reflected component will always be
107 * modified by the color of the material.
108 */
109 copycolor(ctmp, np->mcolor);
110 dtmp = ldot * omega * lrdiff * (1.0/PI);
111 scalecolor(ctmp, dtmp);
112 addcolor(cval, ctmp);
113 }
114 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
115 /*
116 * Compute specular reflection coefficient using
117 * gaussian distribution model.
118 */
119 /* roughness */
120 dtmp = np->alpha2;
121 /* + source if flat */
122 if (np->specfl & SP_FLAT)
123 dtmp += omega * (0.25/PI);
124 /* half vector */
125 vtmp[0] = ldir[0] - np->rp->rdir[0];
126 vtmp[1] = ldir[1] - np->rp->rdir[1];
127 vtmp[2] = ldir[2] - np->rp->rdir[2];
128 d2 = DOT(vtmp, np->pnorm);
129 d2 *= d2;
130 d2 = (DOT(vtmp,vtmp) - d2) / d2;
131 /* gaussian */
132 dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp);
133 /* worth using? */
134 if (dtmp > FTINY) {
135 copycolor(ctmp, np->scolor);
136 dtmp *= omega;
137 scalecolor(ctmp, dtmp);
138 addcolor(cval, ctmp);
139 }
140 }
141 if (ldot < -FTINY && ltdiff > FTINY) {
142 /*
143 * Compute diffuse transmission.
144 */
145 copycolor(ctmp, np->mcolor);
146 dtmp = -ldot * omega * ltdiff * (1.0/PI);
147 scalecolor(ctmp, dtmp);
148 addcolor(cval, ctmp);
149 }
150 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
151 /*
152 * Compute specular transmission. Specular transmission
153 * is always modified by material color.
154 */
155 /* roughness + source */
156 dtmp = np->alpha2 + omega*(1.0/PI);
157 /* gaussian */
158 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp) /
159 (PI*np->pdot*dtmp);
160 /* worth using? */
161 if (dtmp > FTINY) {
162 copycolor(ctmp, np->mcolor);
163 dtmp *= np->tspec * omega;
164 scalecolor(ctmp, dtmp);
165 addcolor(cval, ctmp);
166 }
167 }
168 }
169
170
171 extern int
172 m_normal( /* color a ray that hit something normal */
173 register OBJREC *m,
174 register RAY *r
175 )
176 {
177 NORMDAT nd;
178 double fest;
179 double transtest, transdist;
180 double mirtest, mirdist;
181 int hastexture;
182 double d;
183 COLOR ctmp;
184 register int i;
185 /* easy shadow test */
186 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
187 return(1);
188
189 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
190 objerror(m, USER, "bad number of arguments");
191 /* check for back side */
192 if (r->rod < 0.0) {
193 if (!backvis && m->otype != MAT_TRANS) {
194 raytrans(r);
195 return(1);
196 }
197 raytexture(r, m->omod);
198 flipsurface(r); /* reorient if backvis */
199 } else
200 raytexture(r, m->omod);
201 nd.mp = m;
202 nd.rp = r;
203 /* get material color */
204 setcolor(nd.mcolor, m->oargs.farg[0],
205 m->oargs.farg[1],
206 m->oargs.farg[2]);
207 /* get roughness */
208 nd.specfl = 0;
209 nd.alpha2 = m->oargs.farg[4];
210 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
211 nd.specfl |= SP_PURE;
212
213 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
214 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
215 } else {
216 VCOPY(nd.pnorm, r->ron);
217 nd.pdot = r->rod;
218 }
219 if (r->ro != NULL && isflat(r->ro->otype))
220 nd.specfl |= SP_FLAT;
221 if (nd.pdot < .001)
222 nd.pdot = .001; /* non-zero for dirnorm() */
223 multcolor(nd.mcolor, r->pcol); /* modify material color */
224 mirtest = transtest = 0;
225 mirdist = transdist = r->rot;
226 nd.rspec = m->oargs.farg[3];
227 /* compute Fresnel approx. */
228 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
229 fest = FRESNE(r->rod);
230 nd.rspec += fest*(1. - nd.rspec);
231 } else
232 fest = 0.;
233 /* compute transmission */
234 if (m->otype == MAT_TRANS) {
235 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
236 nd.tspec = nd.trans * m->oargs.farg[6];
237 nd.tdiff = nd.trans - nd.tspec;
238 if (nd.tspec > FTINY) {
239 nd.specfl |= SP_TRAN;
240 /* check threshold */
241 if (!(nd.specfl & SP_PURE) &&
242 specthresh >= nd.tspec-FTINY)
243 nd.specfl |= SP_TBLT;
244 if (!hastexture || r->crtype & SHADOW) {
245 VCOPY(nd.prdir, r->rdir);
246 transtest = 2;
247 } else {
248 for (i = 0; i < 3; i++) /* perturb */
249 nd.prdir[i] = r->rdir[i] - r->pert[i];
250 if (DOT(nd.prdir, r->ron) < -FTINY)
251 normalize(nd.prdir); /* OK */
252 else
253 VCOPY(nd.prdir, r->rdir);
254 }
255 }
256 } else
257 nd.tdiff = nd.tspec = nd.trans = 0.0;
258 /* transmitted ray */
259 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
260 RAY lr;
261 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
262 scalecolor(lr.rcoef, nd.tspec);
263 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
264 VCOPY(lr.rdir, nd.prdir);
265 rayvalue(&lr);
266 multcolor(lr.rcol, lr.rcoef);
267 addcolor(r->rcol, lr.rcol);
268 transtest *= bright(lr.rcol);
269 transdist = r->rot + lr.rt;
270 }
271 } else
272 transtest = 0;
273
274 if (r->crtype & SHADOW) { /* the rest is shadow */
275 r->rt = transdist;
276 return(1);
277 }
278 /* get specular reflection */
279 if (nd.rspec > FTINY) {
280 nd.specfl |= SP_REFL;
281 /* compute specular color */
282 if (m->otype != MAT_METAL) {
283 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
284 } else if (fest > FTINY) {
285 d = nd.rspec*(1. - fest);
286 for (i = 0; i < 3; i++)
287 nd.scolor[i] = fest + nd.mcolor[i]*d;
288 } else {
289 copycolor(nd.scolor, nd.mcolor);
290 scalecolor(nd.scolor, nd.rspec);
291 }
292 /* check threshold */
293 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
294 nd.specfl |= SP_RBLT;
295 /* compute reflected ray */
296 for (i = 0; i < 3; i++)
297 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
298 /* penetration? */
299 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
300 for (i = 0; i < 3; i++) /* safety measure */
301 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
302 }
303 /* reflected ray */
304 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
305 RAY lr;
306 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
307 VCOPY(lr.rdir, nd.vrefl);
308 rayvalue(&lr);
309 multcolor(lr.rcol, lr.rcoef);
310 addcolor(r->rcol, lr.rcol);
311 if (!hastexture && nd.specfl & SP_FLAT) {
312 mirtest = 2.*bright(lr.rcol);
313 mirdist = r->rot + lr.rt;
314 }
315 }
316 }
317 /* diffuse reflection */
318 nd.rdiff = 1.0 - nd.trans - nd.rspec;
319
320 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
321 return(1); /* 100% pure specular */
322
323 if (!(nd.specfl & SP_PURE))
324 gaussamp(r, &nd); /* checks *BLT flags */
325
326 if (nd.rdiff > FTINY) { /* ambient from this side */
327 copycolor(ctmp, nd.mcolor); /* modified by material color */
328 if (nd.specfl & SP_RBLT)
329 scalecolor(ctmp, 1.0-nd.trans);
330 else
331 scalecolor(ctmp, nd.rdiff);
332 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
333 addcolor(r->rcol, ctmp); /* add to returned color */
334 }
335 if (nd.tdiff > FTINY) { /* ambient from other side */
336 copycolor(ctmp, nd.mcolor); /* modified by color */
337 if (nd.specfl & SP_TBLT)
338 scalecolor(ctmp, nd.trans);
339 else
340 scalecolor(ctmp, nd.tdiff);
341 flipsurface(r);
342 if (hastexture) {
343 FVECT bnorm;
344 bnorm[0] = -nd.pnorm[0];
345 bnorm[1] = -nd.pnorm[1];
346 bnorm[2] = -nd.pnorm[2];
347 multambient(ctmp, r, bnorm);
348 } else
349 multambient(ctmp, r, r->ron);
350 addcolor(r->rcol, ctmp);
351 flipsurface(r);
352 }
353 /* add direct component */
354 direct(r, dirnorm, &nd);
355 /* check distance */
356 d = bright(r->rcol);
357 if (transtest > d)
358 r->rt = transdist;
359 else if (mirtest > d)
360 r->rt = mirdist;
361
362 return(1);
363 }
364
365
366 static void
367 gaussamp( /* sample gaussian specular */
368 RAY *r,
369 register NORMDAT *np
370 )
371 {
372 RAY sr;
373 FVECT u, v, h;
374 double rv[2];
375 double d, sinp, cosp;
376 int niter;
377 register int i;
378 /* quick test */
379 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
380 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
381 return;
382 /* set up sample coordinates */
383 v[0] = v[1] = v[2] = 0.0;
384 for (i = 0; i < 3; i++)
385 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
386 break;
387 v[i] = 1.0;
388 fcross(u, v, np->pnorm);
389 normalize(u);
390 fcross(v, np->pnorm, u);
391 /* compute reflection */
392 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
393 rayorigin(&sr, SPECULAR, r, np->scolor) == 0) {
394 dimlist[ndims++] = (int)np->mp;
395 for (niter = 0; niter < MAXITER; niter++) {
396 if (niter)
397 d = frandom();
398 else
399 d = urand(ilhash(dimlist,ndims)+samplendx);
400 multisamp(rv, 2, d);
401 d = 2.0*PI * rv[0];
402 cosp = tcos(d);
403 sinp = tsin(d);
404 rv[1] = 1.0 - specjitter*rv[1];
405 if (rv[1] <= FTINY)
406 d = 1.0;
407 else
408 d = sqrt( np->alpha2 * -log(rv[1]) );
409 for (i = 0; i < 3; i++)
410 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
411 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
412 for (i = 0; i < 3; i++)
413 sr.rdir[i] = r->rdir[i] + d*h[i];
414 if (DOT(sr.rdir, r->ron) > FTINY) {
415 rayvalue(&sr);
416 multcolor(sr.rcol, sr.rcoef);
417 addcolor(r->rcol, sr.rcol);
418 break;
419 }
420 }
421 ndims--;
422 }
423 /* compute transmission */
424 copycolor(sr.rcoef, np->mcolor); /* modified by color */
425 scalecolor(sr.rcoef, np->tspec);
426 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
427 rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) {
428 dimlist[ndims++] = (int)np->mp;
429 for (niter = 0; niter < MAXITER; niter++) {
430 if (niter)
431 d = frandom();
432 else
433 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
434 multisamp(rv, 2, d);
435 d = 2.0*PI * rv[0];
436 cosp = tcos(d);
437 sinp = tsin(d);
438 rv[1] = 1.0 - specjitter*rv[1];
439 if (rv[1] <= FTINY)
440 d = 1.0;
441 else
442 d = sqrt( np->alpha2 * -log(rv[1]) );
443 for (i = 0; i < 3; i++)
444 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
445 if (DOT(sr.rdir, r->ron) < -FTINY) {
446 normalize(sr.rdir); /* OK, normalize */
447 rayvalue(&sr);
448 multcolor(sr.rcol, sr.rcoef);
449 addcolor(r->rcol, sr.rcol);
450 break;
451 }
452 }
453 ndims--;
454 }
455 }