ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.5
Committed: Tue Jan 14 16:16:45 1992 UTC (32 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +21 -3 lines
Log Message:
added specular jitter and threshold controls

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 /*
27 * This routine uses portions of the reflection
28 * model described by Cook and Torrance.
29 * The computation of specular components has been simplified by
30 * numerous approximations and ommisions to improve speed.
31 * We orient the surface towards the incoming ray, so a single
32 * surface can be used to represent an infinitely thin object.
33 *
34 * Arguments for MAT_PLASTIC and MAT_METAL are:
35 * red grn blu specular-frac. facet-slope
36 *
37 * Arguments for MAT_TRANS are:
38 * red grn blu rspec rough trans tspec
39 */
40
41 #define BSPEC(m) (6.0) /* specularity parameter b */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 010 /* purely specular (zero roughness) */
47 #define SP_FLAT 020 /* flat reflecting surface */
48 #define SP_RBLT 040 /* reflection below sample threshold */
49 #define SP_TBLT 0100 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 short specfl; /* specularity flags, defined above */
54 COLOR mcolor; /* color of this material */
55 COLOR scolor; /* color of specular component */
56 FVECT vrefl; /* vector in direction of reflected ray */
57 FVECT prdir; /* vector in transmitted direction */
58 double alpha2; /* roughness squared */
59 double rdiff, rspec; /* reflected specular, diffuse */
60 double trans; /* transmissivity */
61 double tdiff, tspec; /* transmitted specular, diffuse */
62 FVECT pnorm; /* perturbed surface normal */
63 double pdot; /* perturbed dot product */
64 } NORMDAT; /* normal material data */
65
66
67 dirnorm(cval, np, ldir, omega) /* compute source contribution */
68 COLOR cval; /* returned coefficient */
69 register NORMDAT *np; /* material data */
70 FVECT ldir; /* light source direction */
71 double omega; /* light source size */
72 {
73 double ldot;
74 double dtmp;
75 int i;
76 COLOR ctmp;
77
78 setcolor(cval, 0.0, 0.0, 0.0);
79
80 ldot = DOT(np->pnorm, ldir);
81
82 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83 return; /* wrong side */
84
85 if (ldot > FTINY && np->rdiff > FTINY) {
86 /*
87 * Compute and add diffuse reflected component to returned
88 * color. The diffuse reflected component will always be
89 * modified by the color of the material.
90 */
91 copycolor(ctmp, np->mcolor);
92 dtmp = ldot * omega * np->rdiff / PI;
93 scalecolor(ctmp, dtmp);
94 addcolor(cval, ctmp);
95 }
96 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
97 /*
98 * Compute specular reflection coefficient using
99 * gaussian distribution model.
100 */
101 /* roughness */
102 dtmp = 2.0*np->alpha2;
103 /* + source if flat */
104 if (np->specfl & SP_FLAT)
105 dtmp += omega/(2.0*PI);
106 /* gaussian */
107 dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
108 /* worth using? */
109 if (dtmp > FTINY) {
110 copycolor(ctmp, np->scolor);
111 dtmp *= omega / np->pdot;
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115 }
116 if (ldot < -FTINY && np->tdiff > FTINY) {
117 /*
118 * Compute diffuse transmission.
119 */
120 copycolor(ctmp, np->mcolor);
121 dtmp = -ldot * omega * np->tdiff / PI;
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
126 /*
127 * Compute specular transmission. Specular transmission
128 * is always modified by material color.
129 */
130 /* roughness + source */
131 dtmp = np->alpha2 + omega/(2.0*PI);
132 /* gaussian */
133 dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
134 /* worth using? */
135 if (dtmp > FTINY) {
136 copycolor(ctmp, np->mcolor);
137 dtmp *= np->tspec * omega / np->pdot;
138 scalecolor(ctmp, dtmp);
139 addcolor(cval, ctmp);
140 }
141 }
142 }
143
144
145 m_normal(m, r) /* color a ray that hit something normal */
146 register OBJREC *m;
147 register RAY *r;
148 {
149 NORMDAT nd;
150 double transtest, transdist;
151 double dtmp;
152 COLOR ctmp;
153 register int i;
154 /* easy shadow test */
155 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
156 return;
157
158 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
159 objerror(m, USER, "bad number of arguments");
160 nd.mp = m;
161 /* get material color */
162 setcolor(nd.mcolor, m->oargs.farg[0],
163 m->oargs.farg[1],
164 m->oargs.farg[2]);
165 /* get roughness */
166 nd.specfl = 0;
167 nd.alpha2 = m->oargs.farg[4];
168 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
169 nd.specfl |= SP_PURE;
170 /* reorient if necessary */
171 if (r->rod < 0.0)
172 flipsurface(r);
173 /* get modifiers */
174 raytexture(r, m->omod);
175 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
176 if (nd.pdot < .001)
177 nd.pdot = .001; /* non-zero for dirnorm() */
178 multcolor(nd.mcolor, r->pcol); /* modify material color */
179 transtest = 0;
180 /* get specular component */
181 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
182 nd.specfl |= SP_REFL;
183 /* compute specular color */
184 if (m->otype == MAT_METAL)
185 copycolor(nd.scolor, nd.mcolor);
186 else
187 setcolor(nd.scolor, 1.0, 1.0, 1.0);
188 scalecolor(nd.scolor, nd.rspec);
189 /* improved model */
190 dtmp = exp(-BSPEC(m)*nd.pdot);
191 for (i = 0; i < 3; i++)
192 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
193 nd.rspec += (1.0-nd.rspec)*dtmp;
194 /* check threshold */
195 if (nd.rspec <= specthresh+FTINY)
196 nd.specfl |= SP_RBLT;
197 /* compute reflected ray */
198 for (i = 0; i < 3; i++)
199 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
200
201 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
202 RAY lr;
203 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
204 VCOPY(lr.rdir, nd.vrefl);
205 rayvalue(&lr);
206 multcolor(lr.rcol, nd.scolor);
207 addcolor(r->rcol, lr.rcol);
208 }
209 }
210 }
211 /* compute transmission */
212 if (m->otype == MAT_TRANS) {
213 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
214 nd.tspec = nd.trans * m->oargs.farg[6];
215 nd.tdiff = nd.trans - nd.tspec;
216 if (nd.tspec > FTINY) {
217 nd.specfl |= SP_TRAN;
218 /* check threshold */
219 if (nd.tspec <= specthresh+FTINY)
220 nd.specfl |= SP_TBLT;
221 if (r->crtype & SHADOW ||
222 DOT(r->pert,r->pert) <= FTINY*FTINY) {
223 VCOPY(nd.prdir, r->rdir);
224 transtest = 2;
225 } else {
226 for (i = 0; i < 3; i++) /* perturb */
227 nd.prdir[i] = r->rdir[i] -
228 .75*r->pert[i];
229 normalize(nd.prdir);
230 }
231 }
232 } else
233 nd.tdiff = nd.tspec = nd.trans = 0.0;
234 /* transmitted ray */
235 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
236 RAY lr;
237 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
238 VCOPY(lr.rdir, nd.prdir);
239 rayvalue(&lr);
240 scalecolor(lr.rcol, nd.tspec);
241 multcolor(lr.rcol, nd.mcolor); /* modified by color */
242 addcolor(r->rcol, lr.rcol);
243 transtest *= bright(lr.rcol);
244 transdist = r->rot + lr.rt;
245 }
246 }
247
248 if (r->crtype & SHADOW) /* the rest is shadow */
249 return;
250 /* diffuse reflection */
251 nd.rdiff = 1.0 - nd.trans - nd.rspec;
252
253 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
254 return; /* 100% pure specular */
255
256 if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING)
257 nd.specfl |= SP_FLAT;
258
259 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
260 gaussamp(r, &nd);
261
262 if (nd.rdiff > FTINY) { /* ambient from this side */
263 ambient(ctmp, r);
264 if (nd.specfl & SP_RBLT)
265 scalecolor(ctmp, 1.0-nd.trans);
266 else
267 scalecolor(ctmp, nd.rdiff);
268 multcolor(ctmp, nd.mcolor); /* modified by material color */
269 addcolor(r->rcol, ctmp); /* add to returned color */
270 }
271 if (nd.tdiff > FTINY) { /* ambient from other side */
272 flipsurface(r);
273 ambient(ctmp, r);
274 if (nd.specfl & SP_TBLT)
275 scalecolor(ctmp, nd.trans);
276 else
277 scalecolor(ctmp, nd.tdiff);
278 multcolor(ctmp, nd.mcolor); /* modified by color */
279 addcolor(r->rcol, ctmp);
280 flipsurface(r);
281 }
282 /* add direct component */
283 direct(r, dirnorm, &nd);
284 /* check distance */
285 if (transtest > bright(r->rcol))
286 r->rt = transdist;
287 }
288
289
290 static
291 gaussamp(r, np) /* sample gaussian specular */
292 RAY *r;
293 register NORMDAT *np;
294 {
295 RAY sr;
296 FVECT u, v, h;
297 double rv[2];
298 double d, sinp, cosp;
299 int ntries;
300 register int i;
301 /* set up sample coordinates */
302 v[0] = v[1] = v[2] = 0.0;
303 for (i = 0; i < 3; i++)
304 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
305 break;
306 v[i] = 1.0;
307 fcross(u, v, np->pnorm);
308 normalize(u);
309 fcross(v, np->pnorm, u);
310 /* compute reflection */
311 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
312 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
313 dimlist[ndims++] = (int)np->mp;
314 for (ntries = 0; ntries < 10; ntries++) {
315 dimlist[ndims] = ntries * 8912;
316 d = urand(ilhash(dimlist,ndims+1)+samplendx);
317 multisamp(rv, 2, d);
318 d = 2.0*PI * rv[0];
319 cosp = cos(d);
320 sinp = sin(d);
321 rv[1] = 1.0 - specjitter*rv[1];
322 if (rv[1] <= FTINY)
323 d = 1.0;
324 else
325 d = sqrt( np->alpha2 * -log(rv[1]) );
326 for (i = 0; i < 3; i++)
327 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
328 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
329 for (i = 0; i < 3; i++)
330 sr.rdir[i] = r->rdir[i] + d*h[i];
331 if (DOT(sr.rdir, r->ron) > FTINY) {
332 rayvalue(&sr);
333 multcolor(sr.rcol, np->scolor);
334 addcolor(r->rcol, sr.rcol);
335 break;
336 }
337 }
338 ndims--;
339 }
340 /* compute transmission */
341 }