ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.49
Committed: Wed Jan 5 19:34:11 2005 UTC (19 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.48: +14 -9 lines
Log Message:
Fixed bug in calculation of diffuse transmission on polished "trans" surfaces

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.48 2004/09/20 17:32:04 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22
23 #ifndef MAXITER
24 #define MAXITER 10 /* maximum # specular ray attempts */
25 #endif
26 /* estimate of Fresnel function */
27 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28
29
30 /*
31 * This routine implements the isotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC and MAT_METAL are:
37 * red grn blu specular-frac. facet-slope
38 *
39 * Arguments for MAT_TRANS are:
40 * red grn blu rspec rough trans tspec
41 */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67 static srcdirf_t dirnorm;
68 static void gaussamp(RAY *r, NORMDAT *np);
69
70
71 static void
72 dirnorm( /* compute source contribution */
73 COLOR cval, /* returned coefficient */
74 void *nnp, /* material data */
75 FVECT ldir, /* light source direction */
76 double omega /* light source size */
77 )
78 {
79 register NORMDAT *np = nnp;
80 double ldot;
81 double lrdiff, ltdiff;
82 double dtmp, d2;
83 FVECT vtmp;
84 COLOR ctmp;
85
86 setcolor(cval, 0.0, 0.0, 0.0);
87
88 ldot = DOT(np->pnorm, ldir);
89
90 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91 return; /* wrong side */
92
93 /* Fresnel estimate */
94 lrdiff = np->rdiff;
95 ltdiff = np->tdiff;
96 if (np->specfl & SP_PURE && np->rspec > FTINY &&
97 (lrdiff > FTINY) | (ltdiff > FTINY)) {
98 dtmp = 1. - FRESNE(fabs(ldot));
99 lrdiff *= dtmp;
100 ltdiff *= dtmp;
101 }
102
103 if (ldot > FTINY && lrdiff > FTINY) {
104 /*
105 * Compute and add diffuse reflected component to returned
106 * color. The diffuse reflected component will always be
107 * modified by the color of the material.
108 */
109 copycolor(ctmp, np->mcolor);
110 dtmp = ldot * omega * lrdiff * (1.0/PI);
111 scalecolor(ctmp, dtmp);
112 addcolor(cval, ctmp);
113 }
114 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
115 /*
116 * Compute specular reflection coefficient using
117 * gaussian distribution model.
118 */
119 /* roughness */
120 dtmp = np->alpha2;
121 /* + source if flat */
122 if (np->specfl & SP_FLAT)
123 dtmp += omega * (0.25/PI);
124 /* half vector */
125 vtmp[0] = ldir[0] - np->rp->rdir[0];
126 vtmp[1] = ldir[1] - np->rp->rdir[1];
127 vtmp[2] = ldir[2] - np->rp->rdir[2];
128 d2 = DOT(vtmp, np->pnorm);
129 d2 *= d2;
130 d2 = (DOT(vtmp,vtmp) - d2) / d2;
131 /* gaussian */
132 dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp);
133 /* worth using? */
134 if (dtmp > FTINY) {
135 copycolor(ctmp, np->scolor);
136 dtmp *= omega;
137 scalecolor(ctmp, dtmp);
138 addcolor(cval, ctmp);
139 }
140 }
141 if (ldot < -FTINY && ltdiff > FTINY) {
142 /*
143 * Compute diffuse transmission.
144 */
145 copycolor(ctmp, np->mcolor);
146 dtmp = -ldot * omega * ltdiff * (1.0/PI);
147 scalecolor(ctmp, dtmp);
148 addcolor(cval, ctmp);
149 }
150 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
151 /*
152 * Compute specular transmission. Specular transmission
153 * is always modified by material color.
154 */
155 /* roughness + source */
156 dtmp = np->alpha2 + omega*(1.0/PI);
157 /* gaussian */
158 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp) /
159 (PI*np->pdot*dtmp);
160 /* worth using? */
161 if (dtmp > FTINY) {
162 copycolor(ctmp, np->mcolor);
163 dtmp *= np->tspec * omega;
164 scalecolor(ctmp, dtmp);
165 addcolor(cval, ctmp);
166 }
167 }
168 }
169
170
171 extern int
172 m_normal( /* color a ray that hit something normal */
173 register OBJREC *m,
174 register RAY *r
175 )
176 {
177 NORMDAT nd;
178 double fest;
179 double transtest, transdist;
180 double mirtest, mirdist;
181 int hastexture;
182 double d;
183 COLOR ctmp;
184 register int i;
185 /* easy shadow test */
186 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
187 return(1);
188
189 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
190 objerror(m, USER, "bad number of arguments");
191 /* check for back side */
192 if (r->rod < 0.0) {
193 if (!backvis && m->otype != MAT_TRANS) {
194 raytrans(r);
195 return(1);
196 }
197 raytexture(r, m->omod);
198 flipsurface(r); /* reorient if backvis */
199 } else
200 raytexture(r, m->omod);
201 nd.mp = m;
202 nd.rp = r;
203 /* get material color */
204 setcolor(nd.mcolor, m->oargs.farg[0],
205 m->oargs.farg[1],
206 m->oargs.farg[2]);
207 /* get roughness */
208 nd.specfl = 0;
209 nd.alpha2 = m->oargs.farg[4];
210 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
211 nd.specfl |= SP_PURE;
212
213 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
214 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
215 } else {
216 VCOPY(nd.pnorm, r->ron);
217 nd.pdot = r->rod;
218 }
219 if (r->ro != NULL && isflat(r->ro->otype))
220 nd.specfl |= SP_FLAT;
221 if (nd.pdot < .001)
222 nd.pdot = .001; /* non-zero for dirnorm() */
223 multcolor(nd.mcolor, r->pcol); /* modify material color */
224 mirtest = transtest = 0;
225 mirdist = transdist = r->rot;
226 nd.rspec = m->oargs.farg[3];
227 /* compute Fresnel approx. */
228 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
229 fest = FRESNE(r->rod);
230 nd.rspec += fest*(1. - nd.rspec);
231 } else
232 fest = 0.;
233 /* compute transmission */
234 if (m->otype == MAT_TRANS) {
235 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
236 nd.tspec = nd.trans * m->oargs.farg[6];
237 nd.tdiff = nd.trans - nd.tspec;
238 if (nd.tspec > FTINY) {
239 nd.specfl |= SP_TRAN;
240 /* check threshold */
241 if (!(nd.specfl & SP_PURE) &&
242 specthresh >= nd.tspec-FTINY)
243 nd.specfl |= SP_TBLT;
244 if (!hastexture || r->crtype & SHADOW) {
245 VCOPY(nd.prdir, r->rdir);
246 transtest = 2;
247 } else {
248 for (i = 0; i < 3; i++) /* perturb */
249 nd.prdir[i] = r->rdir[i] - r->pert[i];
250 if (DOT(nd.prdir, r->ron) < -FTINY)
251 normalize(nd.prdir); /* OK */
252 else
253 VCOPY(nd.prdir, r->rdir);
254 }
255 }
256 } else
257 nd.tdiff = nd.tspec = nd.trans = 0.0;
258 /* transmitted ray */
259 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
260 RAY lr;
261 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
262 VCOPY(lr.rdir, nd.prdir);
263 rayvalue(&lr);
264 scalecolor(lr.rcol, nd.tspec);
265 multcolor(lr.rcol, nd.mcolor); /* modified by color */
266 addcolor(r->rcol, lr.rcol);
267 transtest *= bright(lr.rcol);
268 transdist = r->rot + lr.rt;
269 }
270 } else
271 transtest = 0;
272
273 if (r->crtype & SHADOW) { /* the rest is shadow */
274 r->rt = transdist;
275 return(1);
276 }
277 /* get specular reflection */
278 if (nd.rspec > FTINY) {
279 nd.specfl |= SP_REFL;
280 /* compute specular color */
281 if (m->otype != MAT_METAL) {
282 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
283 } else if (fest > FTINY) {
284 d = nd.rspec*(1. - fest);
285 for (i = 0; i < 3; i++)
286 nd.scolor[i] = fest + nd.mcolor[i]*d;
287 } else {
288 copycolor(nd.scolor, nd.mcolor);
289 scalecolor(nd.scolor, nd.rspec);
290 }
291 /* check threshold */
292 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
293 nd.specfl |= SP_RBLT;
294 /* compute reflected ray */
295 for (i = 0; i < 3; i++)
296 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
297 /* penetration? */
298 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
299 for (i = 0; i < 3; i++) /* safety measure */
300 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
301 }
302 /* reflected ray */
303 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
304 RAY lr;
305 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
306 VCOPY(lr.rdir, nd.vrefl);
307 rayvalue(&lr);
308 multcolor(lr.rcol, nd.scolor);
309 addcolor(r->rcol, lr.rcol);
310 if (!hastexture && nd.specfl & SP_FLAT) {
311 mirtest = 2.*bright(lr.rcol);
312 mirdist = r->rot + lr.rt;
313 }
314 }
315 }
316 /* diffuse reflection */
317 nd.rdiff = 1.0 - nd.trans - nd.rspec;
318
319 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
320 return(1); /* 100% pure specular */
321
322 if (!(nd.specfl & SP_PURE))
323 gaussamp(r, &nd); /* checks *BLT flags */
324
325 if (nd.rdiff > FTINY) { /* ambient from this side */
326 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
327 if (nd.specfl & SP_RBLT)
328 scalecolor(ctmp, 1.0-nd.trans);
329 else
330 scalecolor(ctmp, nd.rdiff);
331 multcolor(ctmp, nd.mcolor); /* modified by material color */
332 addcolor(r->rcol, ctmp); /* add to returned color */
333 }
334 if (nd.tdiff > FTINY) { /* ambient from other side */
335 flipsurface(r);
336 if (hastexture) {
337 FVECT bnorm;
338 bnorm[0] = -nd.pnorm[0];
339 bnorm[1] = -nd.pnorm[1];
340 bnorm[2] = -nd.pnorm[2];
341 ambient(ctmp, r, bnorm);
342 } else
343 ambient(ctmp, r, r->ron);
344 if (nd.specfl & SP_TBLT)
345 scalecolor(ctmp, nd.trans);
346 else
347 scalecolor(ctmp, nd.tdiff);
348 multcolor(ctmp, nd.mcolor); /* modified by color */
349 addcolor(r->rcol, ctmp);
350 flipsurface(r);
351 }
352 /* add direct component */
353 direct(r, dirnorm, &nd);
354 /* check distance */
355 d = bright(r->rcol);
356 if (transtest > d)
357 r->rt = transdist;
358 else if (mirtest > d)
359 r->rt = mirdist;
360
361 return(1);
362 }
363
364
365 static void
366 gaussamp( /* sample gaussian specular */
367 RAY *r,
368 register NORMDAT *np
369 )
370 {
371 RAY sr;
372 FVECT u, v, h;
373 double rv[2];
374 double d, sinp, cosp;
375 int niter;
376 register int i;
377 /* quick test */
378 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
379 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
380 return;
381 /* set up sample coordinates */
382 v[0] = v[1] = v[2] = 0.0;
383 for (i = 0; i < 3; i++)
384 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
385 break;
386 v[i] = 1.0;
387 fcross(u, v, np->pnorm);
388 normalize(u);
389 fcross(v, np->pnorm, u);
390 /* compute reflection */
391 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
392 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
393 dimlist[ndims++] = (int)np->mp;
394 for (niter = 0; niter < MAXITER; niter++) {
395 if (niter)
396 d = frandom();
397 else
398 d = urand(ilhash(dimlist,ndims)+samplendx);
399 multisamp(rv, 2, d);
400 d = 2.0*PI * rv[0];
401 cosp = tcos(d);
402 sinp = tsin(d);
403 rv[1] = 1.0 - specjitter*rv[1];
404 if (rv[1] <= FTINY)
405 d = 1.0;
406 else
407 d = sqrt( np->alpha2 * -log(rv[1]) );
408 for (i = 0; i < 3; i++)
409 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
410 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
411 for (i = 0; i < 3; i++)
412 sr.rdir[i] = r->rdir[i] + d*h[i];
413 if (DOT(sr.rdir, r->ron) > FTINY) {
414 rayvalue(&sr);
415 multcolor(sr.rcol, np->scolor);
416 addcolor(r->rcol, sr.rcol);
417 break;
418 }
419 }
420 ndims--;
421 }
422 /* compute transmission */
423 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
424 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
425 dimlist[ndims++] = (int)np->mp;
426 for (niter = 0; niter < MAXITER; niter++) {
427 if (niter)
428 d = frandom();
429 else
430 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
431 multisamp(rv, 2, d);
432 d = 2.0*PI * rv[0];
433 cosp = tcos(d);
434 sinp = tsin(d);
435 rv[1] = 1.0 - specjitter*rv[1];
436 if (rv[1] <= FTINY)
437 d = 1.0;
438 else
439 d = sqrt( np->alpha2 * -log(rv[1]) );
440 for (i = 0; i < 3; i++)
441 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
442 if (DOT(sr.rdir, r->ron) < -FTINY) {
443 normalize(sr.rdir); /* OK, normalize */
444 rayvalue(&sr);
445 scalecolor(sr.rcol, np->tspec);
446 multcolor(sr.rcol, np->mcolor); /* modified */
447 addcolor(r->rcol, sr.rcol);
448 break;
449 }
450 }
451 ndims--;
452 }
453 }