#ifndef lint static const char RCSid[] = "$Id: normal.c,v 2.48 2004/09/20 17:32:04 greg Exp $"; #endif /* * normal.c - shading function for normal materials. * * 8/19/85 * 12/19/85 - added stuff for metals. * 6/26/87 - improved specular model. * 9/28/87 - added model for translucent materials. * Later changes described in delta comments. */ #include "copyright.h" #include "ray.h" #include "ambient.h" #include "source.h" #include "otypes.h" #include "rtotypes.h" #include "random.h" #ifndef MAXITER #define MAXITER 10 /* maximum # specular ray attempts */ #endif /* estimate of Fresnel function */ #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916) /* * This routine implements the isotropic Gaussian * model described by Ward in Siggraph `92 article. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * * Arguments for MAT_PLASTIC and MAT_METAL are: * red grn blu specular-frac. facet-slope * * Arguments for MAT_TRANS are: * red grn blu rspec rough trans tspec */ /* specularity flags */ #define SP_REFL 01 /* has reflected specular component */ #define SP_TRAN 02 /* has transmitted specular */ #define SP_PURE 04 /* purely specular (zero roughness) */ #define SP_FLAT 010 /* flat reflecting surface */ #define SP_RBLT 020 /* reflection below sample threshold */ #define SP_TBLT 040 /* transmission below threshold */ typedef struct { OBJREC *mp; /* material pointer */ RAY *rp; /* ray pointer */ short specfl; /* specularity flags, defined above */ COLOR mcolor; /* color of this material */ COLOR scolor; /* color of specular component */ FVECT vrefl; /* vector in direction of reflected ray */ FVECT prdir; /* vector in transmitted direction */ double alpha2; /* roughness squared */ double rdiff, rspec; /* reflected specular, diffuse */ double trans; /* transmissivity */ double tdiff, tspec; /* transmitted specular, diffuse */ FVECT pnorm; /* perturbed surface normal */ double pdot; /* perturbed dot product */ } NORMDAT; /* normal material data */ static srcdirf_t dirnorm; static void gaussamp(RAY *r, NORMDAT *np); static void dirnorm( /* compute source contribution */ COLOR cval, /* returned coefficient */ void *nnp, /* material data */ FVECT ldir, /* light source direction */ double omega /* light source size */ ) { register NORMDAT *np = nnp; double ldot; double ldiff; double dtmp, d2; FVECT vtmp; COLOR ctmp; setcolor(cval, 0.0, 0.0, 0.0); ldot = DOT(np->pnorm, ldir); if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) return; /* wrong side */ /* Fresnel estimate */ ldiff = np->rdiff; if (np->specfl & SP_PURE && (np->rspec > FTINY) & (ldiff > FTINY)) ldiff *= 1. - FRESNE(fabs(ldot)); if (ldot > FTINY && ldiff > FTINY) { /* * Compute and add diffuse reflected component to returned * color. The diffuse reflected component will always be * modified by the color of the material. */ copycolor(ctmp, np->mcolor); dtmp = ldot * omega * ldiff * (1.0/PI); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { /* * Compute specular reflection coefficient using * gaussian distribution model. */ /* roughness */ dtmp = np->alpha2; /* + source if flat */ if (np->specfl & SP_FLAT) dtmp += omega * (0.25/PI); /* half vector */ vtmp[0] = ldir[0] - np->rp->rdir[0]; vtmp[1] = ldir[1] - np->rp->rdir[1]; vtmp[2] = ldir[2] - np->rp->rdir[2]; d2 = DOT(vtmp, np->pnorm); d2 *= d2; d2 = (DOT(vtmp,vtmp) - d2) / d2; /* gaussian */ dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->scolor); dtmp *= omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } if (ldot < -FTINY && np->tdiff > FTINY) { /* * Compute diffuse transmission. */ copycolor(ctmp, np->mcolor); dtmp = -ldot * omega * np->tdiff * (1.0/PI); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) { /* * Compute specular transmission. Specular transmission * is always modified by material color. */ /* roughness + source */ dtmp = np->alpha2 + omega*(1.0/PI); /* gaussian */ dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp) / (PI*np->pdot*dtmp); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->mcolor); dtmp *= np->tspec * omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } } extern int m_normal( /* color a ray that hit something normal */ register OBJREC *m, register RAY *r ) { NORMDAT nd; double fest; double transtest, transdist; double mirtest, mirdist; int hastexture; double d; COLOR ctmp; register int i; /* easy shadow test */ if (r->crtype & SHADOW && m->otype != MAT_TRANS) return(1); if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) objerror(m, USER, "bad number of arguments"); /* check for back side */ if (r->rod < 0.0) { if (!backvis && m->otype != MAT_TRANS) { raytrans(r); return(1); } raytexture(r, m->omod); flipsurface(r); /* reorient if backvis */ } else raytexture(r, m->omod); nd.mp = m; nd.rp = r; /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* get roughness */ nd.specfl = 0; nd.alpha2 = m->oargs.farg[4]; if ((nd.alpha2 *= nd.alpha2) <= FTINY) nd.specfl |= SP_PURE; if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) { nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ } else { VCOPY(nd.pnorm, r->ron); nd.pdot = r->rod; } if (r->ro != NULL && isflat(r->ro->otype)) nd.specfl |= SP_FLAT; if (nd.pdot < .001) nd.pdot = .001; /* non-zero for dirnorm() */ multcolor(nd.mcolor, r->pcol); /* modify material color */ mirtest = transtest = 0; mirdist = transdist = r->rot; nd.rspec = m->oargs.farg[3]; /* compute Fresnel approx. */ if (nd.specfl & SP_PURE && nd.rspec > FTINY) { fest = FRESNE(r->rod); nd.rspec += fest*(1. - nd.rspec); } else fest = 0.; /* compute transmission */ if (m->otype == MAT_TRANS) { nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec); nd.tspec = nd.trans * m->oargs.farg[6]; nd.tdiff = nd.trans - nd.tspec; if (nd.tspec > FTINY) { nd.specfl |= SP_TRAN; /* check threshold */ if (!(nd.specfl & SP_PURE) && specthresh >= nd.tspec-FTINY) nd.specfl |= SP_TBLT; if (!hastexture || r->crtype & SHADOW) { VCOPY(nd.prdir, r->rdir); transtest = 2; } else { for (i = 0; i < 3; i++) /* perturb */ nd.prdir[i] = r->rdir[i] - r->pert[i]; if (DOT(nd.prdir, r->ron) < -FTINY) normalize(nd.prdir); /* OK */ else VCOPY(nd.prdir, r->rdir); } } } else nd.tdiff = nd.tspec = nd.trans = 0.0; /* transmitted ray */ if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) { RAY lr; if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { VCOPY(lr.rdir, nd.prdir); rayvalue(&lr); scalecolor(lr.rcol, nd.tspec); multcolor(lr.rcol, nd.mcolor); /* modified by color */ addcolor(r->rcol, lr.rcol); transtest *= bright(lr.rcol); transdist = r->rot + lr.rt; } } else transtest = 0; if (r->crtype & SHADOW) { /* the rest is shadow */ r->rt = transdist; return(1); } /* get specular reflection */ if (nd.rspec > FTINY) { nd.specfl |= SP_REFL; /* compute specular color */ if (m->otype != MAT_METAL) { setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec); } else if (fest > FTINY) { d = nd.rspec*(1. - fest); for (i = 0; i < 3; i++) nd.scolor[i] = fest + nd.mcolor[i]*d; } else { copycolor(nd.scolor, nd.mcolor); scalecolor(nd.scolor, nd.rspec); } /* check threshold */ if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) nd.specfl |= SP_RBLT; /* compute reflected ray */ for (i = 0; i < 3; i++) nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i]; /* penetration? */ if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY) for (i = 0; i < 3; i++) /* safety measure */ nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; } /* reflected ray */ if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) { RAY lr; if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { VCOPY(lr.rdir, nd.vrefl); rayvalue(&lr); multcolor(lr.rcol, nd.scolor); addcolor(r->rcol, lr.rcol); if (!hastexture && nd.specfl & SP_FLAT) { mirtest = 2.*bright(lr.rcol); mirdist = r->rot + lr.rt; } } } /* diffuse reflection */ nd.rdiff = 1.0 - nd.trans - nd.rspec; if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) return(1); /* 100% pure specular */ if (!(nd.specfl & SP_PURE)) gaussamp(r, &nd); /* checks *BLT flags */ if (nd.rdiff > FTINY) { /* ambient from this side */ ambient(ctmp, r, hastexture?nd.pnorm:r->ron); if (nd.specfl & SP_RBLT) scalecolor(ctmp, 1.0-nd.trans); else scalecolor(ctmp, nd.rdiff); multcolor(ctmp, nd.mcolor); /* modified by material color */ addcolor(r->rcol, ctmp); /* add to returned color */ } if (nd.tdiff > FTINY) { /* ambient from other side */ flipsurface(r); if (hastexture) { FVECT bnorm; bnorm[0] = -nd.pnorm[0]; bnorm[1] = -nd.pnorm[1]; bnorm[2] = -nd.pnorm[2]; ambient(ctmp, r, bnorm); } else ambient(ctmp, r, r->ron); if (nd.specfl & SP_TBLT) scalecolor(ctmp, nd.trans); else scalecolor(ctmp, nd.tdiff); multcolor(ctmp, nd.mcolor); /* modified by color */ addcolor(r->rcol, ctmp); flipsurface(r); } /* add direct component */ direct(r, dirnorm, &nd); /* check distance */ d = bright(r->rcol); if (transtest > d) r->rt = transdist; else if (mirtest > d) r->rt = mirdist; return(1); } static void gaussamp( /* sample gaussian specular */ RAY *r, register NORMDAT *np ) { RAY sr; FVECT u, v, h; double rv[2]; double d, sinp, cosp; int niter; register int i; /* quick test */ if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) return; /* set up sample coordinates */ v[0] = v[1] = v[2] = 0.0; for (i = 0; i < 3; i++) if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6) break; v[i] = 1.0; fcross(u, v, np->pnorm); normalize(u); fcross(v, np->pnorm, u); /* compute reflection */ if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { dimlist[ndims++] = (int)np->mp; for (niter = 0; niter < MAXITER; niter++) { if (niter) d = frandom(); else d = urand(ilhash(dimlist,ndims)+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; cosp = tcos(d); sinp = tsin(d); rv[1] = 1.0 - specjitter*rv[1]; if (rv[1] <= FTINY) d = 1.0; else d = sqrt( np->alpha2 * -log(rv[1]) ); for (i = 0; i < 3; i++) h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); for (i = 0; i < 3; i++) sr.rdir[i] = r->rdir[i] + d*h[i]; if (DOT(sr.rdir, r->ron) > FTINY) { rayvalue(&sr); multcolor(sr.rcol, np->scolor); addcolor(r->rcol, sr.rcol); break; } } ndims--; } /* compute transmission */ if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { dimlist[ndims++] = (int)np->mp; for (niter = 0; niter < MAXITER; niter++) { if (niter) d = frandom(); else d = urand(ilhash(dimlist,ndims)+1823+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; cosp = tcos(d); sinp = tsin(d); rv[1] = 1.0 - specjitter*rv[1]; if (rv[1] <= FTINY) d = 1.0; else d = sqrt( np->alpha2 * -log(rv[1]) ); for (i = 0; i < 3; i++) sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); if (DOT(sr.rdir, r->ron) < -FTINY) { normalize(sr.rdir); /* OK, normalize */ rayvalue(&sr); scalecolor(sr.rcol, np->tspec); multcolor(sr.rcol, np->mcolor); /* modified */ addcolor(r->rcol, sr.rcol); break; } } ndims--; } }