ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.47
Committed: Tue Mar 30 16:13:01 2004 UTC (20 years, 1 month ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.46: +22 -17 lines
Log Message:
Continued ANSIfication. There are only bits and pieces left now.

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.46 2003/08/28 03:22:16 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22
23 #ifndef MAXITER
24 #define MAXITER 10 /* maximum # specular ray attempts */
25 #endif
26 /* estimate of Fresnel function */
27 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28
29
30 /*
31 * This routine implements the isotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC and MAT_METAL are:
37 * red grn blu specular-frac. facet-slope
38 *
39 * Arguments for MAT_TRANS are:
40 * red grn blu rspec rough trans tspec
41 */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67 static srcdirf_t dirnorm;
68 static void gaussamp(RAY *r, NORMDAT *np);
69
70
71 static void
72 dirnorm( /* compute source contribution */
73 COLOR cval, /* returned coefficient */
74 void *nnp, /* material data */
75 FVECT ldir, /* light source direction */
76 double omega /* light source size */
77 )
78 {
79 register NORMDAT *np = nnp;
80 double ldot;
81 double ldiff;
82 double dtmp, d2;
83 FVECT vtmp;
84 COLOR ctmp;
85
86 setcolor(cval, 0.0, 0.0, 0.0);
87
88 ldot = DOT(np->pnorm, ldir);
89
90 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91 return; /* wrong side */
92
93 /* Fresnel estimate */
94 ldiff = np->rdiff;
95 if (np->specfl & SP_PURE && (np->rspec > FTINY) & (ldiff > FTINY))
96 ldiff *= 1. - FRESNE(fabs(ldot));
97
98 if (ldot > FTINY && ldiff > FTINY) {
99 /*
100 * Compute and add diffuse reflected component to returned
101 * color. The diffuse reflected component will always be
102 * modified by the color of the material.
103 */
104 copycolor(ctmp, np->mcolor);
105 dtmp = ldot * omega * ldiff / PI;
106 scalecolor(ctmp, dtmp);
107 addcolor(cval, ctmp);
108 }
109 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
110 /*
111 * Compute specular reflection coefficient using
112 * gaussian distribution model.
113 */
114 /* roughness */
115 dtmp = np->alpha2;
116 /* + source if flat */
117 if (np->specfl & SP_FLAT)
118 dtmp += omega/(4.0*PI);
119 /* half vector */
120 vtmp[0] = ldir[0] - np->rp->rdir[0];
121 vtmp[1] = ldir[1] - np->rp->rdir[1];
122 vtmp[2] = ldir[2] - np->rp->rdir[2];
123 d2 = DOT(vtmp, np->pnorm);
124 d2 *= d2;
125 d2 = (DOT(vtmp,vtmp) - d2) / d2;
126 /* gaussian */
127 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
128 /* worth using? */
129 if (dtmp > FTINY) {
130 copycolor(ctmp, np->scolor);
131 dtmp *= omega * sqrt(ldot/np->pdot);
132 scalecolor(ctmp, dtmp);
133 addcolor(cval, ctmp);
134 }
135 }
136 if (ldot < -FTINY && np->tdiff > FTINY) {
137 /*
138 * Compute diffuse transmission.
139 */
140 copycolor(ctmp, np->mcolor);
141 dtmp = -ldot * omega * np->tdiff / PI;
142 scalecolor(ctmp, dtmp);
143 addcolor(cval, ctmp);
144 }
145 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
146 /*
147 * Compute specular transmission. Specular transmission
148 * is always modified by material color.
149 */
150 /* roughness + source */
151 dtmp = np->alpha2 + omega/PI;
152 /* gaussian */
153 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
154 /* worth using? */
155 if (dtmp > FTINY) {
156 copycolor(ctmp, np->mcolor);
157 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
158 scalecolor(ctmp, dtmp);
159 addcolor(cval, ctmp);
160 }
161 }
162 }
163
164
165 extern int
166 m_normal( /* color a ray that hit something normal */
167 register OBJREC *m,
168 register RAY *r
169 )
170 {
171 NORMDAT nd;
172 double fest;
173 double transtest, transdist;
174 double mirtest, mirdist;
175 int hastexture;
176 double d;
177 COLOR ctmp;
178 register int i;
179 /* easy shadow test */
180 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
181 return(1);
182
183 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
184 objerror(m, USER, "bad number of arguments");
185 /* check for back side */
186 if (r->rod < 0.0) {
187 if (!backvis && m->otype != MAT_TRANS) {
188 raytrans(r);
189 return(1);
190 }
191 raytexture(r, m->omod);
192 flipsurface(r); /* reorient if backvis */
193 } else
194 raytexture(r, m->omod);
195 nd.mp = m;
196 nd.rp = r;
197 /* get material color */
198 setcolor(nd.mcolor, m->oargs.farg[0],
199 m->oargs.farg[1],
200 m->oargs.farg[2]);
201 /* get roughness */
202 nd.specfl = 0;
203 nd.alpha2 = m->oargs.farg[4];
204 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
205 nd.specfl |= SP_PURE;
206
207 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
208 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
209 } else {
210 VCOPY(nd.pnorm, r->ron);
211 nd.pdot = r->rod;
212 }
213 if (r->ro != NULL && isflat(r->ro->otype))
214 nd.specfl |= SP_FLAT;
215 if (nd.pdot < .001)
216 nd.pdot = .001; /* non-zero for dirnorm() */
217 multcolor(nd.mcolor, r->pcol); /* modify material color */
218 mirtest = transtest = 0;
219 mirdist = transdist = r->rot;
220 nd.rspec = m->oargs.farg[3];
221 /* compute Fresnel approx. */
222 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
223 fest = FRESNE(r->rod);
224 nd.rspec += fest*(1. - nd.rspec);
225 } else
226 fest = 0.;
227 /* compute transmission */
228 if (m->otype == MAT_TRANS) {
229 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
230 nd.tspec = nd.trans * m->oargs.farg[6];
231 nd.tdiff = nd.trans - nd.tspec;
232 if (nd.tspec > FTINY) {
233 nd.specfl |= SP_TRAN;
234 /* check threshold */
235 if (!(nd.specfl & SP_PURE) &&
236 specthresh >= nd.tspec-FTINY)
237 nd.specfl |= SP_TBLT;
238 if (!hastexture || r->crtype & SHADOW) {
239 VCOPY(nd.prdir, r->rdir);
240 transtest = 2;
241 } else {
242 for (i = 0; i < 3; i++) /* perturb */
243 nd.prdir[i] = r->rdir[i] - r->pert[i];
244 if (DOT(nd.prdir, r->ron) < -FTINY)
245 normalize(nd.prdir); /* OK */
246 else
247 VCOPY(nd.prdir, r->rdir);
248 }
249 }
250 } else
251 nd.tdiff = nd.tspec = nd.trans = 0.0;
252 /* transmitted ray */
253 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
254 RAY lr;
255 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
256 VCOPY(lr.rdir, nd.prdir);
257 rayvalue(&lr);
258 scalecolor(lr.rcol, nd.tspec);
259 multcolor(lr.rcol, nd.mcolor); /* modified by color */
260 addcolor(r->rcol, lr.rcol);
261 transtest *= bright(lr.rcol);
262 transdist = r->rot + lr.rt;
263 }
264 } else
265 transtest = 0;
266
267 if (r->crtype & SHADOW) { /* the rest is shadow */
268 r->rt = transdist;
269 return(1);
270 }
271 /* get specular reflection */
272 if (nd.rspec > FTINY) {
273 nd.specfl |= SP_REFL;
274 /* compute specular color */
275 if (m->otype != MAT_METAL) {
276 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
277 } else if (fest > FTINY) {
278 d = nd.rspec*(1. - fest);
279 for (i = 0; i < 3; i++)
280 nd.scolor[i] = fest + nd.mcolor[i]*d;
281 } else {
282 copycolor(nd.scolor, nd.mcolor);
283 scalecolor(nd.scolor, nd.rspec);
284 }
285 /* check threshold */
286 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
287 nd.specfl |= SP_RBLT;
288 /* compute reflected ray */
289 for (i = 0; i < 3; i++)
290 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
291 /* penetration? */
292 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
293 for (i = 0; i < 3; i++) /* safety measure */
294 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
295 }
296 /* reflected ray */
297 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
298 RAY lr;
299 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
300 VCOPY(lr.rdir, nd.vrefl);
301 rayvalue(&lr);
302 multcolor(lr.rcol, nd.scolor);
303 addcolor(r->rcol, lr.rcol);
304 if (!hastexture && nd.specfl & SP_FLAT) {
305 mirtest = 2.*bright(lr.rcol);
306 mirdist = r->rot + lr.rt;
307 }
308 }
309 }
310 /* diffuse reflection */
311 nd.rdiff = 1.0 - nd.trans - nd.rspec;
312
313 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
314 return(1); /* 100% pure specular */
315
316 if (!(nd.specfl & SP_PURE))
317 gaussamp(r, &nd); /* checks *BLT flags */
318
319 if (nd.rdiff > FTINY) { /* ambient from this side */
320 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
321 if (nd.specfl & SP_RBLT)
322 scalecolor(ctmp, 1.0-nd.trans);
323 else
324 scalecolor(ctmp, nd.rdiff);
325 multcolor(ctmp, nd.mcolor); /* modified by material color */
326 addcolor(r->rcol, ctmp); /* add to returned color */
327 }
328 if (nd.tdiff > FTINY) { /* ambient from other side */
329 flipsurface(r);
330 if (hastexture) {
331 FVECT bnorm;
332 bnorm[0] = -nd.pnorm[0];
333 bnorm[1] = -nd.pnorm[1];
334 bnorm[2] = -nd.pnorm[2];
335 ambient(ctmp, r, bnorm);
336 } else
337 ambient(ctmp, r, r->ron);
338 if (nd.specfl & SP_TBLT)
339 scalecolor(ctmp, nd.trans);
340 else
341 scalecolor(ctmp, nd.tdiff);
342 multcolor(ctmp, nd.mcolor); /* modified by color */
343 addcolor(r->rcol, ctmp);
344 flipsurface(r);
345 }
346 /* add direct component */
347 direct(r, dirnorm, &nd);
348 /* check distance */
349 d = bright(r->rcol);
350 if (transtest > d)
351 r->rt = transdist;
352 else if (mirtest > d)
353 r->rt = mirdist;
354
355 return(1);
356 }
357
358
359 static void
360 gaussamp( /* sample gaussian specular */
361 RAY *r,
362 register NORMDAT *np
363 )
364 {
365 RAY sr;
366 FVECT u, v, h;
367 double rv[2];
368 double d, sinp, cosp;
369 int niter;
370 register int i;
371 /* quick test */
372 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
373 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
374 return;
375 /* set up sample coordinates */
376 v[0] = v[1] = v[2] = 0.0;
377 for (i = 0; i < 3; i++)
378 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
379 break;
380 v[i] = 1.0;
381 fcross(u, v, np->pnorm);
382 normalize(u);
383 fcross(v, np->pnorm, u);
384 /* compute reflection */
385 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
386 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
387 dimlist[ndims++] = (int)np->mp;
388 for (niter = 0; niter < MAXITER; niter++) {
389 if (niter)
390 d = frandom();
391 else
392 d = urand(ilhash(dimlist,ndims)+samplendx);
393 multisamp(rv, 2, d);
394 d = 2.0*PI * rv[0];
395 cosp = tcos(d);
396 sinp = tsin(d);
397 rv[1] = 1.0 - specjitter*rv[1];
398 if (rv[1] <= FTINY)
399 d = 1.0;
400 else
401 d = sqrt( np->alpha2 * -log(rv[1]) );
402 for (i = 0; i < 3; i++)
403 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
404 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
405 for (i = 0; i < 3; i++)
406 sr.rdir[i] = r->rdir[i] + d*h[i];
407 if (DOT(sr.rdir, r->ron) > FTINY) {
408 rayvalue(&sr);
409 multcolor(sr.rcol, np->scolor);
410 addcolor(r->rcol, sr.rcol);
411 break;
412 }
413 }
414 ndims--;
415 }
416 /* compute transmission */
417 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
418 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
419 dimlist[ndims++] = (int)np->mp;
420 for (niter = 0; niter < MAXITER; niter++) {
421 if (niter)
422 d = frandom();
423 else
424 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
425 multisamp(rv, 2, d);
426 d = 2.0*PI * rv[0];
427 cosp = tcos(d);
428 sinp = tsin(d);
429 rv[1] = 1.0 - specjitter*rv[1];
430 if (rv[1] <= FTINY)
431 d = 1.0;
432 else
433 d = sqrt( np->alpha2 * -log(rv[1]) );
434 for (i = 0; i < 3; i++)
435 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
436 if (DOT(sr.rdir, r->ron) < -FTINY) {
437 normalize(sr.rdir); /* OK, normalize */
438 rayvalue(&sr);
439 scalecolor(sr.rcol, np->tspec);
440 multcolor(sr.rcol, np->mcolor); /* modified */
441 addcolor(r->rcol, sr.rcol);
442 break;
443 }
444 }
445 ndims--;
446 }
447 }