ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.46
Committed: Thu Aug 28 03:22:16 2003 UTC (20 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.45: +3 -1 lines
Log Message:
Created proper prototypes for function pointers and included missing headers

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.45 2003/07/27 22:12:03 schorsch Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17
18 #include "ambient.h"
19
20 #include "otypes.h"
21
22 #include "random.h"
23
24 #ifndef MAXITER
25 #define MAXITER 10 /* maximum # specular ray attempts */
26 #endif
27 /* estimate of Fresnel function */
28 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
29
30 static void gaussamp();
31
32 /*
33 * This routine implements the isotropic Gaussian
34 * model described by Ward in Siggraph `92 article.
35 * We orient the surface towards the incoming ray, so a single
36 * surface can be used to represent an infinitely thin object.
37 *
38 * Arguments for MAT_PLASTIC and MAT_METAL are:
39 * red grn blu specular-frac. facet-slope
40 *
41 * Arguments for MAT_TRANS are:
42 * red grn blu rspec rough trans tspec
43 */
44
45 /* specularity flags */
46 #define SP_REFL 01 /* has reflected specular component */
47 #define SP_TRAN 02 /* has transmitted specular */
48 #define SP_PURE 04 /* purely specular (zero roughness) */
49 #define SP_FLAT 010 /* flat reflecting surface */
50 #define SP_RBLT 020 /* reflection below sample threshold */
51 #define SP_TBLT 040 /* transmission below threshold */
52
53 typedef struct {
54 OBJREC *mp; /* material pointer */
55 RAY *rp; /* ray pointer */
56 short specfl; /* specularity flags, defined above */
57 COLOR mcolor; /* color of this material */
58 COLOR scolor; /* color of specular component */
59 FVECT vrefl; /* vector in direction of reflected ray */
60 FVECT prdir; /* vector in transmitted direction */
61 double alpha2; /* roughness squared */
62 double rdiff, rspec; /* reflected specular, diffuse */
63 double trans; /* transmissivity */
64 double tdiff, tspec; /* transmitted specular, diffuse */
65 FVECT pnorm; /* perturbed surface normal */
66 double pdot; /* perturbed dot product */
67 } NORMDAT; /* normal material data */
68
69
70 static void
71 dirnorm(cval, np, ldir, omega) /* compute source contribution */
72 COLOR cval; /* returned coefficient */
73 register NORMDAT *np; /* material data */
74 FVECT ldir; /* light source direction */
75 double omega; /* light source size */
76 {
77 double ldot;
78 double ldiff;
79 double dtmp, d2;
80 FVECT vtmp;
81 COLOR ctmp;
82
83 setcolor(cval, 0.0, 0.0, 0.0);
84
85 ldot = DOT(np->pnorm, ldir);
86
87 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88 return; /* wrong side */
89
90 /* Fresnel estimate */
91 ldiff = np->rdiff;
92 if (np->specfl & SP_PURE && (np->rspec > FTINY) & (ldiff > FTINY))
93 ldiff *= 1. - FRESNE(fabs(ldot));
94
95 if (ldot > FTINY && ldiff > FTINY) {
96 /*
97 * Compute and add diffuse reflected component to returned
98 * color. The diffuse reflected component will always be
99 * modified by the color of the material.
100 */
101 copycolor(ctmp, np->mcolor);
102 dtmp = ldot * omega * ldiff / PI;
103 scalecolor(ctmp, dtmp);
104 addcolor(cval, ctmp);
105 }
106 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
107 /*
108 * Compute specular reflection coefficient using
109 * gaussian distribution model.
110 */
111 /* roughness */
112 dtmp = np->alpha2;
113 /* + source if flat */
114 if (np->specfl & SP_FLAT)
115 dtmp += omega/(4.0*PI);
116 /* half vector */
117 vtmp[0] = ldir[0] - np->rp->rdir[0];
118 vtmp[1] = ldir[1] - np->rp->rdir[1];
119 vtmp[2] = ldir[2] - np->rp->rdir[2];
120 d2 = DOT(vtmp, np->pnorm);
121 d2 *= d2;
122 d2 = (DOT(vtmp,vtmp) - d2) / d2;
123 /* gaussian */
124 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
125 /* worth using? */
126 if (dtmp > FTINY) {
127 copycolor(ctmp, np->scolor);
128 dtmp *= omega * sqrt(ldot/np->pdot);
129 scalecolor(ctmp, dtmp);
130 addcolor(cval, ctmp);
131 }
132 }
133 if (ldot < -FTINY && np->tdiff > FTINY) {
134 /*
135 * Compute diffuse transmission.
136 */
137 copycolor(ctmp, np->mcolor);
138 dtmp = -ldot * omega * np->tdiff / PI;
139 scalecolor(ctmp, dtmp);
140 addcolor(cval, ctmp);
141 }
142 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
143 /*
144 * Compute specular transmission. Specular transmission
145 * is always modified by material color.
146 */
147 /* roughness + source */
148 dtmp = np->alpha2 + omega/PI;
149 /* gaussian */
150 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
151 /* worth using? */
152 if (dtmp > FTINY) {
153 copycolor(ctmp, np->mcolor);
154 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
155 scalecolor(ctmp, dtmp);
156 addcolor(cval, ctmp);
157 }
158 }
159 }
160
161
162 int
163 m_normal(m, r) /* color a ray that hit something normal */
164 register OBJREC *m;
165 register RAY *r;
166 {
167 NORMDAT nd;
168 double fest;
169 double transtest, transdist;
170 double mirtest, mirdist;
171 int hastexture;
172 double d;
173 COLOR ctmp;
174 register int i;
175 /* easy shadow test */
176 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
177 return(1);
178
179 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
180 objerror(m, USER, "bad number of arguments");
181 /* check for back side */
182 if (r->rod < 0.0) {
183 if (!backvis && m->otype != MAT_TRANS) {
184 raytrans(r);
185 return(1);
186 }
187 raytexture(r, m->omod);
188 flipsurface(r); /* reorient if backvis */
189 } else
190 raytexture(r, m->omod);
191 nd.mp = m;
192 nd.rp = r;
193 /* get material color */
194 setcolor(nd.mcolor, m->oargs.farg[0],
195 m->oargs.farg[1],
196 m->oargs.farg[2]);
197 /* get roughness */
198 nd.specfl = 0;
199 nd.alpha2 = m->oargs.farg[4];
200 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
201 nd.specfl |= SP_PURE;
202
203 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
204 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
205 } else {
206 VCOPY(nd.pnorm, r->ron);
207 nd.pdot = r->rod;
208 }
209 if (r->ro != NULL && isflat(r->ro->otype))
210 nd.specfl |= SP_FLAT;
211 if (nd.pdot < .001)
212 nd.pdot = .001; /* non-zero for dirnorm() */
213 multcolor(nd.mcolor, r->pcol); /* modify material color */
214 mirtest = transtest = 0;
215 mirdist = transdist = r->rot;
216 nd.rspec = m->oargs.farg[3];
217 /* compute Fresnel approx. */
218 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
219 fest = FRESNE(r->rod);
220 nd.rspec += fest*(1. - nd.rspec);
221 } else
222 fest = 0.;
223 /* compute transmission */
224 if (m->otype == MAT_TRANS) {
225 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
226 nd.tspec = nd.trans * m->oargs.farg[6];
227 nd.tdiff = nd.trans - nd.tspec;
228 if (nd.tspec > FTINY) {
229 nd.specfl |= SP_TRAN;
230 /* check threshold */
231 if (!(nd.specfl & SP_PURE) &&
232 specthresh >= nd.tspec-FTINY)
233 nd.specfl |= SP_TBLT;
234 if (!hastexture || r->crtype & SHADOW) {
235 VCOPY(nd.prdir, r->rdir);
236 transtest = 2;
237 } else {
238 for (i = 0; i < 3; i++) /* perturb */
239 nd.prdir[i] = r->rdir[i] - r->pert[i];
240 if (DOT(nd.prdir, r->ron) < -FTINY)
241 normalize(nd.prdir); /* OK */
242 else
243 VCOPY(nd.prdir, r->rdir);
244 }
245 }
246 } else
247 nd.tdiff = nd.tspec = nd.trans = 0.0;
248 /* transmitted ray */
249 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
250 RAY lr;
251 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
252 VCOPY(lr.rdir, nd.prdir);
253 rayvalue(&lr);
254 scalecolor(lr.rcol, nd.tspec);
255 multcolor(lr.rcol, nd.mcolor); /* modified by color */
256 addcolor(r->rcol, lr.rcol);
257 transtest *= bright(lr.rcol);
258 transdist = r->rot + lr.rt;
259 }
260 } else
261 transtest = 0;
262
263 if (r->crtype & SHADOW) { /* the rest is shadow */
264 r->rt = transdist;
265 return(1);
266 }
267 /* get specular reflection */
268 if (nd.rspec > FTINY) {
269 nd.specfl |= SP_REFL;
270 /* compute specular color */
271 if (m->otype != MAT_METAL) {
272 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
273 } else if (fest > FTINY) {
274 d = nd.rspec*(1. - fest);
275 for (i = 0; i < 3; i++)
276 nd.scolor[i] = fest + nd.mcolor[i]*d;
277 } else {
278 copycolor(nd.scolor, nd.mcolor);
279 scalecolor(nd.scolor, nd.rspec);
280 }
281 /* check threshold */
282 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
283 nd.specfl |= SP_RBLT;
284 /* compute reflected ray */
285 for (i = 0; i < 3; i++)
286 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
287 /* penetration? */
288 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
289 for (i = 0; i < 3; i++) /* safety measure */
290 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
291 }
292 /* reflected ray */
293 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
294 RAY lr;
295 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
296 VCOPY(lr.rdir, nd.vrefl);
297 rayvalue(&lr);
298 multcolor(lr.rcol, nd.scolor);
299 addcolor(r->rcol, lr.rcol);
300 if (!hastexture && nd.specfl & SP_FLAT) {
301 mirtest = 2.*bright(lr.rcol);
302 mirdist = r->rot + lr.rt;
303 }
304 }
305 }
306 /* diffuse reflection */
307 nd.rdiff = 1.0 - nd.trans - nd.rspec;
308
309 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
310 return(1); /* 100% pure specular */
311
312 if (!(nd.specfl & SP_PURE))
313 gaussamp(r, &nd); /* checks *BLT flags */
314
315 if (nd.rdiff > FTINY) { /* ambient from this side */
316 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
317 if (nd.specfl & SP_RBLT)
318 scalecolor(ctmp, 1.0-nd.trans);
319 else
320 scalecolor(ctmp, nd.rdiff);
321 multcolor(ctmp, nd.mcolor); /* modified by material color */
322 addcolor(r->rcol, ctmp); /* add to returned color */
323 }
324 if (nd.tdiff > FTINY) { /* ambient from other side */
325 flipsurface(r);
326 if (hastexture) {
327 FVECT bnorm;
328 bnorm[0] = -nd.pnorm[0];
329 bnorm[1] = -nd.pnorm[1];
330 bnorm[2] = -nd.pnorm[2];
331 ambient(ctmp, r, bnorm);
332 } else
333 ambient(ctmp, r, r->ron);
334 if (nd.specfl & SP_TBLT)
335 scalecolor(ctmp, nd.trans);
336 else
337 scalecolor(ctmp, nd.tdiff);
338 multcolor(ctmp, nd.mcolor); /* modified by color */
339 addcolor(r->rcol, ctmp);
340 flipsurface(r);
341 }
342 /* add direct component */
343 direct(r, dirnorm, &nd);
344 /* check distance */
345 d = bright(r->rcol);
346 if (transtest > d)
347 r->rt = transdist;
348 else if (mirtest > d)
349 r->rt = mirdist;
350
351 return(1);
352 }
353
354
355 static void
356 gaussamp(r, np) /* sample gaussian specular */
357 RAY *r;
358 register NORMDAT *np;
359 {
360 RAY sr;
361 FVECT u, v, h;
362 double rv[2];
363 double d, sinp, cosp;
364 int niter;
365 register int i;
366 /* quick test */
367 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
368 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
369 return;
370 /* set up sample coordinates */
371 v[0] = v[1] = v[2] = 0.0;
372 for (i = 0; i < 3; i++)
373 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
374 break;
375 v[i] = 1.0;
376 fcross(u, v, np->pnorm);
377 normalize(u);
378 fcross(v, np->pnorm, u);
379 /* compute reflection */
380 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
381 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
382 dimlist[ndims++] = (int)np->mp;
383 for (niter = 0; niter < MAXITER; niter++) {
384 if (niter)
385 d = frandom();
386 else
387 d = urand(ilhash(dimlist,ndims)+samplendx);
388 multisamp(rv, 2, d);
389 d = 2.0*PI * rv[0];
390 cosp = tcos(d);
391 sinp = tsin(d);
392 rv[1] = 1.0 - specjitter*rv[1];
393 if (rv[1] <= FTINY)
394 d = 1.0;
395 else
396 d = sqrt( np->alpha2 * -log(rv[1]) );
397 for (i = 0; i < 3; i++)
398 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
399 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
400 for (i = 0; i < 3; i++)
401 sr.rdir[i] = r->rdir[i] + d*h[i];
402 if (DOT(sr.rdir, r->ron) > FTINY) {
403 rayvalue(&sr);
404 multcolor(sr.rcol, np->scolor);
405 addcolor(r->rcol, sr.rcol);
406 break;
407 }
408 }
409 ndims--;
410 }
411 /* compute transmission */
412 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
413 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
414 dimlist[ndims++] = (int)np->mp;
415 for (niter = 0; niter < MAXITER; niter++) {
416 if (niter)
417 d = frandom();
418 else
419 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
420 multisamp(rv, 2, d);
421 d = 2.0*PI * rv[0];
422 cosp = tcos(d);
423 sinp = tsin(d);
424 rv[1] = 1.0 - specjitter*rv[1];
425 if (rv[1] <= FTINY)
426 d = 1.0;
427 else
428 d = sqrt( np->alpha2 * -log(rv[1]) );
429 for (i = 0; i < 3; i++)
430 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
431 if (DOT(sr.rdir, r->ron) < -FTINY) {
432 normalize(sr.rdir); /* OK, normalize */
433 rayvalue(&sr);
434 scalecolor(sr.rcol, np->tspec);
435 multcolor(sr.rcol, np->mcolor); /* modified */
436 addcolor(r->rcol, sr.rcol);
437 break;
438 }
439 }
440 ndims--;
441 }
442 }