ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.41
Committed: Wed Mar 12 04:59:05 2003 UTC (21 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.40: +5 -5 lines
Log Message:
Numerous bug fixes in new mesh code

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17
18 #include "otypes.h"
19
20 #include "random.h"
21
22 #ifndef MAXITER
23 #define MAXITER 10 /* maximum # specular ray attempts */
24 #endif
25 /* estimate of Fresnel function */
26 #define FRESNE(ci) (exp(-6.0*(ci)) - 0.00247875217)
27
28 static void gaussamp();
29
30 /*
31 * This routine implements the isotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC and MAT_METAL are:
37 * red grn blu specular-frac. facet-slope
38 *
39 * Arguments for MAT_TRANS are:
40 * red grn blu rspec rough trans tspec
41 */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67
68 static void
69 dirnorm(cval, np, ldir, omega) /* compute source contribution */
70 COLOR cval; /* returned coefficient */
71 register NORMDAT *np; /* material data */
72 FVECT ldir; /* light source direction */
73 double omega; /* light source size */
74 {
75 double ldot;
76 double ldiff;
77 double dtmp, d2;
78 FVECT vtmp;
79 COLOR ctmp;
80
81 setcolor(cval, 0.0, 0.0, 0.0);
82
83 ldot = DOT(np->pnorm, ldir);
84
85 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
86 return; /* wrong side */
87
88 /* Fresnel estimate */
89 ldiff = np->rdiff;
90 if (np->specfl & SP_PURE && (np->rspec > FTINY & ldiff > FTINY))
91 ldiff *= 1. - FRESNE(fabs(ldot));
92
93 if (ldot > FTINY && ldiff > FTINY) {
94 /*
95 * Compute and add diffuse reflected component to returned
96 * color. The diffuse reflected component will always be
97 * modified by the color of the material.
98 */
99 copycolor(ctmp, np->mcolor);
100 dtmp = ldot * omega * ldiff / PI;
101 scalecolor(ctmp, dtmp);
102 addcolor(cval, ctmp);
103 }
104 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
105 /*
106 * Compute specular reflection coefficient using
107 * gaussian distribution model.
108 */
109 /* roughness */
110 dtmp = np->alpha2;
111 /* + source if flat */
112 if (np->specfl & SP_FLAT)
113 dtmp += omega/(4.0*PI);
114 /* half vector */
115 vtmp[0] = ldir[0] - np->rp->rdir[0];
116 vtmp[1] = ldir[1] - np->rp->rdir[1];
117 vtmp[2] = ldir[2] - np->rp->rdir[2];
118 d2 = DOT(vtmp, np->pnorm);
119 d2 *= d2;
120 d2 = (DOT(vtmp,vtmp) - d2) / d2;
121 /* gaussian */
122 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
123 /* worth using? */
124 if (dtmp > FTINY) {
125 copycolor(ctmp, np->scolor);
126 dtmp *= omega * sqrt(ldot/np->pdot);
127 scalecolor(ctmp, dtmp);
128 addcolor(cval, ctmp);
129 }
130 }
131 if (ldot < -FTINY && np->tdiff > FTINY) {
132 /*
133 * Compute diffuse transmission.
134 */
135 copycolor(ctmp, np->mcolor);
136 dtmp = -ldot * omega * np->tdiff / PI;
137 scalecolor(ctmp, dtmp);
138 addcolor(cval, ctmp);
139 }
140 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
141 /*
142 * Compute specular transmission. Specular transmission
143 * is always modified by material color.
144 */
145 /* roughness + source */
146 dtmp = np->alpha2 + omega/PI;
147 /* gaussian */
148 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
149 /* worth using? */
150 if (dtmp > FTINY) {
151 copycolor(ctmp, np->mcolor);
152 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
153 scalecolor(ctmp, dtmp);
154 addcolor(cval, ctmp);
155 }
156 }
157 }
158
159
160 int
161 m_normal(m, r) /* color a ray that hit something normal */
162 register OBJREC *m;
163 register RAY *r;
164 {
165 NORMDAT nd;
166 double fest;
167 double transtest, transdist;
168 double mirtest, mirdist;
169 int hastexture;
170 double d;
171 COLOR ctmp;
172 register int i;
173 /* easy shadow test */
174 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
175 return(1);
176
177 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
178 objerror(m, USER, "bad number of arguments");
179 /* check for back side */
180 if (r->rod < 0.0) {
181 if (!backvis && m->otype != MAT_TRANS) {
182 raytrans(r);
183 return(1);
184 }
185 raytexture(r, m->omod);
186 flipsurface(r); /* reorient if backvis */
187 } else
188 raytexture(r, m->omod);
189 nd.mp = m;
190 nd.rp = r;
191 /* get material color */
192 setcolor(nd.mcolor, m->oargs.farg[0],
193 m->oargs.farg[1],
194 m->oargs.farg[2]);
195 /* get roughness */
196 nd.specfl = 0;
197 nd.alpha2 = m->oargs.farg[4];
198 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
199 nd.specfl |= SP_PURE;
200
201 if (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) {
202 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
203 } else {
204 VCOPY(nd.pnorm, r->ron);
205 nd.pdot = r->rod;
206 if (r->ro != NULL && isflat(r->ro->otype))
207 nd.specfl |= SP_FLAT;
208 }
209 if (nd.pdot < .001)
210 nd.pdot = .001; /* non-zero for dirnorm() */
211 multcolor(nd.mcolor, r->pcol); /* modify material color */
212 mirtest = transtest = 0;
213 mirdist = transdist = r->rot;
214 nd.rspec = m->oargs.farg[3];
215 /* compute Fresnel approx. */
216 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
217 fest = FRESNE(r->rod);
218 nd.rspec += fest*(1. - nd.rspec);
219 } else
220 fest = 0.;
221 /* compute transmission */
222 if (m->otype == MAT_TRANS) {
223 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
224 nd.tspec = nd.trans * m->oargs.farg[6];
225 nd.tdiff = nd.trans - nd.tspec;
226 if (nd.tspec > FTINY) {
227 nd.specfl |= SP_TRAN;
228 /* check threshold */
229 if (!(nd.specfl & SP_PURE) &&
230 specthresh >= nd.tspec-FTINY)
231 nd.specfl |= SP_TBLT;
232 if (!hastexture || r->crtype & SHADOW) {
233 VCOPY(nd.prdir, r->rdir);
234 transtest = 2;
235 } else {
236 for (i = 0; i < 3; i++) /* perturb */
237 nd.prdir[i] = r->rdir[i] - r->pert[i];
238 if (DOT(nd.prdir, r->ron) < -FTINY)
239 normalize(nd.prdir); /* OK */
240 else
241 VCOPY(nd.prdir, r->rdir);
242 }
243 }
244 } else
245 nd.tdiff = nd.tspec = nd.trans = 0.0;
246 /* transmitted ray */
247 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
248 RAY lr;
249 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
250 VCOPY(lr.rdir, nd.prdir);
251 rayvalue(&lr);
252 scalecolor(lr.rcol, nd.tspec);
253 multcolor(lr.rcol, nd.mcolor); /* modified by color */
254 addcolor(r->rcol, lr.rcol);
255 transtest *= bright(lr.rcol);
256 transdist = r->rot + lr.rt;
257 }
258 } else
259 transtest = 0;
260
261 if (r->crtype & SHADOW) { /* the rest is shadow */
262 r->rt = transdist;
263 return(1);
264 }
265 /* get specular reflection */
266 if (nd.rspec > FTINY) {
267 nd.specfl |= SP_REFL;
268 /* compute specular color */
269 if (m->otype != MAT_METAL) {
270 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
271 } else if (fest > FTINY) {
272 d = nd.rspec*(1. - fest);
273 for (i = 0; i < 3; i++)
274 nd.scolor[i] = fest + nd.mcolor[i]*d;
275 } else {
276 copycolor(nd.scolor, nd.mcolor);
277 scalecolor(nd.scolor, nd.rspec);
278 }
279 /* check threshold */
280 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
281 nd.specfl |= SP_RBLT;
282 /* compute reflected ray */
283 for (i = 0; i < 3; i++)
284 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
285 /* penetration? */
286 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
287 for (i = 0; i < 3; i++) /* safety measure */
288 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
289 }
290 /* reflected ray */
291 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
292 RAY lr;
293 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
294 VCOPY(lr.rdir, nd.vrefl);
295 rayvalue(&lr);
296 multcolor(lr.rcol, nd.scolor);
297 addcolor(r->rcol, lr.rcol);
298 if (!hastexture && nd.specfl & SP_FLAT) {
299 mirtest = 2.*bright(lr.rcol);
300 mirdist = r->rot + lr.rt;
301 }
302 }
303 }
304 /* diffuse reflection */
305 nd.rdiff = 1.0 - nd.trans - nd.rspec;
306
307 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
308 return(1); /* 100% pure specular */
309
310 if (!(nd.specfl & SP_PURE))
311 gaussamp(r, &nd); /* checks *BLT flags */
312
313 if (nd.rdiff > FTINY) { /* ambient from this side */
314 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
315 if (nd.specfl & SP_RBLT)
316 scalecolor(ctmp, 1.0-nd.trans);
317 else
318 scalecolor(ctmp, nd.rdiff);
319 multcolor(ctmp, nd.mcolor); /* modified by material color */
320 addcolor(r->rcol, ctmp); /* add to returned color */
321 }
322 if (nd.tdiff > FTINY) { /* ambient from other side */
323 flipsurface(r);
324 if (hastexture) {
325 FVECT bnorm;
326 bnorm[0] = -nd.pnorm[0];
327 bnorm[1] = -nd.pnorm[1];
328 bnorm[2] = -nd.pnorm[2];
329 ambient(ctmp, r, bnorm);
330 } else
331 ambient(ctmp, r, r->ron);
332 if (nd.specfl & SP_TBLT)
333 scalecolor(ctmp, nd.trans);
334 else
335 scalecolor(ctmp, nd.tdiff);
336 multcolor(ctmp, nd.mcolor); /* modified by color */
337 addcolor(r->rcol, ctmp);
338 flipsurface(r);
339 }
340 /* add direct component */
341 direct(r, dirnorm, &nd);
342 /* check distance */
343 d = bright(r->rcol);
344 if (transtest > d)
345 r->rt = transdist;
346 else if (mirtest > d)
347 r->rt = mirdist;
348
349 return(1);
350 }
351
352
353 static void
354 gaussamp(r, np) /* sample gaussian specular */
355 RAY *r;
356 register NORMDAT *np;
357 {
358 RAY sr;
359 FVECT u, v, h;
360 double rv[2];
361 double d, sinp, cosp;
362 int niter;
363 register int i;
364 /* quick test */
365 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
366 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
367 return;
368 /* set up sample coordinates */
369 v[0] = v[1] = v[2] = 0.0;
370 for (i = 0; i < 3; i++)
371 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
372 break;
373 v[i] = 1.0;
374 fcross(u, v, np->pnorm);
375 normalize(u);
376 fcross(v, np->pnorm, u);
377 /* compute reflection */
378 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
379 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
380 dimlist[ndims++] = (int)np->mp;
381 for (niter = 0; niter < MAXITER; niter++) {
382 if (niter)
383 d = frandom();
384 else
385 d = urand(ilhash(dimlist,ndims)+samplendx);
386 multisamp(rv, 2, d);
387 d = 2.0*PI * rv[0];
388 cosp = tcos(d);
389 sinp = tsin(d);
390 rv[1] = 1.0 - specjitter*rv[1];
391 if (rv[1] <= FTINY)
392 d = 1.0;
393 else
394 d = sqrt( np->alpha2 * -log(rv[1]) );
395 for (i = 0; i < 3; i++)
396 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
397 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
398 for (i = 0; i < 3; i++)
399 sr.rdir[i] = r->rdir[i] + d*h[i];
400 if (DOT(sr.rdir, r->ron) > FTINY) {
401 rayvalue(&sr);
402 multcolor(sr.rcol, np->scolor);
403 addcolor(r->rcol, sr.rcol);
404 break;
405 }
406 }
407 ndims--;
408 }
409 /* compute transmission */
410 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
411 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
412 dimlist[ndims++] = (int)np->mp;
413 for (niter = 0; niter < MAXITER; niter++) {
414 if (niter)
415 d = frandom();
416 else
417 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
418 multisamp(rv, 2, d);
419 d = 2.0*PI * rv[0];
420 cosp = tcos(d);
421 sinp = tsin(d);
422 rv[1] = 1.0 - specjitter*rv[1];
423 if (rv[1] <= FTINY)
424 d = 1.0;
425 else
426 d = sqrt( np->alpha2 * -log(rv[1]) );
427 for (i = 0; i < 3; i++)
428 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
429 if (DOT(sr.rdir, r->ron) < -FTINY) {
430 normalize(sr.rdir); /* OK, normalize */
431 rayvalue(&sr);
432 scalecolor(sr.rcol, np->tspec);
433 multcolor(sr.rcol, np->mcolor); /* modified */
434 addcolor(r->rcol, sr.rcol);
435 break;
436 }
437 }
438 ndims--;
439 }
440 }