ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.39
Committed: Tue Feb 25 02:47:22 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.38: +1 -56 lines
Log Message:
Replaced inline copyright notice with #include "copyright.h"

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17
18 #include "otypes.h"
19
20 #include "random.h"
21
22 #ifndef MAXITER
23 #define MAXITER 10 /* maximum # specular ray attempts */
24 #endif
25 /* estimate of Fresnel function */
26 #define FRESNE(ci) (exp(-6.0*(ci)) - 0.00247875217)
27
28 static void gaussamp();
29
30 /*
31 * This routine implements the isotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC and MAT_METAL are:
37 * red grn blu specular-frac. facet-slope
38 *
39 * Arguments for MAT_TRANS are:
40 * red grn blu rspec rough trans tspec
41 */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67
68 static void
69 dirnorm(cval, np, ldir, omega) /* compute source contribution */
70 COLOR cval; /* returned coefficient */
71 register NORMDAT *np; /* material data */
72 FVECT ldir; /* light source direction */
73 double omega; /* light source size */
74 {
75 double ldot;
76 double ldiff;
77 double dtmp, d2;
78 FVECT vtmp;
79 COLOR ctmp;
80
81 setcolor(cval, 0.0, 0.0, 0.0);
82
83 ldot = DOT(np->pnorm, ldir);
84
85 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
86 return; /* wrong side */
87
88 /* Fresnel estimate */
89 ldiff = np->rdiff;
90 if (np->specfl & SP_PURE && (np->rspec > FTINY & ldiff > FTINY))
91 ldiff *= 1. - FRESNE(fabs(ldot));
92
93 if (ldot > FTINY && ldiff > FTINY) {
94 /*
95 * Compute and add diffuse reflected component to returned
96 * color. The diffuse reflected component will always be
97 * modified by the color of the material.
98 */
99 copycolor(ctmp, np->mcolor);
100 dtmp = ldot * omega * ldiff / PI;
101 scalecolor(ctmp, dtmp);
102 addcolor(cval, ctmp);
103 }
104 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
105 /*
106 * Compute specular reflection coefficient using
107 * gaussian distribution model.
108 */
109 /* roughness */
110 dtmp = np->alpha2;
111 /* + source if flat */
112 if (np->specfl & SP_FLAT)
113 dtmp += omega/(4.0*PI);
114 /* half vector */
115 vtmp[0] = ldir[0] - np->rp->rdir[0];
116 vtmp[1] = ldir[1] - np->rp->rdir[1];
117 vtmp[2] = ldir[2] - np->rp->rdir[2];
118 d2 = DOT(vtmp, np->pnorm);
119 d2 *= d2;
120 d2 = (DOT(vtmp,vtmp) - d2) / d2;
121 /* gaussian */
122 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
123 /* worth using? */
124 if (dtmp > FTINY) {
125 copycolor(ctmp, np->scolor);
126 dtmp *= omega * sqrt(ldot/np->pdot);
127 scalecolor(ctmp, dtmp);
128 addcolor(cval, ctmp);
129 }
130 }
131 if (ldot < -FTINY && np->tdiff > FTINY) {
132 /*
133 * Compute diffuse transmission.
134 */
135 copycolor(ctmp, np->mcolor);
136 dtmp = -ldot * omega * np->tdiff / PI;
137 scalecolor(ctmp, dtmp);
138 addcolor(cval, ctmp);
139 }
140 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
141 /*
142 * Compute specular transmission. Specular transmission
143 * is always modified by material color.
144 */
145 /* roughness + source */
146 dtmp = np->alpha2 + omega/PI;
147 /* gaussian */
148 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
149 /* worth using? */
150 if (dtmp > FTINY) {
151 copycolor(ctmp, np->mcolor);
152 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
153 scalecolor(ctmp, dtmp);
154 addcolor(cval, ctmp);
155 }
156 }
157 }
158
159
160 int
161 m_normal(m, r) /* color a ray that hit something normal */
162 register OBJREC *m;
163 register RAY *r;
164 {
165 NORMDAT nd;
166 double fest;
167 double transtest, transdist;
168 double mirtest, mirdist;
169 int hastexture;
170 double d;
171 COLOR ctmp;
172 register int i;
173 /* easy shadow test */
174 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
175 return(1);
176
177 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
178 objerror(m, USER, "bad number of arguments");
179 /* check for back side */
180 if (r->rod < 0.0) {
181 if (!backvis && m->otype != MAT_TRANS) {
182 raytrans(r);
183 return(1);
184 }
185 flipsurface(r); /* reorient if backvis */
186 }
187 nd.mp = m;
188 nd.rp = r;
189 /* get material color */
190 setcolor(nd.mcolor, m->oargs.farg[0],
191 m->oargs.farg[1],
192 m->oargs.farg[2]);
193 /* get roughness */
194 nd.specfl = 0;
195 nd.alpha2 = m->oargs.farg[4];
196 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
197 nd.specfl |= SP_PURE;
198 if (r->ro != NULL && isflat(r->ro->otype))
199 nd.specfl |= SP_FLAT;
200 /* get modifiers */
201 raytexture(r, m->omod);
202 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
203 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
204 else {
205 VCOPY(nd.pnorm, r->ron);
206 nd.pdot = r->rod;
207 }
208 if (nd.pdot < .001)
209 nd.pdot = .001; /* non-zero for dirnorm() */
210 multcolor(nd.mcolor, r->pcol); /* modify material color */
211 mirtest = transtest = 0;
212 mirdist = transdist = r->rot;
213 nd.rspec = m->oargs.farg[3];
214 /* compute Fresnel approx. */
215 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
216 fest = FRESNE(r->rod);
217 nd.rspec += fest*(1. - nd.rspec);
218 } else
219 fest = 0.;
220 /* compute transmission */
221 if (m->otype == MAT_TRANS) {
222 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
223 nd.tspec = nd.trans * m->oargs.farg[6];
224 nd.tdiff = nd.trans - nd.tspec;
225 if (nd.tspec > FTINY) {
226 nd.specfl |= SP_TRAN;
227 /* check threshold */
228 if (!(nd.specfl & SP_PURE) &&
229 specthresh >= nd.tspec-FTINY)
230 nd.specfl |= SP_TBLT;
231 if (!hastexture || r->crtype & SHADOW) {
232 VCOPY(nd.prdir, r->rdir);
233 transtest = 2;
234 } else {
235 for (i = 0; i < 3; i++) /* perturb */
236 nd.prdir[i] = r->rdir[i] - r->pert[i];
237 if (DOT(nd.prdir, r->ron) < -FTINY)
238 normalize(nd.prdir); /* OK */
239 else
240 VCOPY(nd.prdir, r->rdir);
241 }
242 }
243 } else
244 nd.tdiff = nd.tspec = nd.trans = 0.0;
245 /* transmitted ray */
246 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
247 RAY lr;
248 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
249 VCOPY(lr.rdir, nd.prdir);
250 rayvalue(&lr);
251 scalecolor(lr.rcol, nd.tspec);
252 multcolor(lr.rcol, nd.mcolor); /* modified by color */
253 addcolor(r->rcol, lr.rcol);
254 transtest *= bright(lr.rcol);
255 transdist = r->rot + lr.rt;
256 }
257 } else
258 transtest = 0;
259
260 if (r->crtype & SHADOW) { /* the rest is shadow */
261 r->rt = transdist;
262 return(1);
263 }
264 /* get specular reflection */
265 if (nd.rspec > FTINY) {
266 nd.specfl |= SP_REFL;
267 /* compute specular color */
268 if (m->otype != MAT_METAL) {
269 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
270 } else if (fest > FTINY) {
271 d = nd.rspec*(1. - fest);
272 for (i = 0; i < 3; i++)
273 nd.scolor[i] = fest + nd.mcolor[i]*d;
274 } else {
275 copycolor(nd.scolor, nd.mcolor);
276 scalecolor(nd.scolor, nd.rspec);
277 }
278 /* check threshold */
279 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
280 nd.specfl |= SP_RBLT;
281 /* compute reflected ray */
282 for (i = 0; i < 3; i++)
283 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
284 /* penetration? */
285 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
286 for (i = 0; i < 3; i++) /* safety measure */
287 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
288 }
289 /* reflected ray */
290 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
291 RAY lr;
292 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
293 VCOPY(lr.rdir, nd.vrefl);
294 rayvalue(&lr);
295 multcolor(lr.rcol, nd.scolor);
296 addcolor(r->rcol, lr.rcol);
297 if (!hastexture && nd.specfl & SP_FLAT) {
298 mirtest = 2.*bright(lr.rcol);
299 mirdist = r->rot + lr.rt;
300 }
301 }
302 }
303 /* diffuse reflection */
304 nd.rdiff = 1.0 - nd.trans - nd.rspec;
305
306 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
307 return(1); /* 100% pure specular */
308
309 if (!(nd.specfl & SP_PURE))
310 gaussamp(r, &nd); /* checks *BLT flags */
311
312 if (nd.rdiff > FTINY) { /* ambient from this side */
313 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
314 if (nd.specfl & SP_RBLT)
315 scalecolor(ctmp, 1.0-nd.trans);
316 else
317 scalecolor(ctmp, nd.rdiff);
318 multcolor(ctmp, nd.mcolor); /* modified by material color */
319 addcolor(r->rcol, ctmp); /* add to returned color */
320 }
321 if (nd.tdiff > FTINY) { /* ambient from other side */
322 flipsurface(r);
323 if (hastexture) {
324 FVECT bnorm;
325 bnorm[0] = -nd.pnorm[0];
326 bnorm[1] = -nd.pnorm[1];
327 bnorm[2] = -nd.pnorm[2];
328 ambient(ctmp, r, bnorm);
329 } else
330 ambient(ctmp, r, r->ron);
331 if (nd.specfl & SP_TBLT)
332 scalecolor(ctmp, nd.trans);
333 else
334 scalecolor(ctmp, nd.tdiff);
335 multcolor(ctmp, nd.mcolor); /* modified by color */
336 addcolor(r->rcol, ctmp);
337 flipsurface(r);
338 }
339 /* add direct component */
340 direct(r, dirnorm, &nd);
341 /* check distance */
342 d = bright(r->rcol);
343 if (transtest > d)
344 r->rt = transdist;
345 else if (mirtest > d)
346 r->rt = mirdist;
347
348 return(1);
349 }
350
351
352 static void
353 gaussamp(r, np) /* sample gaussian specular */
354 RAY *r;
355 register NORMDAT *np;
356 {
357 RAY sr;
358 FVECT u, v, h;
359 double rv[2];
360 double d, sinp, cosp;
361 int niter;
362 register int i;
363 /* quick test */
364 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
365 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
366 return;
367 /* set up sample coordinates */
368 v[0] = v[1] = v[2] = 0.0;
369 for (i = 0; i < 3; i++)
370 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
371 break;
372 v[i] = 1.0;
373 fcross(u, v, np->pnorm);
374 normalize(u);
375 fcross(v, np->pnorm, u);
376 /* compute reflection */
377 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
378 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
379 dimlist[ndims++] = (int)np->mp;
380 for (niter = 0; niter < MAXITER; niter++) {
381 if (niter)
382 d = frandom();
383 else
384 d = urand(ilhash(dimlist,ndims)+samplendx);
385 multisamp(rv, 2, d);
386 d = 2.0*PI * rv[0];
387 cosp = tcos(d);
388 sinp = tsin(d);
389 rv[1] = 1.0 - specjitter*rv[1];
390 if (rv[1] <= FTINY)
391 d = 1.0;
392 else
393 d = sqrt( np->alpha2 * -log(rv[1]) );
394 for (i = 0; i < 3; i++)
395 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
396 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
397 for (i = 0; i < 3; i++)
398 sr.rdir[i] = r->rdir[i] + d*h[i];
399 if (DOT(sr.rdir, r->ron) > FTINY) {
400 rayvalue(&sr);
401 multcolor(sr.rcol, np->scolor);
402 addcolor(r->rcol, sr.rcol);
403 break;
404 }
405 }
406 ndims--;
407 }
408 /* compute transmission */
409 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
410 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
411 dimlist[ndims++] = (int)np->mp;
412 for (niter = 0; niter < MAXITER; niter++) {
413 if (niter)
414 d = frandom();
415 else
416 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
417 multisamp(rv, 2, d);
418 d = 2.0*PI * rv[0];
419 cosp = tcos(d);
420 sinp = tsin(d);
421 rv[1] = 1.0 - specjitter*rv[1];
422 if (rv[1] <= FTINY)
423 d = 1.0;
424 else
425 d = sqrt( np->alpha2 * -log(rv[1]) );
426 for (i = 0; i < 3; i++)
427 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
428 if (DOT(sr.rdir, r->ron) < -FTINY) {
429 normalize(sr.rdir); /* OK, normalize */
430 rayvalue(&sr);
431 scalecolor(sr.rcol, np->tspec);
432 multcolor(sr.rcol, np->mcolor); /* modified */
433 addcolor(r->rcol, sr.rcol);
434 break;
435 }
436 }
437 ndims--;
438 }
439 }