ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.34
Committed: Wed Apr 24 15:47:27 1996 UTC (28 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.33: +57 -41 lines
Log Message:
changed code to iterate until specular sample succeeds (MAXITER)

File Contents

# Content
1 /* Copyright (c) 1996 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 extern int backvis; /* back faces visible? */
27
28 #ifndef MAXITER
29 #define MAXITER 10 /* maximum # specular ray attempts */
30 #endif
31
32 static gaussamp();
33
34 /*
35 * This routine implements the isotropic Gaussian
36 * model described by Ward in Siggraph `92 article.
37 * We orient the surface towards the incoming ray, so a single
38 * surface can be used to represent an infinitely thin object.
39 *
40 * Arguments for MAT_PLASTIC and MAT_METAL are:
41 * red grn blu specular-frac. facet-slope
42 *
43 * Arguments for MAT_TRANS are:
44 * red grn blu rspec rough trans tspec
45 */
46
47 /* specularity flags */
48 #define SP_REFL 01 /* has reflected specular component */
49 #define SP_TRAN 02 /* has transmitted specular */
50 #define SP_PURE 04 /* purely specular (zero roughness) */
51 #define SP_FLAT 010 /* flat reflecting surface */
52 #define SP_RBLT 020 /* reflection below sample threshold */
53 #define SP_TBLT 040 /* transmission below threshold */
54
55 typedef struct {
56 OBJREC *mp; /* material pointer */
57 RAY *rp; /* ray pointer */
58 short specfl; /* specularity flags, defined above */
59 COLOR mcolor; /* color of this material */
60 COLOR scolor; /* color of specular component */
61 FVECT vrefl; /* vector in direction of reflected ray */
62 FVECT prdir; /* vector in transmitted direction */
63 double alpha2; /* roughness squared */
64 double rdiff, rspec; /* reflected specular, diffuse */
65 double trans; /* transmissivity */
66 double tdiff, tspec; /* transmitted specular, diffuse */
67 FVECT pnorm; /* perturbed surface normal */
68 double pdot; /* perturbed dot product */
69 } NORMDAT; /* normal material data */
70
71
72 dirnorm(cval, np, ldir, omega) /* compute source contribution */
73 COLOR cval; /* returned coefficient */
74 register NORMDAT *np; /* material data */
75 FVECT ldir; /* light source direction */
76 double omega; /* light source size */
77 {
78 double ldot;
79 double dtmp, d2;
80 FVECT vtmp;
81 COLOR ctmp;
82
83 setcolor(cval, 0.0, 0.0, 0.0);
84
85 ldot = DOT(np->pnorm, ldir);
86
87 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88 return; /* wrong side */
89
90 if (ldot > FTINY && np->rdiff > FTINY) {
91 /*
92 * Compute and add diffuse reflected component to returned
93 * color. The diffuse reflected component will always be
94 * modified by the color of the material.
95 */
96 copycolor(ctmp, np->mcolor);
97 dtmp = ldot * omega * np->rdiff / PI;
98 scalecolor(ctmp, dtmp);
99 addcolor(cval, ctmp);
100 }
101 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
102 /*
103 * Compute specular reflection coefficient using
104 * gaussian distribution model.
105 */
106 /* roughness */
107 dtmp = np->alpha2;
108 /* + source if flat */
109 if (np->specfl & SP_FLAT)
110 dtmp += omega/(4.0*PI);
111 /* half vector */
112 vtmp[0] = ldir[0] - np->rp->rdir[0];
113 vtmp[1] = ldir[1] - np->rp->rdir[1];
114 vtmp[2] = ldir[2] - np->rp->rdir[2];
115 d2 = DOT(vtmp, np->pnorm);
116 d2 *= d2;
117 d2 = (DOT(vtmp,vtmp) - d2) / d2;
118 /* gaussian */
119 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
120 /* worth using? */
121 if (dtmp > FTINY) {
122 copycolor(ctmp, np->scolor);
123 dtmp *= omega * sqrt(ldot/np->pdot);
124 scalecolor(ctmp, dtmp);
125 addcolor(cval, ctmp);
126 }
127 }
128 if (ldot < -FTINY && np->tdiff > FTINY) {
129 /*
130 * Compute diffuse transmission.
131 */
132 copycolor(ctmp, np->mcolor);
133 dtmp = -ldot * omega * np->tdiff / PI;
134 scalecolor(ctmp, dtmp);
135 addcolor(cval, ctmp);
136 }
137 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
138 /*
139 * Compute specular transmission. Specular transmission
140 * is always modified by material color.
141 */
142 /* roughness + source */
143 dtmp = np->alpha2 + omega/PI;
144 /* gaussian */
145 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
146 /* worth using? */
147 if (dtmp > FTINY) {
148 copycolor(ctmp, np->mcolor);
149 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
150 scalecolor(ctmp, dtmp);
151 addcolor(cval, ctmp);
152 }
153 }
154 }
155
156
157 m_normal(m, r) /* color a ray that hit something normal */
158 register OBJREC *m;
159 register RAY *r;
160 {
161 NORMDAT nd;
162 double transtest, transdist;
163 double mirtest, mirdist;
164 int hastexture;
165 double d;
166 COLOR ctmp;
167 register int i;
168 /* easy shadow test */
169 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
170 return(1);
171
172 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
173 objerror(m, USER, "bad number of arguments");
174 /* check for back side */
175 if (r->rod < 0.0) {
176 if (!backvis && m->otype != MAT_TRANS) {
177 raytrans(r);
178 return(1);
179 }
180 flipsurface(r); /* reorient if backvis */
181 }
182 nd.mp = m;
183 nd.rp = r;
184 /* get material color */
185 setcolor(nd.mcolor, m->oargs.farg[0],
186 m->oargs.farg[1],
187 m->oargs.farg[2]);
188 /* get roughness */
189 nd.specfl = 0;
190 nd.alpha2 = m->oargs.farg[4];
191 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
192 nd.specfl |= SP_PURE;
193 if (r->ro != NULL && isflat(r->ro->otype))
194 nd.specfl |= SP_FLAT;
195 /* get modifiers */
196 raytexture(r, m->omod);
197 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
198 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
199 else {
200 VCOPY(nd.pnorm, r->ron);
201 nd.pdot = r->rod;
202 }
203 if (nd.pdot < .001)
204 nd.pdot = .001; /* non-zero for dirnorm() */
205 multcolor(nd.mcolor, r->pcol); /* modify material color */
206 mirtest = transtest = 0;
207 mirdist = transdist = r->rot;
208 nd.rspec = m->oargs.farg[3];
209 /* compute transmission */
210 if (m->otype == MAT_TRANS) {
211 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
212 nd.tspec = nd.trans * m->oargs.farg[6];
213 nd.tdiff = nd.trans - nd.tspec;
214 if (nd.tspec > FTINY) {
215 nd.specfl |= SP_TRAN;
216 /* check threshold */
217 if (!(nd.specfl & SP_PURE) &&
218 specthresh >= nd.tspec-FTINY)
219 nd.specfl |= SP_TBLT;
220 if (!hastexture || r->crtype & SHADOW) {
221 VCOPY(nd.prdir, r->rdir);
222 transtest = 2;
223 } else {
224 for (i = 0; i < 3; i++) /* perturb */
225 nd.prdir[i] = r->rdir[i] - r->pert[i];
226 if (DOT(nd.prdir, r->ron) < -FTINY)
227 normalize(nd.prdir); /* OK */
228 else
229 VCOPY(nd.prdir, r->rdir);
230 }
231 }
232 } else
233 nd.tdiff = nd.tspec = nd.trans = 0.0;
234 /* transmitted ray */
235 if (nd.specfl&SP_TRAN && (nd.specfl&SP_PURE || r->crtype&SHADOW)) {
236 RAY lr;
237 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
238 VCOPY(lr.rdir, nd.prdir);
239 rayvalue(&lr);
240 scalecolor(lr.rcol, nd.tspec);
241 multcolor(lr.rcol, nd.mcolor); /* modified by color */
242 addcolor(r->rcol, lr.rcol);
243 transtest *= bright(lr.rcol);
244 transdist = r->rot + lr.rt;
245 }
246 } else
247 transtest = 0;
248
249 if (r->crtype & SHADOW) { /* the rest is shadow */
250 r->rt = transdist;
251 return(1);
252 }
253 /* get specular reflection */
254 if (nd.rspec > FTINY) {
255 nd.specfl |= SP_REFL;
256 /* compute specular color */
257 if (m->otype == MAT_METAL)
258 copycolor(nd.scolor, nd.mcolor);
259 else
260 setcolor(nd.scolor, 1.0, 1.0, 1.0);
261 scalecolor(nd.scolor, nd.rspec);
262 /* check threshold */
263 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
264 nd.specfl |= SP_RBLT;
265 /* compute reflected ray */
266 for (i = 0; i < 3; i++)
267 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
268 /* penetration? */
269 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
270 for (i = 0; i < 3; i++) /* safety measure */
271 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
272
273 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
274 RAY lr;
275 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
276 VCOPY(lr.rdir, nd.vrefl);
277 rayvalue(&lr);
278 multcolor(lr.rcol, nd.scolor);
279 addcolor(r->rcol, lr.rcol);
280 if (!hastexture && nd.specfl & SP_FLAT) {
281 mirtest = 2.*bright(lr.rcol);
282 mirdist = r->rot + lr.rt;
283 }
284 }
285 }
286 }
287 /* diffuse reflection */
288 nd.rdiff = 1.0 - nd.trans - nd.rspec;
289
290 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
291 return(1); /* 100% pure specular */
292
293 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
294 gaussamp(r, &nd);
295
296 if (nd.rdiff > FTINY) { /* ambient from this side */
297 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
298 if (nd.specfl & SP_RBLT)
299 scalecolor(ctmp, 1.0-nd.trans);
300 else
301 scalecolor(ctmp, nd.rdiff);
302 multcolor(ctmp, nd.mcolor); /* modified by material color */
303 addcolor(r->rcol, ctmp); /* add to returned color */
304 }
305 if (nd.tdiff > FTINY) { /* ambient from other side */
306 flipsurface(r);
307 if (hastexture) {
308 FVECT bnorm;
309 bnorm[0] = -nd.pnorm[0];
310 bnorm[1] = -nd.pnorm[1];
311 bnorm[2] = -nd.pnorm[2];
312 ambient(ctmp, r, bnorm);
313 } else
314 ambient(ctmp, r, r->ron);
315 if (nd.specfl & SP_TBLT)
316 scalecolor(ctmp, nd.trans);
317 else
318 scalecolor(ctmp, nd.tdiff);
319 multcolor(ctmp, nd.mcolor); /* modified by color */
320 addcolor(r->rcol, ctmp);
321 flipsurface(r);
322 }
323 /* add direct component */
324 direct(r, dirnorm, &nd);
325 /* check distance */
326 d = bright(r->rcol);
327 if (transtest > d)
328 r->rt = transdist;
329 else if (mirtest > d)
330 r->rt = mirdist;
331
332 return(1);
333 }
334
335
336 static
337 gaussamp(r, np) /* sample gaussian specular */
338 RAY *r;
339 register NORMDAT *np;
340 {
341 RAY sr;
342 FVECT u, v, h;
343 double rv[2];
344 double d, sinp, cosp;
345 int niter;
346 register int i;
347 /* quick test */
348 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
349 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
350 return;
351 /* set up sample coordinates */
352 v[0] = v[1] = v[2] = 0.0;
353 for (i = 0; i < 3; i++)
354 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
355 break;
356 v[i] = 1.0;
357 fcross(u, v, np->pnorm);
358 normalize(u);
359 fcross(v, np->pnorm, u);
360 /* compute reflection */
361 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
362 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
363 dimlist[ndims++] = (int)np->mp;
364 for (niter = 0; niter < MAXITER; niter++) {
365 if (niter)
366 d = frandom();
367 else
368 d = urand(ilhash(dimlist,ndims)+samplendx);
369 multisamp(rv, 2, d);
370 d = 2.0*PI * rv[0];
371 cosp = cos(d);
372 sinp = sin(d);
373 rv[1] = 1.0 - specjitter*rv[1];
374 if (rv[1] <= FTINY)
375 d = 1.0;
376 else
377 d = sqrt( np->alpha2 * -log(rv[1]) );
378 for (i = 0; i < 3; i++)
379 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
380 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
381 for (i = 0; i < 3; i++)
382 sr.rdir[i] = r->rdir[i] + d*h[i];
383 if (DOT(sr.rdir, r->ron) > FTINY) {
384 rayvalue(&sr);
385 multcolor(sr.rcol, np->scolor);
386 addcolor(r->rcol, sr.rcol);
387 break;
388 }
389 }
390 ndims--;
391 }
392 /* compute transmission */
393 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
394 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
395 dimlist[ndims++] = (int)np->mp;
396 for (niter = 0; niter < MAXITER; niter++) {
397 if (niter)
398 d = frandom();
399 else
400 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
401 multisamp(rv, 2, d);
402 d = 2.0*PI * rv[0];
403 cosp = cos(d);
404 sinp = sin(d);
405 rv[1] = 1.0 - specjitter*rv[1];
406 if (rv[1] <= FTINY)
407 d = 1.0;
408 else
409 d = sqrt( -log(rv[1]) * np->alpha2 );
410 for (i = 0; i < 3; i++)
411 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
412 if (DOT(sr.rdir, r->ron) < -FTINY) {
413 normalize(sr.rdir); /* OK, normalize */
414 rayvalue(&sr);
415 scalecolor(sr.rcol, np->tspec);
416 multcolor(sr.rcol, np->mcolor); /* modified */
417 addcolor(r->rcol, sr.rcol);
418 break;
419 }
420 }
421 ndims--;
422 }
423 }