ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.31
Committed: Mon Nov 6 12:03:17 1995 UTC (28 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.30: +2 -2 lines
Log Message:
added texturing to ambient value computation using extambient()

File Contents

# Content
1 /* Copyright (c) 1995 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 extern int backvis; /* back faces visible? */
27
28 static gaussamp();
29
30 /*
31 * This routine implements the isotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC and MAT_METAL are:
37 * red grn blu specular-frac. facet-slope
38 *
39 * Arguments for MAT_TRANS are:
40 * red grn blu rspec rough trans tspec
41 */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67
68 dirnorm(cval, np, ldir, omega) /* compute source contribution */
69 COLOR cval; /* returned coefficient */
70 register NORMDAT *np; /* material data */
71 FVECT ldir; /* light source direction */
72 double omega; /* light source size */
73 {
74 double ldot;
75 double dtmp, d2;
76 FVECT vtmp;
77 COLOR ctmp;
78
79 setcolor(cval, 0.0, 0.0, 0.0);
80
81 ldot = DOT(np->pnorm, ldir);
82
83 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
84 return; /* wrong side */
85
86 if (ldot > FTINY && np->rdiff > FTINY) {
87 /*
88 * Compute and add diffuse reflected component to returned
89 * color. The diffuse reflected component will always be
90 * modified by the color of the material.
91 */
92 copycolor(ctmp, np->mcolor);
93 dtmp = ldot * omega * np->rdiff / PI;
94 scalecolor(ctmp, dtmp);
95 addcolor(cval, ctmp);
96 }
97 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
98 /*
99 * Compute specular reflection coefficient using
100 * gaussian distribution model.
101 */
102 /* roughness */
103 dtmp = np->alpha2;
104 /* + source if flat */
105 if (np->specfl & SP_FLAT)
106 dtmp += omega/(4.0*PI);
107 /* half vector */
108 vtmp[0] = ldir[0] - np->rp->rdir[0];
109 vtmp[1] = ldir[1] - np->rp->rdir[1];
110 vtmp[2] = ldir[2] - np->rp->rdir[2];
111 d2 = DOT(vtmp, np->pnorm);
112 d2 *= d2;
113 d2 = (DOT(vtmp,vtmp) - d2) / d2;
114 /* gaussian */
115 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
116 /* worth using? */
117 if (dtmp > FTINY) {
118 copycolor(ctmp, np->scolor);
119 dtmp *= omega * sqrt(ldot/np->pdot);
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 }
123 }
124 if (ldot < -FTINY && np->tdiff > FTINY) {
125 /*
126 * Compute diffuse transmission.
127 */
128 copycolor(ctmp, np->mcolor);
129 dtmp = -ldot * omega * np->tdiff / PI;
130 scalecolor(ctmp, dtmp);
131 addcolor(cval, ctmp);
132 }
133 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
134 /*
135 * Compute specular transmission. Specular transmission
136 * is always modified by material color.
137 */
138 /* roughness + source */
139 dtmp = np->alpha2 + omega/PI;
140 /* gaussian */
141 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
142 /* worth using? */
143 if (dtmp > FTINY) {
144 copycolor(ctmp, np->mcolor);
145 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
146 scalecolor(ctmp, dtmp);
147 addcolor(cval, ctmp);
148 }
149 }
150 }
151
152
153 m_normal(m, r) /* color a ray that hit something normal */
154 register OBJREC *m;
155 register RAY *r;
156 {
157 NORMDAT nd;
158 double transtest, transdist;
159 double mirtest, mirdist;
160 int hastexture;
161 double d;
162 COLOR ctmp;
163 register int i;
164 /* easy shadow test */
165 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
166 return(1);
167
168 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
169 objerror(m, USER, "bad number of arguments");
170 /* check for back side */
171 if (r->rod < 0.0) {
172 if (!backvis && m->otype != MAT_TRANS) {
173 raytrans(r);
174 return(1);
175 }
176 flipsurface(r); /* reorient if backvis */
177 }
178 nd.mp = m;
179 nd.rp = r;
180 /* get material color */
181 setcolor(nd.mcolor, m->oargs.farg[0],
182 m->oargs.farg[1],
183 m->oargs.farg[2]);
184 /* get roughness */
185 nd.specfl = 0;
186 nd.alpha2 = m->oargs.farg[4];
187 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
188 nd.specfl |= SP_PURE;
189 if (r->ro != NULL && isflat(r->ro->otype))
190 nd.specfl |= SP_FLAT;
191 /* get modifiers */
192 raytexture(r, m->omod);
193 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
194 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
195 else {
196 VCOPY(nd.pnorm, r->ron);
197 nd.pdot = r->rod;
198 }
199 if (nd.pdot < .001)
200 nd.pdot = .001; /* non-zero for dirnorm() */
201 multcolor(nd.mcolor, r->pcol); /* modify material color */
202 mirtest = transtest = 0;
203 mirdist = transdist = r->rot;
204 nd.rspec = m->oargs.farg[3];
205 /* compute transmission */
206 if (m->otype == MAT_TRANS) {
207 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
208 nd.tspec = nd.trans * m->oargs.farg[6];
209 nd.tdiff = nd.trans - nd.tspec;
210 if (nd.tspec > FTINY) {
211 nd.specfl |= SP_TRAN;
212 /* check threshold */
213 if (!(nd.specfl & SP_PURE) &&
214 specthresh >= nd.tspec-FTINY)
215 nd.specfl |= SP_TBLT;
216 if (!hastexture || r->crtype & SHADOW) {
217 VCOPY(nd.prdir, r->rdir);
218 transtest = 2;
219 } else {
220 for (i = 0; i < 3; i++) /* perturb */
221 nd.prdir[i] = r->rdir[i] - r->pert[i];
222 if (DOT(nd.prdir, r->ron) < -FTINY)
223 normalize(nd.prdir); /* OK */
224 else
225 VCOPY(nd.prdir, r->rdir);
226 }
227 }
228 } else
229 nd.tdiff = nd.tspec = nd.trans = 0.0;
230 /* transmitted ray */
231 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
232 RAY lr;
233 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
234 VCOPY(lr.rdir, nd.prdir);
235 rayvalue(&lr);
236 scalecolor(lr.rcol, nd.tspec);
237 multcolor(lr.rcol, nd.mcolor); /* modified by color */
238 addcolor(r->rcol, lr.rcol);
239 transtest *= bright(lr.rcol);
240 transdist = r->rot + lr.rt;
241 }
242 } else
243 transtest = 0;
244
245 if (r->crtype & SHADOW) { /* the rest is shadow */
246 r->rt = transdist;
247 return(1);
248 }
249 /* get specular reflection */
250 if (nd.rspec > FTINY) {
251 nd.specfl |= SP_REFL;
252 /* compute specular color */
253 if (m->otype == MAT_METAL)
254 copycolor(nd.scolor, nd.mcolor);
255 else
256 setcolor(nd.scolor, 1.0, 1.0, 1.0);
257 scalecolor(nd.scolor, nd.rspec);
258 /* check threshold */
259 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
260 nd.specfl |= SP_RBLT;
261 /* compute reflected ray */
262 for (i = 0; i < 3; i++)
263 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
264 /* penetration? */
265 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
266 for (i = 0; i < 3; i++) /* safety measure */
267 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
268
269 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
270 RAY lr;
271 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
272 VCOPY(lr.rdir, nd.vrefl);
273 rayvalue(&lr);
274 multcolor(lr.rcol, nd.scolor);
275 addcolor(r->rcol, lr.rcol);
276 if (!hastexture && nd.specfl & SP_FLAT) {
277 mirtest = 2.*bright(lr.rcol);
278 mirdist = r->rot + lr.rt;
279 }
280 }
281 }
282 }
283 /* diffuse reflection */
284 nd.rdiff = 1.0 - nd.trans - nd.rspec;
285
286 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
287 return(1); /* 100% pure specular */
288
289 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
290 gaussamp(r, &nd);
291
292 if (nd.rdiff > FTINY) { /* ambient from this side */
293 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
294 if (nd.specfl & SP_RBLT)
295 scalecolor(ctmp, 1.0-nd.trans);
296 else
297 scalecolor(ctmp, nd.rdiff);
298 multcolor(ctmp, nd.mcolor); /* modified by material color */
299 addcolor(r->rcol, ctmp); /* add to returned color */
300 }
301 if (nd.tdiff > FTINY) { /* ambient from other side */
302 flipsurface(r);
303 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
304 if (nd.specfl & SP_TBLT)
305 scalecolor(ctmp, nd.trans);
306 else
307 scalecolor(ctmp, nd.tdiff);
308 multcolor(ctmp, nd.mcolor); /* modified by color */
309 addcolor(r->rcol, ctmp);
310 flipsurface(r);
311 }
312 /* add direct component */
313 direct(r, dirnorm, &nd);
314 /* check distance */
315 d = bright(r->rcol);
316 if (transtest > d)
317 r->rt = transdist;
318 else if (mirtest > d)
319 r->rt = mirdist;
320
321 return(1);
322 }
323
324
325 static
326 gaussamp(r, np) /* sample gaussian specular */
327 RAY *r;
328 register NORMDAT *np;
329 {
330 RAY sr;
331 FVECT u, v, h;
332 double rv[2];
333 double d, sinp, cosp;
334 register int i;
335 /* quick test */
336 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
337 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
338 return;
339 /* set up sample coordinates */
340 v[0] = v[1] = v[2] = 0.0;
341 for (i = 0; i < 3; i++)
342 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
343 break;
344 v[i] = 1.0;
345 fcross(u, v, np->pnorm);
346 normalize(u);
347 fcross(v, np->pnorm, u);
348 /* compute reflection */
349 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
350 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
351 dimlist[ndims++] = (int)np->mp;
352 d = urand(ilhash(dimlist,ndims)+samplendx);
353 multisamp(rv, 2, d);
354 d = 2.0*PI * rv[0];
355 cosp = cos(d);
356 sinp = sin(d);
357 rv[1] = 1.0 - specjitter*rv[1];
358 if (rv[1] <= FTINY)
359 d = 1.0;
360 else
361 d = sqrt( np->alpha2 * -log(rv[1]) );
362 for (i = 0; i < 3; i++)
363 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
364 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
365 for (i = 0; i < 3; i++)
366 sr.rdir[i] = r->rdir[i] + d*h[i];
367 if (DOT(sr.rdir, r->ron) <= FTINY)
368 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
369 rayvalue(&sr);
370 multcolor(sr.rcol, np->scolor);
371 addcolor(r->rcol, sr.rcol);
372 ndims--;
373 }
374 /* compute transmission */
375 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
376 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
377 dimlist[ndims++] = (int)np->mp;
378 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
379 multisamp(rv, 2, d);
380 d = 2.0*PI * rv[0];
381 cosp = cos(d);
382 sinp = sin(d);
383 rv[1] = 1.0 - specjitter*rv[1];
384 if (rv[1] <= FTINY)
385 d = 1.0;
386 else
387 d = sqrt( -log(rv[1]) * np->alpha2 );
388 for (i = 0; i < 3; i++)
389 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
390 if (DOT(sr.rdir, r->ron) < -FTINY)
391 normalize(sr.rdir); /* OK, normalize */
392 else
393 VCOPY(sr.rdir, np->prdir); /* else no jitter */
394 rayvalue(&sr);
395 scalecolor(sr.rcol, np->tspec);
396 multcolor(sr.rcol, np->mcolor); /* modified by color */
397 addcolor(r->rcol, sr.rcol);
398 ndims--;
399 }
400 }