ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.3
Committed: Sat Jan 4 23:36:42 1992 UTC (32 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.2: +10 -2 lines
Log Message:
changed direct calculation only to widen hightlight for flat surfaces

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 /*
24 * This routine uses portions of the reflection
25 * model described by Cook and Torrance.
26 * The computation of specular components has been simplified by
27 * numerous approximations and ommisions to improve speed.
28 * We orient the surface towards the incoming ray, so a single
29 * surface can be used to represent an infinitely thin object.
30 *
31 * Arguments for MAT_PLASTIC and MAT_METAL are:
32 * red grn blu specular-frac. facet-slope
33 *
34 * Arguments for MAT_TRANS are:
35 * red grn blu rspec rough trans tspec
36 */
37
38 #define BSPEC(m) (6.0) /* specularity parameter b */
39
40 /* specularity flags */
41 #define SP_REFL 01 /* has reflected specular component */
42 #define SP_TRAN 02 /* has transmitted specular */
43 #define SP_PURE 010 /* purely specular (zero roughness) */
44 #define SP_FLAT 020 /* flat reflecting surface */
45
46 typedef struct {
47 OBJREC *mp; /* material pointer */
48 short specfl; /* specularity flags, defined above */
49 COLOR mcolor; /* color of this material */
50 COLOR scolor; /* color of specular component */
51 FVECT vrefl; /* vector in direction of reflected ray */
52 FVECT prdir; /* vector in transmitted direction */
53 double alpha2; /* roughness squared */
54 double rdiff, rspec; /* reflected specular, diffuse */
55 double trans; /* transmissivity */
56 double tdiff, tspec; /* transmitted specular, diffuse */
57 FVECT pnorm; /* perturbed surface normal */
58 double pdot; /* perturbed dot product */
59 } NORMDAT; /* normal material data */
60
61
62 dirnorm(cval, np, ldir, omega) /* compute source contribution */
63 COLOR cval; /* returned coefficient */
64 register NORMDAT *np; /* material data */
65 FVECT ldir; /* light source direction */
66 double omega; /* light source size */
67 {
68 double ldot;
69 double dtmp;
70 int i;
71 COLOR ctmp;
72
73 setcolor(cval, 0.0, 0.0, 0.0);
74
75 ldot = DOT(np->pnorm, ldir);
76
77 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
78 return; /* wrong side */
79
80 if (ldot > FTINY && np->rdiff > FTINY) {
81 /*
82 * Compute and add diffuse reflected component to returned
83 * color. The diffuse reflected component will always be
84 * modified by the color of the material.
85 */
86 copycolor(ctmp, np->mcolor);
87 dtmp = ldot * omega * np->rdiff / PI;
88 scalecolor(ctmp, dtmp);
89 addcolor(cval, ctmp);
90 }
91 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
92 /*
93 * Compute specular reflection coefficient using
94 * gaussian distribution model.
95 */
96 /* roughness */
97 dtmp = 2.0*np->alpha2;
98 /* + source if flat */
99 if (np->specfl & SP_FLAT)
100 dtmp += omega/(2.0*PI);
101 /* gaussian */
102 dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
103 /* worth using? */
104 if (dtmp > FTINY) {
105 copycolor(ctmp, np->scolor);
106 dtmp *= omega / np->pdot;
107 scalecolor(ctmp, dtmp);
108 addcolor(cval, ctmp);
109 }
110 }
111 if (ldot < -FTINY && np->tdiff > FTINY) {
112 /*
113 * Compute diffuse transmission.
114 */
115 copycolor(ctmp, np->mcolor);
116 dtmp = -ldot * omega * np->tdiff / PI;
117 scalecolor(ctmp, dtmp);
118 addcolor(cval, ctmp);
119 }
120 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
121 /*
122 * Compute specular transmission. Specular transmission
123 * is always modified by material color.
124 */
125 /* roughness + source */
126 dtmp = np->alpha2 + omega/(2.0*PI);
127 /* gaussian */
128 dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
129 /* worth using? */
130 if (dtmp > FTINY) {
131 copycolor(ctmp, np->mcolor);
132 dtmp *= np->tspec * omega / np->pdot;
133 scalecolor(ctmp, dtmp);
134 addcolor(cval, ctmp);
135 }
136 }
137 }
138
139
140 m_normal(m, r) /* color a ray that hit something normal */
141 register OBJREC *m;
142 register RAY *r;
143 {
144 NORMDAT nd;
145 double transtest, transdist;
146 double dtmp;
147 COLOR ctmp;
148 register int i;
149 /* easy shadow test */
150 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
151 return;
152
153 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
154 objerror(m, USER, "bad number of arguments");
155 nd.mp = m;
156 /* get material color */
157 setcolor(nd.mcolor, m->oargs.farg[0],
158 m->oargs.farg[1],
159 m->oargs.farg[2]);
160 /* get roughness */
161 nd.specfl = 0;
162 nd.alpha2 = m->oargs.farg[4];
163 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
164 nd.specfl |= SP_PURE;
165 /* reorient if necessary */
166 if (r->rod < 0.0)
167 flipsurface(r);
168 /* get modifiers */
169 raytexture(r, m->omod);
170 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
171 if (nd.pdot < .001)
172 nd.pdot = .001; /* non-zero for dirnorm() */
173 multcolor(nd.mcolor, r->pcol); /* modify material color */
174 transtest = 0;
175 /* get specular component */
176 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
177 nd.specfl |= SP_REFL;
178 /* compute specular color */
179 if (m->otype == MAT_METAL)
180 copycolor(nd.scolor, nd.mcolor);
181 else
182 setcolor(nd.scolor, 1.0, 1.0, 1.0);
183 scalecolor(nd.scolor, nd.rspec);
184 /* improved model */
185 dtmp = exp(-BSPEC(m)*nd.pdot);
186 for (i = 0; i < 3; i++)
187 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
188 nd.rspec += (1.0-nd.rspec)*dtmp;
189 /* compute reflected ray */
190 for (i = 0; i < 3; i++)
191 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
192
193 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
194 RAY lr;
195 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
196 VCOPY(lr.rdir, nd.vrefl);
197 rayvalue(&lr);
198 multcolor(lr.rcol, nd.scolor);
199 addcolor(r->rcol, lr.rcol);
200 }
201 }
202 }
203 /* compute transmission */
204 if (m->otype == MAT_TRANS) {
205 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
206 nd.tspec = nd.trans * m->oargs.farg[6];
207 nd.tdiff = nd.trans - nd.tspec;
208 if (nd.tspec > FTINY) {
209 nd.specfl |= SP_TRAN;
210 if (r->crtype & SHADOW ||
211 DOT(r->pert,r->pert) <= FTINY*FTINY) {
212 VCOPY(nd.prdir, r->rdir);
213 transtest = 2;
214 } else {
215 for (i = 0; i < 3; i++) /* perturb */
216 nd.prdir[i] = r->rdir[i] -
217 .75*r->pert[i];
218 normalize(nd.prdir);
219 }
220 }
221 } else
222 nd.tdiff = nd.tspec = nd.trans = 0.0;
223 /* transmitted ray */
224 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
225 RAY lr;
226 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
227 VCOPY(lr.rdir, nd.prdir);
228 rayvalue(&lr);
229 scalecolor(lr.rcol, nd.tspec);
230 multcolor(lr.rcol, nd.mcolor); /* modified by color */
231 addcolor(r->rcol, lr.rcol);
232 transtest *= bright(lr.rcol);
233 transdist = r->rot + lr.rt;
234 }
235 }
236
237 if (r->crtype & SHADOW) /* the rest is shadow */
238 return;
239 /* diffuse reflection */
240 nd.rdiff = 1.0 - nd.trans - nd.rspec;
241
242 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
243 return; /* 100% pure specular */
244
245 if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING)
246 nd.specfl |= SP_FLAT;
247
248 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
249 gaussamp(r, &nd);
250
251 if (nd.rdiff > FTINY) { /* ambient from this side */
252 ambient(ctmp, r);
253 scalecolor(ctmp, nd.rdiff);
254 multcolor(ctmp, nd.mcolor); /* modified by material color */
255 addcolor(r->rcol, ctmp); /* add to returned color */
256 }
257 if (nd.tdiff > FTINY) { /* ambient from other side */
258 flipsurface(r);
259 ambient(ctmp, r);
260 scalecolor(ctmp, nd.tdiff);
261 multcolor(ctmp, nd.mcolor); /* modified by color */
262 addcolor(r->rcol, ctmp);
263 flipsurface(r);
264 }
265 /* add direct component */
266 direct(r, dirnorm, &nd);
267 /* check distance */
268 if (transtest > bright(r->rcol))
269 r->rt = transdist;
270 }
271
272
273 static
274 gaussamp(r, np) /* sample gaussian specular */
275 RAY *r;
276 register NORMDAT *np;
277 {
278 RAY sr;
279 FVECT u, v, h;
280 double rv[2];
281 double d, sinp, cosp;
282 int confuse;
283 register int i;
284 /* set up sample coordinates */
285 v[0] = v[1] = v[2] = 0.0;
286 for (i = 0; i < 3; i++)
287 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
288 break;
289 v[i] = 1.0;
290 fcross(u, v, np->pnorm);
291 normalize(u);
292 fcross(v, np->pnorm, u);
293 /* compute reflection */
294 if (np->specfl & SP_REFL &&
295 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
296 confuse = 0;
297 dimlist[ndims++] = (int)np->mp;
298 refagain:
299 dimlist[ndims] = confuse += 3601;
300 d = urand(ilhash(dimlist,ndims+1)+samplendx);
301 multisamp(rv, 2, d);
302 d = 2.0*PI * rv[0];
303 cosp = cos(d);
304 sinp = sin(d);
305 if (rv[1] <= FTINY)
306 d = 1.0;
307 else
308 d = sqrt( np->alpha2 * -log(rv[1]) );
309 for (i = 0; i < 3; i++)
310 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
311 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
312 for (i = 0; i < 3; i++)
313 sr.rdir[i] = r->rdir[i] + d*h[i];
314 if (DOT(sr.rdir, r->ron) <= FTINY) /* oops! */
315 goto refagain;
316 rayvalue(&sr);
317 multcolor(sr.rcol, np->scolor);
318 addcolor(r->rcol, sr.rcol);
319 ndims--;
320 }
321 /* compute transmission */
322 }