ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.28
Committed: Wed Dec 21 09:51:49 1994 UTC (29 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.27: +10 -3 lines
Log Message:
added -bv option for back face visibility (normally on)

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 extern int backvis; /* back faces visible? */
27
28 static gaussamp();
29
30 /*
31 * This routine implements the isotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC and MAT_METAL are:
37 * red grn blu specular-frac. facet-slope
38 *
39 * Arguments for MAT_TRANS are:
40 * red grn blu rspec rough trans tspec
41 */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67
68 dirnorm(cval, np, ldir, omega) /* compute source contribution */
69 COLOR cval; /* returned coefficient */
70 register NORMDAT *np; /* material data */
71 FVECT ldir; /* light source direction */
72 double omega; /* light source size */
73 {
74 double ldot;
75 double dtmp, d2;
76 FVECT vtmp;
77 COLOR ctmp;
78
79 setcolor(cval, 0.0, 0.0, 0.0);
80
81 ldot = DOT(np->pnorm, ldir);
82
83 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
84 return; /* wrong side */
85
86 if (ldot > FTINY && np->rdiff > FTINY) {
87 /*
88 * Compute and add diffuse reflected component to returned
89 * color. The diffuse reflected component will always be
90 * modified by the color of the material.
91 */
92 copycolor(ctmp, np->mcolor);
93 dtmp = ldot * omega * np->rdiff / PI;
94 scalecolor(ctmp, dtmp);
95 addcolor(cval, ctmp);
96 }
97 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
98 /*
99 * Compute specular reflection coefficient using
100 * gaussian distribution model.
101 */
102 /* roughness */
103 dtmp = np->alpha2;
104 /* + source if flat */
105 if (np->specfl & SP_FLAT)
106 dtmp += omega/(4.0*PI);
107 /* half vector */
108 vtmp[0] = ldir[0] - np->rp->rdir[0];
109 vtmp[1] = ldir[1] - np->rp->rdir[1];
110 vtmp[2] = ldir[2] - np->rp->rdir[2];
111 d2 = DOT(vtmp, np->pnorm);
112 d2 *= d2;
113 d2 = (DOT(vtmp,vtmp) - d2) / d2;
114 /* gaussian */
115 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
116 /* worth using? */
117 if (dtmp > FTINY) {
118 copycolor(ctmp, np->scolor);
119 dtmp *= omega * sqrt(ldot/np->pdot);
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 }
123 }
124 if (ldot < -FTINY && np->tdiff > FTINY) {
125 /*
126 * Compute diffuse transmission.
127 */
128 copycolor(ctmp, np->mcolor);
129 dtmp = -ldot * omega * np->tdiff / PI;
130 scalecolor(ctmp, dtmp);
131 addcolor(cval, ctmp);
132 }
133 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
134 /*
135 * Compute specular transmission. Specular transmission
136 * is always modified by material color.
137 */
138 /* roughness + source */
139 dtmp = np->alpha2 + omega/PI;
140 /* gaussian */
141 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
142 /* worth using? */
143 if (dtmp > FTINY) {
144 copycolor(ctmp, np->mcolor);
145 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
146 scalecolor(ctmp, dtmp);
147 addcolor(cval, ctmp);
148 }
149 }
150 }
151
152
153 m_normal(m, r) /* color a ray that hit something normal */
154 register OBJREC *m;
155 register RAY *r;
156 {
157 NORMDAT nd;
158 double transtest, transdist;
159 COLOR ctmp;
160 register int i;
161 /* easy shadow test */
162 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
163 return(1);
164
165 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
166 objerror(m, USER, "bad number of arguments");
167 nd.mp = m;
168 nd.rp = r;
169 /* get material color */
170 setcolor(nd.mcolor, m->oargs.farg[0],
171 m->oargs.farg[1],
172 m->oargs.farg[2]);
173 /* get roughness */
174 nd.specfl = 0;
175 nd.alpha2 = m->oargs.farg[4];
176 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
177 nd.specfl |= SP_PURE;
178 /* check for back side */
179 if (r->rod < 0.0) {
180 if (!backvis && m->otype != MAT_TRANS) {
181 raytrans(r);
182 return(1);
183 }
184 flipsurface(r); /* reorient if backvis */
185 }
186 /* get modifiers */
187 raytexture(r, m->omod);
188 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
189 if (nd.pdot < .001)
190 nd.pdot = .001; /* non-zero for dirnorm() */
191 multcolor(nd.mcolor, r->pcol); /* modify material color */
192 transtest = 0;
193 transdist = r->rot;
194 /* get specular component */
195 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
196 nd.specfl |= SP_REFL;
197 /* compute specular color */
198 if (m->otype == MAT_METAL)
199 copycolor(nd.scolor, nd.mcolor);
200 else
201 setcolor(nd.scolor, 1.0, 1.0, 1.0);
202 scalecolor(nd.scolor, nd.rspec);
203 /* check threshold */
204 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
205 nd.specfl |= SP_RBLT;
206 /* compute reflected ray */
207 for (i = 0; i < 3; i++)
208 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
209 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
210 for (i = 0; i < 3; i++) /* safety measure */
211 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
212
213 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
214 RAY lr;
215 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
216 VCOPY(lr.rdir, nd.vrefl);
217 rayvalue(&lr);
218 multcolor(lr.rcol, nd.scolor);
219 addcolor(r->rcol, lr.rcol);
220 }
221 }
222 }
223 /* compute transmission */
224 if (m->otype == MAT_TRANS) {
225 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
226 nd.tspec = nd.trans * m->oargs.farg[6];
227 nd.tdiff = nd.trans - nd.tspec;
228 if (nd.tspec > FTINY) {
229 nd.specfl |= SP_TRAN;
230 /* check threshold */
231 if (!(nd.specfl & SP_PURE) &&
232 specthresh >= nd.tspec-FTINY)
233 nd.specfl |= SP_TBLT;
234 if (r->crtype & SHADOW ||
235 DOT(r->pert,r->pert) <= FTINY*FTINY) {
236 VCOPY(nd.prdir, r->rdir);
237 transtest = 2;
238 } else {
239 for (i = 0; i < 3; i++) /* perturb */
240 nd.prdir[i] = r->rdir[i] - r->pert[i];
241 if (DOT(nd.prdir, r->ron) < -FTINY)
242 normalize(nd.prdir); /* OK */
243 else
244 VCOPY(nd.prdir, r->rdir);
245 }
246 }
247 } else
248 nd.tdiff = nd.tspec = nd.trans = 0.0;
249 /* transmitted ray */
250 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
251 RAY lr;
252 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
253 VCOPY(lr.rdir, nd.prdir);
254 rayvalue(&lr);
255 scalecolor(lr.rcol, nd.tspec);
256 multcolor(lr.rcol, nd.mcolor); /* modified by color */
257 addcolor(r->rcol, lr.rcol);
258 transtest *= bright(lr.rcol);
259 transdist = r->rot + lr.rt;
260 }
261 } else
262 transtest = 0;
263
264 if (r->crtype & SHADOW) /* the rest is shadow */
265 return(1);
266 /* diffuse reflection */
267 nd.rdiff = 1.0 - nd.trans - nd.rspec;
268
269 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
270 return(1); /* 100% pure specular */
271
272 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
273 r->ro->otype == OBJ_RING))
274 nd.specfl |= SP_FLAT;
275
276 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
277 gaussamp(r, &nd);
278
279 if (nd.rdiff > FTINY) { /* ambient from this side */
280 ambient(ctmp, r);
281 if (nd.specfl & SP_RBLT)
282 scalecolor(ctmp, 1.0-nd.trans);
283 else
284 scalecolor(ctmp, nd.rdiff);
285 multcolor(ctmp, nd.mcolor); /* modified by material color */
286 addcolor(r->rcol, ctmp); /* add to returned color */
287 }
288 if (nd.tdiff > FTINY) { /* ambient from other side */
289 flipsurface(r);
290 ambient(ctmp, r);
291 if (nd.specfl & SP_TBLT)
292 scalecolor(ctmp, nd.trans);
293 else
294 scalecolor(ctmp, nd.tdiff);
295 multcolor(ctmp, nd.mcolor); /* modified by color */
296 addcolor(r->rcol, ctmp);
297 flipsurface(r);
298 }
299 /* add direct component */
300 direct(r, dirnorm, &nd);
301 /* check distance */
302 if (transtest > bright(r->rcol))
303 r->rt = transdist;
304
305 return(1);
306 }
307
308
309 static
310 gaussamp(r, np) /* sample gaussian specular */
311 RAY *r;
312 register NORMDAT *np;
313 {
314 RAY sr;
315 FVECT u, v, h;
316 double rv[2];
317 double d, sinp, cosp;
318 register int i;
319 /* quick test */
320 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
321 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
322 return;
323 /* set up sample coordinates */
324 v[0] = v[1] = v[2] = 0.0;
325 for (i = 0; i < 3; i++)
326 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
327 break;
328 v[i] = 1.0;
329 fcross(u, v, np->pnorm);
330 normalize(u);
331 fcross(v, np->pnorm, u);
332 /* compute reflection */
333 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
334 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
335 dimlist[ndims++] = (int)np->mp;
336 d = urand(ilhash(dimlist,ndims)+samplendx);
337 multisamp(rv, 2, d);
338 d = 2.0*PI * rv[0];
339 cosp = cos(d);
340 sinp = sin(d);
341 rv[1] = 1.0 - specjitter*rv[1];
342 if (rv[1] <= FTINY)
343 d = 1.0;
344 else
345 d = sqrt( np->alpha2 * -log(rv[1]) );
346 for (i = 0; i < 3; i++)
347 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
348 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
349 for (i = 0; i < 3; i++)
350 sr.rdir[i] = r->rdir[i] + d*h[i];
351 if (DOT(sr.rdir, r->ron) <= FTINY)
352 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
353 rayvalue(&sr);
354 multcolor(sr.rcol, np->scolor);
355 addcolor(r->rcol, sr.rcol);
356 ndims--;
357 }
358 /* compute transmission */
359 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
360 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
361 dimlist[ndims++] = (int)np->mp;
362 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
363 multisamp(rv, 2, d);
364 d = 2.0*PI * rv[0];
365 cosp = cos(d);
366 sinp = sin(d);
367 rv[1] = 1.0 - specjitter*rv[1];
368 if (rv[1] <= FTINY)
369 d = 1.0;
370 else
371 d = sqrt( -log(rv[1]) * np->alpha2 );
372 for (i = 0; i < 3; i++)
373 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
374 if (DOT(sr.rdir, r->ron) < -FTINY)
375 normalize(sr.rdir); /* OK, normalize */
376 else
377 VCOPY(sr.rdir, np->prdir); /* else no jitter */
378 rayvalue(&sr);
379 scalecolor(sr.rcol, np->tspec);
380 multcolor(sr.rcol, np->mcolor); /* modified by color */
381 addcolor(r->rcol, sr.rcol);
382 ndims--;
383 }
384 }