ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.24
Committed: Mon Mar 8 12:37:27 1993 UTC (31 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.23: +2 -0 lines
Log Message:
portability fixes (removed gcc warnings)

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 static gaussamp();
27
28 /*
29 * This routine implements the isotropic Gaussian
30 * model described by Ward in Siggraph `92 article.
31 * We orient the surface towards the incoming ray, so a single
32 * surface can be used to represent an infinitely thin object.
33 *
34 * Arguments for MAT_PLASTIC and MAT_METAL are:
35 * red grn blu specular-frac. facet-slope
36 *
37 * Arguments for MAT_TRANS are:
38 * red grn blu rspec rough trans tspec
39 */
40
41 #define BSPEC(m) (6.0) /* specularity parameter b */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67
68 dirnorm(cval, np, ldir, omega) /* compute source contribution */
69 COLOR cval; /* returned coefficient */
70 register NORMDAT *np; /* material data */
71 FVECT ldir; /* light source direction */
72 double omega; /* light source size */
73 {
74 double ldot;
75 double dtmp, d2;
76 FVECT vtmp;
77 COLOR ctmp;
78
79 setcolor(cval, 0.0, 0.0, 0.0);
80
81 ldot = DOT(np->pnorm, ldir);
82
83 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
84 return; /* wrong side */
85
86 if (ldot > FTINY && np->rdiff > FTINY) {
87 /*
88 * Compute and add diffuse reflected component to returned
89 * color. The diffuse reflected component will always be
90 * modified by the color of the material.
91 */
92 copycolor(ctmp, np->mcolor);
93 dtmp = ldot * omega * np->rdiff / PI;
94 scalecolor(ctmp, dtmp);
95 addcolor(cval, ctmp);
96 }
97 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
98 /*
99 * Compute specular reflection coefficient using
100 * gaussian distribution model.
101 */
102 /* roughness */
103 dtmp = np->alpha2;
104 /* + source if flat */
105 if (np->specfl & SP_FLAT)
106 dtmp += omega/(4.0*PI);
107 /* half vector */
108 vtmp[0] = ldir[0] - np->rp->rdir[0];
109 vtmp[1] = ldir[1] - np->rp->rdir[1];
110 vtmp[2] = ldir[2] - np->rp->rdir[2];
111 d2 = DOT(vtmp, np->pnorm);
112 d2 *= d2;
113 d2 = (DOT(vtmp,vtmp) - d2) / d2;
114 /* gaussian */
115 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
116 /* worth using? */
117 if (dtmp > FTINY) {
118 copycolor(ctmp, np->scolor);
119 dtmp *= omega * sqrt(ldot/np->pdot);
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 }
123 }
124 if (ldot < -FTINY && np->tdiff > FTINY) {
125 /*
126 * Compute diffuse transmission.
127 */
128 copycolor(ctmp, np->mcolor);
129 dtmp = -ldot * omega * np->tdiff / PI;
130 scalecolor(ctmp, dtmp);
131 addcolor(cval, ctmp);
132 }
133 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
134 /*
135 * Compute specular transmission. Specular transmission
136 * is always modified by material color.
137 */
138 /* roughness + source */
139 dtmp = np->alpha2 + omega/PI;
140 /* gaussian */
141 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
142 /* worth using? */
143 if (dtmp > FTINY) {
144 copycolor(ctmp, np->mcolor);
145 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
146 scalecolor(ctmp, dtmp);
147 addcolor(cval, ctmp);
148 }
149 }
150 }
151
152
153 m_normal(m, r) /* color a ray that hit something normal */
154 register OBJREC *m;
155 register RAY *r;
156 {
157 NORMDAT nd;
158 double transtest, transdist;
159 double dtmp;
160 COLOR ctmp;
161 register int i;
162 /* easy shadow test */
163 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
164 return;
165
166 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
167 objerror(m, USER, "bad number of arguments");
168 nd.mp = m;
169 nd.rp = r;
170 /* get material color */
171 setcolor(nd.mcolor, m->oargs.farg[0],
172 m->oargs.farg[1],
173 m->oargs.farg[2]);
174 /* get roughness */
175 nd.specfl = 0;
176 nd.alpha2 = m->oargs.farg[4];
177 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
178 nd.specfl |= SP_PURE;
179 /* reorient if necessary */
180 if (r->rod < 0.0)
181 flipsurface(r);
182 /* get modifiers */
183 raytexture(r, m->omod);
184 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
185 if (nd.pdot < .001)
186 nd.pdot = .001; /* non-zero for dirnorm() */
187 multcolor(nd.mcolor, r->pcol); /* modify material color */
188 transtest = 0;
189 /* get specular component */
190 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
191 nd.specfl |= SP_REFL;
192 /* compute specular color */
193 if (m->otype == MAT_METAL)
194 copycolor(nd.scolor, nd.mcolor);
195 else
196 setcolor(nd.scolor, 1.0, 1.0, 1.0);
197 scalecolor(nd.scolor, nd.rspec);
198 /* improved model */
199 dtmp = exp(-BSPEC(m)*nd.pdot);
200 for (i = 0; i < 3; i++)
201 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
202 nd.rspec += (1.0-nd.rspec)*dtmp;
203 /* check threshold */
204 if (!(nd.specfl & SP_PURE) &&
205 specthresh > FTINY &&
206 (specthresh >= 1.-FTINY ||
207 specthresh + .05 - .1*frandom() > nd.rspec))
208 nd.specfl |= SP_RBLT;
209 /* compute reflected ray */
210 for (i = 0; i < 3; i++)
211 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
212 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
213 for (i = 0; i < 3; i++) /* safety measure */
214 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
215
216 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
217 RAY lr;
218 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
219 VCOPY(lr.rdir, nd.vrefl);
220 rayvalue(&lr);
221 multcolor(lr.rcol, nd.scolor);
222 addcolor(r->rcol, lr.rcol);
223 }
224 }
225 }
226 /* compute transmission */
227 if (m->otype == MAT_TRANS) {
228 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
229 nd.tspec = nd.trans * m->oargs.farg[6];
230 nd.tdiff = nd.trans - nd.tspec;
231 if (nd.tspec > FTINY) {
232 nd.specfl |= SP_TRAN;
233 /* check threshold */
234 if (!(nd.specfl & SP_PURE) && specthresh > FTINY &&
235 (specthresh >= 1.-FTINY ||
236 specthresh + .05 - .1*frandom() > nd.tspec))
237 nd.specfl |= SP_TBLT;
238 if (r->crtype & SHADOW ||
239 DOT(r->pert,r->pert) <= FTINY*FTINY) {
240 VCOPY(nd.prdir, r->rdir);
241 transtest = 2;
242 } else {
243 for (i = 0; i < 3; i++) /* perturb */
244 nd.prdir[i] = r->rdir[i] - r->pert[i];
245 if (DOT(nd.prdir, r->ron) < -FTINY)
246 normalize(nd.prdir); /* OK */
247 else
248 VCOPY(nd.prdir, r->rdir);
249 }
250 }
251 } else
252 nd.tdiff = nd.tspec = nd.trans = 0.0;
253 /* transmitted ray */
254 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
255 RAY lr;
256 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
257 VCOPY(lr.rdir, nd.prdir);
258 rayvalue(&lr);
259 scalecolor(lr.rcol, nd.tspec);
260 multcolor(lr.rcol, nd.mcolor); /* modified by color */
261 addcolor(r->rcol, lr.rcol);
262 transtest *= bright(lr.rcol);
263 transdist = r->rot + lr.rt;
264 }
265 } else
266 transtest = 0;
267
268 if (r->crtype & SHADOW) /* the rest is shadow */
269 return;
270 /* diffuse reflection */
271 nd.rdiff = 1.0 - nd.trans - nd.rspec;
272
273 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
274 return; /* 100% pure specular */
275
276 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
277 r->ro->otype == OBJ_RING))
278 nd.specfl |= SP_FLAT;
279
280 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
281 gaussamp(r, &nd);
282
283 if (nd.rdiff > FTINY) { /* ambient from this side */
284 ambient(ctmp, r);
285 if (nd.specfl & SP_RBLT)
286 scalecolor(ctmp, 1.0-nd.trans);
287 else
288 scalecolor(ctmp, nd.rdiff);
289 multcolor(ctmp, nd.mcolor); /* modified by material color */
290 addcolor(r->rcol, ctmp); /* add to returned color */
291 }
292 if (nd.tdiff > FTINY) { /* ambient from other side */
293 flipsurface(r);
294 ambient(ctmp, r);
295 if (nd.specfl & SP_TBLT)
296 scalecolor(ctmp, nd.trans);
297 else
298 scalecolor(ctmp, nd.tdiff);
299 multcolor(ctmp, nd.mcolor); /* modified by color */
300 addcolor(r->rcol, ctmp);
301 flipsurface(r);
302 }
303 /* add direct component */
304 direct(r, dirnorm, &nd);
305 /* check distance */
306 if (transtest > bright(r->rcol))
307 r->rt = transdist;
308 }
309
310
311 static
312 gaussamp(r, np) /* sample gaussian specular */
313 RAY *r;
314 register NORMDAT *np;
315 {
316 RAY sr;
317 FVECT u, v, h;
318 double rv[2];
319 double d, sinp, cosp;
320 register int i;
321 /* quick test */
322 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
323 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
324 return;
325 /* set up sample coordinates */
326 v[0] = v[1] = v[2] = 0.0;
327 for (i = 0; i < 3; i++)
328 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
329 break;
330 v[i] = 1.0;
331 fcross(u, v, np->pnorm);
332 normalize(u);
333 fcross(v, np->pnorm, u);
334 /* compute reflection */
335 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
336 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
337 dimlist[ndims++] = (int)np->mp;
338 d = urand(ilhash(dimlist,ndims)+samplendx);
339 multisamp(rv, 2, d);
340 d = 2.0*PI * rv[0];
341 cosp = cos(d);
342 sinp = sin(d);
343 rv[1] = 1.0 - specjitter*rv[1];
344 if (rv[1] <= FTINY)
345 d = 1.0;
346 else
347 d = sqrt( np->alpha2 * -log(rv[1]) );
348 for (i = 0; i < 3; i++)
349 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
350 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
351 for (i = 0; i < 3; i++)
352 sr.rdir[i] = r->rdir[i] + d*h[i];
353 if (DOT(sr.rdir, r->ron) <= FTINY)
354 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
355 rayvalue(&sr);
356 multcolor(sr.rcol, np->scolor);
357 addcolor(r->rcol, sr.rcol);
358 ndims--;
359 }
360 /* compute transmission */
361 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
362 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
363 dimlist[ndims++] = (int)np->mp;
364 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
365 multisamp(rv, 2, d);
366 d = 2.0*PI * rv[0];
367 cosp = cos(d);
368 sinp = sin(d);
369 rv[1] = 1.0 - specjitter*rv[1];
370 if (rv[1] <= FTINY)
371 d = 1.0;
372 else
373 d = sqrt( -log(rv[1]) * np->alpha2 );
374 for (i = 0; i < 3; i++)
375 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
376 if (DOT(sr.rdir, r->ron) < -FTINY)
377 normalize(sr.rdir); /* OK, normalize */
378 else
379 VCOPY(sr.rdir, np->prdir); /* else no jitter */
380 rayvalue(&sr);
381 scalecolor(sr.rcol, np->tspec);
382 multcolor(sr.rcol, np->mcolor); /* modified by color */
383 addcolor(r->rcol, sr.rcol);
384 ndims--;
385 }
386 }