/* Copyright (c) 1992 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * normal.c - shading function for normal materials. * * 8/19/85 * 12/19/85 - added stuff for metals. * 6/26/87 - improved specular model. * 9/28/87 - added model for translucent materials. * Later changes described in delta comments. */ #include "ray.h" #include "otypes.h" #include "random.h" extern double specthresh; /* specular sampling threshold */ extern double specjitter; /* specular sampling jitter */ static gaussamp(); /* * This routine implements the isotropic Gaussian * model described by Ward in Siggraph `92 article. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * * Arguments for MAT_PLASTIC and MAT_METAL are: * red grn blu specular-frac. facet-slope * * Arguments for MAT_TRANS are: * red grn blu rspec rough trans tspec */ #define BSPEC(m) (6.0) /* specularity parameter b */ /* specularity flags */ #define SP_REFL 01 /* has reflected specular component */ #define SP_TRAN 02 /* has transmitted specular */ #define SP_PURE 04 /* purely specular (zero roughness) */ #define SP_FLAT 010 /* flat reflecting surface */ #define SP_RBLT 020 /* reflection below sample threshold */ #define SP_TBLT 040 /* transmission below threshold */ typedef struct { OBJREC *mp; /* material pointer */ RAY *rp; /* ray pointer */ short specfl; /* specularity flags, defined above */ COLOR mcolor; /* color of this material */ COLOR scolor; /* color of specular component */ FVECT vrefl; /* vector in direction of reflected ray */ FVECT prdir; /* vector in transmitted direction */ double alpha2; /* roughness squared */ double rdiff, rspec; /* reflected specular, diffuse */ double trans; /* transmissivity */ double tdiff, tspec; /* transmitted specular, diffuse */ FVECT pnorm; /* perturbed surface normal */ double pdot; /* perturbed dot product */ } NORMDAT; /* normal material data */ dirnorm(cval, np, ldir, omega) /* compute source contribution */ COLOR cval; /* returned coefficient */ register NORMDAT *np; /* material data */ FVECT ldir; /* light source direction */ double omega; /* light source size */ { double ldot; double dtmp, d2; FVECT vtmp; COLOR ctmp; setcolor(cval, 0.0, 0.0, 0.0); ldot = DOT(np->pnorm, ldir); if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) return; /* wrong side */ if (ldot > FTINY && np->rdiff > FTINY) { /* * Compute and add diffuse reflected component to returned * color. The diffuse reflected component will always be * modified by the color of the material. */ copycolor(ctmp, np->mcolor); dtmp = ldot * omega * np->rdiff / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { /* * Compute specular reflection coefficient using * gaussian distribution model. */ /* roughness */ dtmp = np->alpha2; /* + source if flat */ if (np->specfl & SP_FLAT) dtmp += omega/(4.0*PI); /* half vector */ vtmp[0] = ldir[0] - np->rp->rdir[0]; vtmp[1] = ldir[1] - np->rp->rdir[1]; vtmp[2] = ldir[2] - np->rp->rdir[2]; d2 = DOT(vtmp, np->pnorm); d2 *= d2; d2 = (DOT(vtmp,vtmp) - d2) / d2; /* gaussian */ dtmp = exp(-d2/dtmp)/(4.*PI*dtmp); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->scolor); dtmp *= omega * sqrt(ldot/np->pdot); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } if (ldot < -FTINY && np->tdiff > FTINY) { /* * Compute diffuse transmission. */ copycolor(ctmp, np->mcolor); dtmp = -ldot * omega * np->tdiff / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) { /* * Compute specular transmission. Specular transmission * is always modified by material color. */ /* roughness + source */ dtmp = np->alpha2 + omega/PI; /* gaussian */ dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->mcolor); dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } } m_normal(m, r) /* color a ray that hit something normal */ register OBJREC *m; register RAY *r; { NORMDAT nd; double transtest, transdist; double dtmp; COLOR ctmp; register int i; /* easy shadow test */ if (r->crtype & SHADOW && m->otype != MAT_TRANS) return; if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) objerror(m, USER, "bad number of arguments"); nd.mp = m; nd.rp = r; /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* get roughness */ nd.specfl = 0; nd.alpha2 = m->oargs.farg[4]; if ((nd.alpha2 *= nd.alpha2) <= FTINY) nd.specfl |= SP_PURE; /* reorient if necessary */ if (r->rod < 0.0) flipsurface(r); /* get modifiers */ raytexture(r, m->omod); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ if (nd.pdot < .001) nd.pdot = .001; /* non-zero for dirnorm() */ multcolor(nd.mcolor, r->pcol); /* modify material color */ transtest = 0; /* get specular component */ if ((nd.rspec = m->oargs.farg[3]) > FTINY) { nd.specfl |= SP_REFL; /* compute specular color */ if (m->otype == MAT_METAL) copycolor(nd.scolor, nd.mcolor); else setcolor(nd.scolor, 1.0, 1.0, 1.0); scalecolor(nd.scolor, nd.rspec); /* improved model */ dtmp = exp(-BSPEC(m)*nd.pdot); for (i = 0; i < 3; i++) colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; nd.rspec += (1.0-nd.rspec)*dtmp; /* check threshold */ if (!(nd.specfl & SP_PURE) && specthresh > FTINY && (specthresh >= 1.-FTINY || specthresh + .05 - .1*frandom() > nd.rspec)) nd.specfl |= SP_RBLT; /* compute reflected ray */ for (i = 0; i < 3; i++) nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ for (i = 0; i < 3; i++) /* safety measure */ nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { RAY lr; if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { VCOPY(lr.rdir, nd.vrefl); rayvalue(&lr); multcolor(lr.rcol, nd.scolor); addcolor(r->rcol, lr.rcol); } } } /* compute transmission */ if (m->otype == MAT_TRANS) { nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec); nd.tspec = nd.trans * m->oargs.farg[6]; nd.tdiff = nd.trans - nd.tspec; if (nd.tspec > FTINY) { nd.specfl |= SP_TRAN; /* check threshold */ if (!(nd.specfl & SP_PURE) && specthresh > FTINY && (specthresh >= 1.-FTINY || specthresh + .05 - .1*frandom() > nd.tspec)) nd.specfl |= SP_TBLT; if (r->crtype & SHADOW || DOT(r->pert,r->pert) <= FTINY*FTINY) { VCOPY(nd.prdir, r->rdir); transtest = 2; } else { for (i = 0; i < 3; i++) /* perturb */ nd.prdir[i] = r->rdir[i] - r->pert[i]; if (DOT(nd.prdir, r->ron) < -FTINY) normalize(nd.prdir); /* OK */ else VCOPY(nd.prdir, r->rdir); } } } else nd.tdiff = nd.tspec = nd.trans = 0.0; /* transmitted ray */ if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { RAY lr; if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { VCOPY(lr.rdir, nd.prdir); rayvalue(&lr); scalecolor(lr.rcol, nd.tspec); multcolor(lr.rcol, nd.mcolor); /* modified by color */ addcolor(r->rcol, lr.rcol); transtest *= bright(lr.rcol); transdist = r->rot + lr.rt; } } else transtest = 0; if (r->crtype & SHADOW) /* the rest is shadow */ return; /* diffuse reflection */ nd.rdiff = 1.0 - nd.trans - nd.rspec; if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) return; /* 100% pure specular */ if (r->ro != NULL && (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING)) nd.specfl |= SP_FLAT; if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE)) gaussamp(r, &nd); if (nd.rdiff > FTINY) { /* ambient from this side */ ambient(ctmp, r); if (nd.specfl & SP_RBLT) scalecolor(ctmp, 1.0-nd.trans); else scalecolor(ctmp, nd.rdiff); multcolor(ctmp, nd.mcolor); /* modified by material color */ addcolor(r->rcol, ctmp); /* add to returned color */ } if (nd.tdiff > FTINY) { /* ambient from other side */ flipsurface(r); ambient(ctmp, r); if (nd.specfl & SP_TBLT) scalecolor(ctmp, nd.trans); else scalecolor(ctmp, nd.tdiff); multcolor(ctmp, nd.mcolor); /* modified by color */ addcolor(r->rcol, ctmp); flipsurface(r); } /* add direct component */ direct(r, dirnorm, &nd); /* check distance */ if (transtest > bright(r->rcol)) r->rt = transdist; } static gaussamp(r, np) /* sample gaussian specular */ RAY *r; register NORMDAT *np; { RAY sr; FVECT u, v, h; double rv[2]; double d, sinp, cosp; register int i; /* quick test */ if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) return; /* set up sample coordinates */ v[0] = v[1] = v[2] = 0.0; for (i = 0; i < 3; i++) if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6) break; v[i] = 1.0; fcross(u, v, np->pnorm); normalize(u); fcross(v, np->pnorm, u); /* compute reflection */ if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { dimlist[ndims++] = (int)np->mp; d = urand(ilhash(dimlist,ndims)+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; cosp = cos(d); sinp = sin(d); rv[1] = 1.0 - specjitter*rv[1]; if (rv[1] <= FTINY) d = 1.0; else d = sqrt( np->alpha2 * -log(rv[1]) ); for (i = 0; i < 3; i++) h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); for (i = 0; i < 3; i++) sr.rdir[i] = r->rdir[i] + d*h[i]; if (DOT(sr.rdir, r->ron) <= FTINY) VCOPY(sr.rdir, np->vrefl); /* jitter no good */ rayvalue(&sr); multcolor(sr.rcol, np->scolor); addcolor(r->rcol, sr.rcol); ndims--; } /* compute transmission */ if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { dimlist[ndims++] = (int)np->mp; d = urand(ilhash(dimlist,ndims)+1823+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; cosp = cos(d); sinp = sin(d); rv[1] = 1.0 - specjitter*rv[1]; if (rv[1] <= FTINY) d = 1.0; else d = sqrt( -log(rv[1]) * np->alpha2 ); for (i = 0; i < 3; i++) sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); if (DOT(sr.rdir, r->ron) < -FTINY) normalize(sr.rdir); /* OK, normalize */ else VCOPY(sr.rdir, np->prdir); /* else no jitter */ rayvalue(&sr); scalecolor(sr.rcol, np->tspec); multcolor(sr.rcol, np->mcolor); /* modified by color */ addcolor(r->rcol, sr.rcol); ndims--; } }