ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.23
Committed: Fri Feb 12 10:41:02 1993 UTC (31 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.22: +3 -2 lines
Log Message:
improved specular component calculation

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 /*
27 * This routine implements the isotropic Gaussian
28 * model described by Ward in Siggraph `92 article.
29 * We orient the surface towards the incoming ray, so a single
30 * surface can be used to represent an infinitely thin object.
31 *
32 * Arguments for MAT_PLASTIC and MAT_METAL are:
33 * red grn blu specular-frac. facet-slope
34 *
35 * Arguments for MAT_TRANS are:
36 * red grn blu rspec rough trans tspec
37 */
38
39 #define BSPEC(m) (6.0) /* specularity parameter b */
40
41 /* specularity flags */
42 #define SP_REFL 01 /* has reflected specular component */
43 #define SP_TRAN 02 /* has transmitted specular */
44 #define SP_PURE 04 /* purely specular (zero roughness) */
45 #define SP_FLAT 010 /* flat reflecting surface */
46 #define SP_RBLT 020 /* reflection below sample threshold */
47 #define SP_TBLT 040 /* transmission below threshold */
48
49 typedef struct {
50 OBJREC *mp; /* material pointer */
51 RAY *rp; /* ray pointer */
52 short specfl; /* specularity flags, defined above */
53 COLOR mcolor; /* color of this material */
54 COLOR scolor; /* color of specular component */
55 FVECT vrefl; /* vector in direction of reflected ray */
56 FVECT prdir; /* vector in transmitted direction */
57 double alpha2; /* roughness squared */
58 double rdiff, rspec; /* reflected specular, diffuse */
59 double trans; /* transmissivity */
60 double tdiff, tspec; /* transmitted specular, diffuse */
61 FVECT pnorm; /* perturbed surface normal */
62 double pdot; /* perturbed dot product */
63 } NORMDAT; /* normal material data */
64
65
66 dirnorm(cval, np, ldir, omega) /* compute source contribution */
67 COLOR cval; /* returned coefficient */
68 register NORMDAT *np; /* material data */
69 FVECT ldir; /* light source direction */
70 double omega; /* light source size */
71 {
72 double ldot;
73 double dtmp, d2;
74 FVECT vtmp;
75 COLOR ctmp;
76
77 setcolor(cval, 0.0, 0.0, 0.0);
78
79 ldot = DOT(np->pnorm, ldir);
80
81 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
82 return; /* wrong side */
83
84 if (ldot > FTINY && np->rdiff > FTINY) {
85 /*
86 * Compute and add diffuse reflected component to returned
87 * color. The diffuse reflected component will always be
88 * modified by the color of the material.
89 */
90 copycolor(ctmp, np->mcolor);
91 dtmp = ldot * omega * np->rdiff / PI;
92 scalecolor(ctmp, dtmp);
93 addcolor(cval, ctmp);
94 }
95 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
96 /*
97 * Compute specular reflection coefficient using
98 * gaussian distribution model.
99 */
100 /* roughness */
101 dtmp = np->alpha2;
102 /* + source if flat */
103 if (np->specfl & SP_FLAT)
104 dtmp += omega/(4.0*PI);
105 /* half vector */
106 vtmp[0] = ldir[0] - np->rp->rdir[0];
107 vtmp[1] = ldir[1] - np->rp->rdir[1];
108 vtmp[2] = ldir[2] - np->rp->rdir[2];
109 d2 = DOT(vtmp, np->pnorm);
110 d2 *= d2;
111 d2 = (DOT(vtmp,vtmp) - d2) / d2;
112 /* gaussian */
113 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
114 /* worth using? */
115 if (dtmp > FTINY) {
116 copycolor(ctmp, np->scolor);
117 dtmp *= omega * sqrt(ldot/np->pdot);
118 scalecolor(ctmp, dtmp);
119 addcolor(cval, ctmp);
120 }
121 }
122 if (ldot < -FTINY && np->tdiff > FTINY) {
123 /*
124 * Compute diffuse transmission.
125 */
126 copycolor(ctmp, np->mcolor);
127 dtmp = -ldot * omega * np->tdiff / PI;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
132 /*
133 * Compute specular transmission. Specular transmission
134 * is always modified by material color.
135 */
136 /* roughness + source */
137 dtmp = np->alpha2 + omega/PI;
138 /* gaussian */
139 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
140 /* worth using? */
141 if (dtmp > FTINY) {
142 copycolor(ctmp, np->mcolor);
143 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
144 scalecolor(ctmp, dtmp);
145 addcolor(cval, ctmp);
146 }
147 }
148 }
149
150
151 m_normal(m, r) /* color a ray that hit something normal */
152 register OBJREC *m;
153 register RAY *r;
154 {
155 NORMDAT nd;
156 double transtest, transdist;
157 double dtmp;
158 COLOR ctmp;
159 register int i;
160 /* easy shadow test */
161 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
162 return;
163
164 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
165 objerror(m, USER, "bad number of arguments");
166 nd.mp = m;
167 nd.rp = r;
168 /* get material color */
169 setcolor(nd.mcolor, m->oargs.farg[0],
170 m->oargs.farg[1],
171 m->oargs.farg[2]);
172 /* get roughness */
173 nd.specfl = 0;
174 nd.alpha2 = m->oargs.farg[4];
175 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
176 nd.specfl |= SP_PURE;
177 /* reorient if necessary */
178 if (r->rod < 0.0)
179 flipsurface(r);
180 /* get modifiers */
181 raytexture(r, m->omod);
182 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
183 if (nd.pdot < .001)
184 nd.pdot = .001; /* non-zero for dirnorm() */
185 multcolor(nd.mcolor, r->pcol); /* modify material color */
186 transtest = 0;
187 /* get specular component */
188 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
189 nd.specfl |= SP_REFL;
190 /* compute specular color */
191 if (m->otype == MAT_METAL)
192 copycolor(nd.scolor, nd.mcolor);
193 else
194 setcolor(nd.scolor, 1.0, 1.0, 1.0);
195 scalecolor(nd.scolor, nd.rspec);
196 /* improved model */
197 dtmp = exp(-BSPEC(m)*nd.pdot);
198 for (i = 0; i < 3; i++)
199 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
200 nd.rspec += (1.0-nd.rspec)*dtmp;
201 /* check threshold */
202 if (!(nd.specfl & SP_PURE) &&
203 specthresh > FTINY &&
204 (specthresh >= 1.-FTINY ||
205 specthresh + .05 - .1*frandom() > nd.rspec))
206 nd.specfl |= SP_RBLT;
207 /* compute reflected ray */
208 for (i = 0; i < 3; i++)
209 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
210 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
211 for (i = 0; i < 3; i++) /* safety measure */
212 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
213
214 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
215 RAY lr;
216 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
217 VCOPY(lr.rdir, nd.vrefl);
218 rayvalue(&lr);
219 multcolor(lr.rcol, nd.scolor);
220 addcolor(r->rcol, lr.rcol);
221 }
222 }
223 }
224 /* compute transmission */
225 if (m->otype == MAT_TRANS) {
226 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
227 nd.tspec = nd.trans * m->oargs.farg[6];
228 nd.tdiff = nd.trans - nd.tspec;
229 if (nd.tspec > FTINY) {
230 nd.specfl |= SP_TRAN;
231 /* check threshold */
232 if (!(nd.specfl & SP_PURE) && specthresh > FTINY &&
233 (specthresh >= 1.-FTINY ||
234 specthresh + .05 - .1*frandom() > nd.tspec))
235 nd.specfl |= SP_TBLT;
236 if (r->crtype & SHADOW ||
237 DOT(r->pert,r->pert) <= FTINY*FTINY) {
238 VCOPY(nd.prdir, r->rdir);
239 transtest = 2;
240 } else {
241 for (i = 0; i < 3; i++) /* perturb */
242 nd.prdir[i] = r->rdir[i] - r->pert[i];
243 if (DOT(nd.prdir, r->ron) < -FTINY)
244 normalize(nd.prdir); /* OK */
245 else
246 VCOPY(nd.prdir, r->rdir);
247 }
248 }
249 } else
250 nd.tdiff = nd.tspec = nd.trans = 0.0;
251 /* transmitted ray */
252 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
253 RAY lr;
254 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
255 VCOPY(lr.rdir, nd.prdir);
256 rayvalue(&lr);
257 scalecolor(lr.rcol, nd.tspec);
258 multcolor(lr.rcol, nd.mcolor); /* modified by color */
259 addcolor(r->rcol, lr.rcol);
260 transtest *= bright(lr.rcol);
261 transdist = r->rot + lr.rt;
262 }
263 } else
264 transtest = 0;
265
266 if (r->crtype & SHADOW) /* the rest is shadow */
267 return;
268 /* diffuse reflection */
269 nd.rdiff = 1.0 - nd.trans - nd.rspec;
270
271 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
272 return; /* 100% pure specular */
273
274 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
275 r->ro->otype == OBJ_RING))
276 nd.specfl |= SP_FLAT;
277
278 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
279 gaussamp(r, &nd);
280
281 if (nd.rdiff > FTINY) { /* ambient from this side */
282 ambient(ctmp, r);
283 if (nd.specfl & SP_RBLT)
284 scalecolor(ctmp, 1.0-nd.trans);
285 else
286 scalecolor(ctmp, nd.rdiff);
287 multcolor(ctmp, nd.mcolor); /* modified by material color */
288 addcolor(r->rcol, ctmp); /* add to returned color */
289 }
290 if (nd.tdiff > FTINY) { /* ambient from other side */
291 flipsurface(r);
292 ambient(ctmp, r);
293 if (nd.specfl & SP_TBLT)
294 scalecolor(ctmp, nd.trans);
295 else
296 scalecolor(ctmp, nd.tdiff);
297 multcolor(ctmp, nd.mcolor); /* modified by color */
298 addcolor(r->rcol, ctmp);
299 flipsurface(r);
300 }
301 /* add direct component */
302 direct(r, dirnorm, &nd);
303 /* check distance */
304 if (transtest > bright(r->rcol))
305 r->rt = transdist;
306 }
307
308
309 static
310 gaussamp(r, np) /* sample gaussian specular */
311 RAY *r;
312 register NORMDAT *np;
313 {
314 RAY sr;
315 FVECT u, v, h;
316 double rv[2];
317 double d, sinp, cosp;
318 register int i;
319 /* quick test */
320 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
321 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
322 return;
323 /* set up sample coordinates */
324 v[0] = v[1] = v[2] = 0.0;
325 for (i = 0; i < 3; i++)
326 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
327 break;
328 v[i] = 1.0;
329 fcross(u, v, np->pnorm);
330 normalize(u);
331 fcross(v, np->pnorm, u);
332 /* compute reflection */
333 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
334 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
335 dimlist[ndims++] = (int)np->mp;
336 d = urand(ilhash(dimlist,ndims)+samplendx);
337 multisamp(rv, 2, d);
338 d = 2.0*PI * rv[0];
339 cosp = cos(d);
340 sinp = sin(d);
341 rv[1] = 1.0 - specjitter*rv[1];
342 if (rv[1] <= FTINY)
343 d = 1.0;
344 else
345 d = sqrt( np->alpha2 * -log(rv[1]) );
346 for (i = 0; i < 3; i++)
347 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
348 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
349 for (i = 0; i < 3; i++)
350 sr.rdir[i] = r->rdir[i] + d*h[i];
351 if (DOT(sr.rdir, r->ron) <= FTINY)
352 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
353 rayvalue(&sr);
354 multcolor(sr.rcol, np->scolor);
355 addcolor(r->rcol, sr.rcol);
356 ndims--;
357 }
358 /* compute transmission */
359 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
360 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
361 dimlist[ndims++] = (int)np->mp;
362 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
363 multisamp(rv, 2, d);
364 d = 2.0*PI * rv[0];
365 cosp = cos(d);
366 sinp = sin(d);
367 rv[1] = 1.0 - specjitter*rv[1];
368 if (rv[1] <= FTINY)
369 d = 1.0;
370 else
371 d = sqrt( -log(rv[1]) * np->alpha2 );
372 for (i = 0; i < 3; i++)
373 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
374 if (DOT(sr.rdir, r->ron) < -FTINY)
375 normalize(sr.rdir); /* OK, normalize */
376 else
377 VCOPY(sr.rdir, np->prdir); /* else no jitter */
378 rayvalue(&sr);
379 scalecolor(sr.rcol, np->tspec);
380 multcolor(sr.rcol, np->mcolor); /* modified by color */
381 addcolor(r->rcol, sr.rcol);
382 ndims--;
383 }
384 }