ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.22
Committed: Fri Oct 16 10:20:29 1992 UTC (31 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.21: +2 -4 lines
Log Message:
fixed comments in header

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 /*
27 * This routine implements the isotropic Gaussian
28 * model described by Ward in Siggraph `92 article.
29 * We orient the surface towards the incoming ray, so a single
30 * surface can be used to represent an infinitely thin object.
31 *
32 * Arguments for MAT_PLASTIC and MAT_METAL are:
33 * red grn blu specular-frac. facet-slope
34 *
35 * Arguments for MAT_TRANS are:
36 * red grn blu rspec rough trans tspec
37 */
38
39 #define BSPEC(m) (6.0) /* specularity parameter b */
40
41 /* specularity flags */
42 #define SP_REFL 01 /* has reflected specular component */
43 #define SP_TRAN 02 /* has transmitted specular */
44 #define SP_PURE 04 /* purely specular (zero roughness) */
45 #define SP_FLAT 010 /* flat reflecting surface */
46 #define SP_RBLT 020 /* reflection below sample threshold */
47 #define SP_TBLT 040 /* transmission below threshold */
48
49 typedef struct {
50 OBJREC *mp; /* material pointer */
51 RAY *rp; /* ray pointer */
52 short specfl; /* specularity flags, defined above */
53 COLOR mcolor; /* color of this material */
54 COLOR scolor; /* color of specular component */
55 FVECT vrefl; /* vector in direction of reflected ray */
56 FVECT prdir; /* vector in transmitted direction */
57 double alpha2; /* roughness squared */
58 double rdiff, rspec; /* reflected specular, diffuse */
59 double trans; /* transmissivity */
60 double tdiff, tspec; /* transmitted specular, diffuse */
61 FVECT pnorm; /* perturbed surface normal */
62 double pdot; /* perturbed dot product */
63 } NORMDAT; /* normal material data */
64
65
66 dirnorm(cval, np, ldir, omega) /* compute source contribution */
67 COLOR cval; /* returned coefficient */
68 register NORMDAT *np; /* material data */
69 FVECT ldir; /* light source direction */
70 double omega; /* light source size */
71 {
72 double ldot;
73 double dtmp, d2;
74 FVECT vtmp;
75 COLOR ctmp;
76
77 setcolor(cval, 0.0, 0.0, 0.0);
78
79 ldot = DOT(np->pnorm, ldir);
80
81 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
82 return; /* wrong side */
83
84 if (ldot > FTINY && np->rdiff > FTINY) {
85 /*
86 * Compute and add diffuse reflected component to returned
87 * color. The diffuse reflected component will always be
88 * modified by the color of the material.
89 */
90 copycolor(ctmp, np->mcolor);
91 dtmp = ldot * omega * np->rdiff / PI;
92 scalecolor(ctmp, dtmp);
93 addcolor(cval, ctmp);
94 }
95 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
96 /*
97 * Compute specular reflection coefficient using
98 * gaussian distribution model.
99 */
100 /* roughness */
101 dtmp = np->alpha2;
102 /* + source if flat */
103 if (np->specfl & SP_FLAT)
104 dtmp += omega/(4.0*PI);
105 /* delta */
106 vtmp[0] = ldir[0] - np->rp->rdir[0];
107 vtmp[1] = ldir[1] - np->rp->rdir[1];
108 vtmp[2] = ldir[2] - np->rp->rdir[2];
109 d2 = DOT(vtmp, np->pnorm);
110 d2 = 2.0 - 2.0*d2/sqrt(DOT(vtmp,vtmp));
111 /* gaussian */
112 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
113 /* worth using? */
114 if (dtmp > FTINY) {
115 copycolor(ctmp, np->scolor);
116 dtmp *= omega * sqrt(ldot/np->pdot);
117 scalecolor(ctmp, dtmp);
118 addcolor(cval, ctmp);
119 }
120 }
121 if (ldot < -FTINY && np->tdiff > FTINY) {
122 /*
123 * Compute diffuse transmission.
124 */
125 copycolor(ctmp, np->mcolor);
126 dtmp = -ldot * omega * np->tdiff / PI;
127 scalecolor(ctmp, dtmp);
128 addcolor(cval, ctmp);
129 }
130 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
131 /*
132 * Compute specular transmission. Specular transmission
133 * is always modified by material color.
134 */
135 /* roughness + source */
136 dtmp = np->alpha2 + omega/PI;
137 /* gaussian */
138 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
139 /* worth using? */
140 if (dtmp > FTINY) {
141 copycolor(ctmp, np->mcolor);
142 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
143 scalecolor(ctmp, dtmp);
144 addcolor(cval, ctmp);
145 }
146 }
147 }
148
149
150 m_normal(m, r) /* color a ray that hit something normal */
151 register OBJREC *m;
152 register RAY *r;
153 {
154 NORMDAT nd;
155 double transtest, transdist;
156 double dtmp;
157 COLOR ctmp;
158 register int i;
159 /* easy shadow test */
160 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
161 return;
162
163 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
164 objerror(m, USER, "bad number of arguments");
165 nd.mp = m;
166 nd.rp = r;
167 /* get material color */
168 setcolor(nd.mcolor, m->oargs.farg[0],
169 m->oargs.farg[1],
170 m->oargs.farg[2]);
171 /* get roughness */
172 nd.specfl = 0;
173 nd.alpha2 = m->oargs.farg[4];
174 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
175 nd.specfl |= SP_PURE;
176 /* reorient if necessary */
177 if (r->rod < 0.0)
178 flipsurface(r);
179 /* get modifiers */
180 raytexture(r, m->omod);
181 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
182 if (nd.pdot < .001)
183 nd.pdot = .001; /* non-zero for dirnorm() */
184 multcolor(nd.mcolor, r->pcol); /* modify material color */
185 transtest = 0;
186 /* get specular component */
187 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
188 nd.specfl |= SP_REFL;
189 /* compute specular color */
190 if (m->otype == MAT_METAL)
191 copycolor(nd.scolor, nd.mcolor);
192 else
193 setcolor(nd.scolor, 1.0, 1.0, 1.0);
194 scalecolor(nd.scolor, nd.rspec);
195 /* improved model */
196 dtmp = exp(-BSPEC(m)*nd.pdot);
197 for (i = 0; i < 3; i++)
198 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
199 nd.rspec += (1.0-nd.rspec)*dtmp;
200 /* check threshold */
201 if (!(nd.specfl & SP_PURE) &&
202 specthresh > FTINY &&
203 (specthresh >= 1.-FTINY ||
204 specthresh + .05 - .1*frandom() > nd.rspec))
205 nd.specfl |= SP_RBLT;
206 /* compute reflected ray */
207 for (i = 0; i < 3; i++)
208 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
209 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
210 for (i = 0; i < 3; i++) /* safety measure */
211 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
212
213 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
214 RAY lr;
215 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
216 VCOPY(lr.rdir, nd.vrefl);
217 rayvalue(&lr);
218 multcolor(lr.rcol, nd.scolor);
219 addcolor(r->rcol, lr.rcol);
220 }
221 }
222 }
223 /* compute transmission */
224 if (m->otype == MAT_TRANS) {
225 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
226 nd.tspec = nd.trans * m->oargs.farg[6];
227 nd.tdiff = nd.trans - nd.tspec;
228 if (nd.tspec > FTINY) {
229 nd.specfl |= SP_TRAN;
230 /* check threshold */
231 if (!(nd.specfl & SP_PURE) && specthresh > FTINY &&
232 (specthresh >= 1.-FTINY ||
233 specthresh + .05 - .1*frandom() > nd.tspec))
234 nd.specfl |= SP_TBLT;
235 if (r->crtype & SHADOW ||
236 DOT(r->pert,r->pert) <= FTINY*FTINY) {
237 VCOPY(nd.prdir, r->rdir);
238 transtest = 2;
239 } else {
240 for (i = 0; i < 3; i++) /* perturb */
241 nd.prdir[i] = r->rdir[i] - r->pert[i];
242 if (DOT(nd.prdir, r->ron) < -FTINY)
243 normalize(nd.prdir); /* OK */
244 else
245 VCOPY(nd.prdir, r->rdir);
246 }
247 }
248 } else
249 nd.tdiff = nd.tspec = nd.trans = 0.0;
250 /* transmitted ray */
251 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
252 RAY lr;
253 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
254 VCOPY(lr.rdir, nd.prdir);
255 rayvalue(&lr);
256 scalecolor(lr.rcol, nd.tspec);
257 multcolor(lr.rcol, nd.mcolor); /* modified by color */
258 addcolor(r->rcol, lr.rcol);
259 transtest *= bright(lr.rcol);
260 transdist = r->rot + lr.rt;
261 }
262 } else
263 transtest = 0;
264
265 if (r->crtype & SHADOW) /* the rest is shadow */
266 return;
267 /* diffuse reflection */
268 nd.rdiff = 1.0 - nd.trans - nd.rspec;
269
270 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
271 return; /* 100% pure specular */
272
273 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
274 r->ro->otype == OBJ_RING))
275 nd.specfl |= SP_FLAT;
276
277 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
278 gaussamp(r, &nd);
279
280 if (nd.rdiff > FTINY) { /* ambient from this side */
281 ambient(ctmp, r);
282 if (nd.specfl & SP_RBLT)
283 scalecolor(ctmp, 1.0-nd.trans);
284 else
285 scalecolor(ctmp, nd.rdiff);
286 multcolor(ctmp, nd.mcolor); /* modified by material color */
287 addcolor(r->rcol, ctmp); /* add to returned color */
288 }
289 if (nd.tdiff > FTINY) { /* ambient from other side */
290 flipsurface(r);
291 ambient(ctmp, r);
292 if (nd.specfl & SP_TBLT)
293 scalecolor(ctmp, nd.trans);
294 else
295 scalecolor(ctmp, nd.tdiff);
296 multcolor(ctmp, nd.mcolor); /* modified by color */
297 addcolor(r->rcol, ctmp);
298 flipsurface(r);
299 }
300 /* add direct component */
301 direct(r, dirnorm, &nd);
302 /* check distance */
303 if (transtest > bright(r->rcol))
304 r->rt = transdist;
305 }
306
307
308 static
309 gaussamp(r, np) /* sample gaussian specular */
310 RAY *r;
311 register NORMDAT *np;
312 {
313 RAY sr;
314 FVECT u, v, h;
315 double rv[2];
316 double d, sinp, cosp;
317 register int i;
318 /* quick test */
319 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
320 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
321 return;
322 /* set up sample coordinates */
323 v[0] = v[1] = v[2] = 0.0;
324 for (i = 0; i < 3; i++)
325 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
326 break;
327 v[i] = 1.0;
328 fcross(u, v, np->pnorm);
329 normalize(u);
330 fcross(v, np->pnorm, u);
331 /* compute reflection */
332 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
333 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
334 dimlist[ndims++] = (int)np->mp;
335 d = urand(ilhash(dimlist,ndims)+samplendx);
336 multisamp(rv, 2, d);
337 d = 2.0*PI * rv[0];
338 cosp = cos(d);
339 sinp = sin(d);
340 rv[1] = 1.0 - specjitter*rv[1];
341 if (rv[1] <= FTINY)
342 d = 1.0;
343 else
344 d = sqrt( np->alpha2 * -log(rv[1]) );
345 for (i = 0; i < 3; i++)
346 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
347 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
348 for (i = 0; i < 3; i++)
349 sr.rdir[i] = r->rdir[i] + d*h[i];
350 if (DOT(sr.rdir, r->ron) <= FTINY)
351 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
352 rayvalue(&sr);
353 multcolor(sr.rcol, np->scolor);
354 addcolor(r->rcol, sr.rcol);
355 ndims--;
356 }
357 /* compute transmission */
358 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
359 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
360 dimlist[ndims++] = (int)np->mp;
361 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
362 multisamp(rv, 2, d);
363 d = 2.0*PI * rv[0];
364 cosp = cos(d);
365 sinp = sin(d);
366 rv[1] = 1.0 - specjitter*rv[1];
367 if (rv[1] <= FTINY)
368 d = 1.0;
369 else
370 d = sqrt( -log(rv[1]) * np->alpha2 );
371 for (i = 0; i < 3; i++)
372 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
373 if (DOT(sr.rdir, r->ron) < -FTINY)
374 normalize(sr.rdir); /* OK, normalize */
375 else
376 VCOPY(sr.rdir, np->prdir); /* else no jitter */
377 rayvalue(&sr);
378 scalecolor(sr.rcol, np->tspec);
379 multcolor(sr.rcol, np->mcolor); /* modified by color */
380 addcolor(r->rcol, sr.rcol);
381 ndims--;
382 }
383 }