ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.20
Committed: Tue May 19 17:09:03 1992 UTC (31 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.19: +1 -1 lines
Log Message:
fixed screwed-up normalization in sample generation

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 /*
27 * This routine uses portions of the reflection
28 * model described by Cook and Torrance.
29 * The computation of specular components has been simplified by
30 * numerous approximations and ommisions to improve speed.
31 * We orient the surface towards the incoming ray, so a single
32 * surface can be used to represent an infinitely thin object.
33 *
34 * Arguments for MAT_PLASTIC and MAT_METAL are:
35 * red grn blu specular-frac. facet-slope
36 *
37 * Arguments for MAT_TRANS are:
38 * red grn blu rspec rough trans tspec
39 */
40
41 #define BSPEC(m) (6.0) /* specularity parameter b */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 04 /* purely specular (zero roughness) */
47 #define SP_FLAT 010 /* flat reflecting surface */
48 #define SP_RBLT 020 /* reflection below sample threshold */
49 #define SP_TBLT 040 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 RAY *rp; /* ray pointer */
54 short specfl; /* specularity flags, defined above */
55 COLOR mcolor; /* color of this material */
56 COLOR scolor; /* color of specular component */
57 FVECT vrefl; /* vector in direction of reflected ray */
58 FVECT prdir; /* vector in transmitted direction */
59 double alpha2; /* roughness squared */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } NORMDAT; /* normal material data */
66
67
68 dirnorm(cval, np, ldir, omega) /* compute source contribution */
69 COLOR cval; /* returned coefficient */
70 register NORMDAT *np; /* material data */
71 FVECT ldir; /* light source direction */
72 double omega; /* light source size */
73 {
74 double ldot;
75 double dtmp, d2;
76 FVECT vtmp;
77 COLOR ctmp;
78
79 setcolor(cval, 0.0, 0.0, 0.0);
80
81 ldot = DOT(np->pnorm, ldir);
82
83 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
84 return; /* wrong side */
85
86 if (ldot > FTINY && np->rdiff > FTINY) {
87 /*
88 * Compute and add diffuse reflected component to returned
89 * color. The diffuse reflected component will always be
90 * modified by the color of the material.
91 */
92 copycolor(ctmp, np->mcolor);
93 dtmp = ldot * omega * np->rdiff / PI;
94 scalecolor(ctmp, dtmp);
95 addcolor(cval, ctmp);
96 }
97 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
98 /*
99 * Compute specular reflection coefficient using
100 * gaussian distribution model.
101 */
102 /* roughness */
103 dtmp = np->alpha2;
104 /* + source if flat */
105 if (np->specfl & SP_FLAT)
106 dtmp += omega/(4.0*PI);
107 /* delta */
108 vtmp[0] = ldir[0] - np->rp->rdir[0];
109 vtmp[1] = ldir[1] - np->rp->rdir[1];
110 vtmp[2] = ldir[2] - np->rp->rdir[2];
111 d2 = DOT(vtmp, np->pnorm);
112 d2 = 2.0 - 2.0*d2/sqrt(DOT(vtmp,vtmp));
113 /* gaussian */
114 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
115 /* worth using? */
116 if (dtmp > FTINY) {
117 copycolor(ctmp, np->scolor);
118 dtmp *= omega * sqrt(ldot/np->pdot);
119 scalecolor(ctmp, dtmp);
120 addcolor(cval, ctmp);
121 }
122 }
123 if (ldot < -FTINY && np->tdiff > FTINY) {
124 /*
125 * Compute diffuse transmission.
126 */
127 copycolor(ctmp, np->mcolor);
128 dtmp = -ldot * omega * np->tdiff / PI;
129 scalecolor(ctmp, dtmp);
130 addcolor(cval, ctmp);
131 }
132 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
133 /*
134 * Compute specular transmission. Specular transmission
135 * is always modified by material color.
136 */
137 /* roughness + source */
138 dtmp = np->alpha2 + omega/PI;
139 /* gaussian */
140 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(4.*PI*dtmp);
141 /* worth using? */
142 if (dtmp > FTINY) {
143 copycolor(ctmp, np->mcolor);
144 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
145 scalecolor(ctmp, dtmp);
146 addcolor(cval, ctmp);
147 }
148 }
149 }
150
151
152 m_normal(m, r) /* color a ray that hit something normal */
153 register OBJREC *m;
154 register RAY *r;
155 {
156 NORMDAT nd;
157 double transtest, transdist;
158 double dtmp;
159 COLOR ctmp;
160 register int i;
161 /* easy shadow test */
162 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
163 return;
164
165 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
166 objerror(m, USER, "bad number of arguments");
167 nd.mp = m;
168 nd.rp = r;
169 /* get material color */
170 setcolor(nd.mcolor, m->oargs.farg[0],
171 m->oargs.farg[1],
172 m->oargs.farg[2]);
173 /* get roughness */
174 nd.specfl = 0;
175 nd.alpha2 = m->oargs.farg[4];
176 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
177 nd.specfl |= SP_PURE;
178 /* reorient if necessary */
179 if (r->rod < 0.0)
180 flipsurface(r);
181 /* get modifiers */
182 raytexture(r, m->omod);
183 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
184 if (nd.pdot < .001)
185 nd.pdot = .001; /* non-zero for dirnorm() */
186 multcolor(nd.mcolor, r->pcol); /* modify material color */
187 transtest = 0;
188 /* get specular component */
189 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
190 nd.specfl |= SP_REFL;
191 /* compute specular color */
192 if (m->otype == MAT_METAL)
193 copycolor(nd.scolor, nd.mcolor);
194 else
195 setcolor(nd.scolor, 1.0, 1.0, 1.0);
196 scalecolor(nd.scolor, nd.rspec);
197 /* improved model */
198 dtmp = exp(-BSPEC(m)*nd.pdot);
199 for (i = 0; i < 3; i++)
200 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
201 nd.rspec += (1.0-nd.rspec)*dtmp;
202 /* check threshold */
203 if (!(nd.specfl & SP_PURE) &&
204 specthresh > FTINY &&
205 (specthresh >= 1.-FTINY ||
206 specthresh + .05 - .1*frandom() > nd.rspec))
207 nd.specfl |= SP_RBLT;
208 /* compute reflected ray */
209 for (i = 0; i < 3; i++)
210 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
211 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
212 for (i = 0; i < 3; i++) /* safety measure */
213 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
214
215 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
216 RAY lr;
217 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
218 VCOPY(lr.rdir, nd.vrefl);
219 rayvalue(&lr);
220 multcolor(lr.rcol, nd.scolor);
221 addcolor(r->rcol, lr.rcol);
222 }
223 }
224 }
225 /* compute transmission */
226 if (m->otype == MAT_TRANS) {
227 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
228 nd.tspec = nd.trans * m->oargs.farg[6];
229 nd.tdiff = nd.trans - nd.tspec;
230 if (nd.tspec > FTINY) {
231 nd.specfl |= SP_TRAN;
232 /* check threshold */
233 if (!(nd.specfl & SP_PURE) && specthresh > FTINY &&
234 (specthresh >= 1.-FTINY ||
235 specthresh + .05 - .1*frandom() > nd.tspec))
236 nd.specfl |= SP_TBLT;
237 if (r->crtype & SHADOW ||
238 DOT(r->pert,r->pert) <= FTINY*FTINY) {
239 VCOPY(nd.prdir, r->rdir);
240 transtest = 2;
241 } else {
242 for (i = 0; i < 3; i++) /* perturb */
243 nd.prdir[i] = r->rdir[i] - r->pert[i];
244 if (DOT(nd.prdir, r->ron) < -FTINY)
245 normalize(nd.prdir); /* OK */
246 else
247 VCOPY(nd.prdir, r->rdir);
248 }
249 }
250 } else
251 nd.tdiff = nd.tspec = nd.trans = 0.0;
252 /* transmitted ray */
253 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
254 RAY lr;
255 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
256 VCOPY(lr.rdir, nd.prdir);
257 rayvalue(&lr);
258 scalecolor(lr.rcol, nd.tspec);
259 multcolor(lr.rcol, nd.mcolor); /* modified by color */
260 addcolor(r->rcol, lr.rcol);
261 transtest *= bright(lr.rcol);
262 transdist = r->rot + lr.rt;
263 }
264 } else
265 transtest = 0;
266
267 if (r->crtype & SHADOW) /* the rest is shadow */
268 return;
269 /* diffuse reflection */
270 nd.rdiff = 1.0 - nd.trans - nd.rspec;
271
272 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
273 return; /* 100% pure specular */
274
275 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
276 r->ro->otype == OBJ_RING))
277 nd.specfl |= SP_FLAT;
278
279 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
280 gaussamp(r, &nd);
281
282 if (nd.rdiff > FTINY) { /* ambient from this side */
283 ambient(ctmp, r);
284 if (nd.specfl & SP_RBLT)
285 scalecolor(ctmp, 1.0-nd.trans);
286 else
287 scalecolor(ctmp, nd.rdiff);
288 multcolor(ctmp, nd.mcolor); /* modified by material color */
289 addcolor(r->rcol, ctmp); /* add to returned color */
290 }
291 if (nd.tdiff > FTINY) { /* ambient from other side */
292 flipsurface(r);
293 ambient(ctmp, r);
294 if (nd.specfl & SP_TBLT)
295 scalecolor(ctmp, nd.trans);
296 else
297 scalecolor(ctmp, nd.tdiff);
298 multcolor(ctmp, nd.mcolor); /* modified by color */
299 addcolor(r->rcol, ctmp);
300 flipsurface(r);
301 }
302 /* add direct component */
303 direct(r, dirnorm, &nd);
304 /* check distance */
305 if (transtest > bright(r->rcol))
306 r->rt = transdist;
307 }
308
309
310 static
311 gaussamp(r, np) /* sample gaussian specular */
312 RAY *r;
313 register NORMDAT *np;
314 {
315 RAY sr;
316 FVECT u, v, h;
317 double rv[2];
318 double d, sinp, cosp;
319 register int i;
320 /* quick test */
321 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
322 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
323 return;
324 /* set up sample coordinates */
325 v[0] = v[1] = v[2] = 0.0;
326 for (i = 0; i < 3; i++)
327 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
328 break;
329 v[i] = 1.0;
330 fcross(u, v, np->pnorm);
331 normalize(u);
332 fcross(v, np->pnorm, u);
333 /* compute reflection */
334 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
335 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
336 dimlist[ndims++] = (int)np->mp;
337 d = urand(ilhash(dimlist,ndims)+samplendx);
338 multisamp(rv, 2, d);
339 d = 2.0*PI * rv[0];
340 cosp = cos(d);
341 sinp = sin(d);
342 rv[1] = 1.0 - specjitter*rv[1];
343 if (rv[1] <= FTINY)
344 d = 1.0;
345 else
346 d = sqrt( np->alpha2 * -log(rv[1]) );
347 for (i = 0; i < 3; i++)
348 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
349 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
350 for (i = 0; i < 3; i++)
351 sr.rdir[i] = r->rdir[i] + d*h[i];
352 if (DOT(sr.rdir, r->ron) <= FTINY)
353 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
354 rayvalue(&sr);
355 multcolor(sr.rcol, np->scolor);
356 addcolor(r->rcol, sr.rcol);
357 ndims--;
358 }
359 /* compute transmission */
360 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
361 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
362 dimlist[ndims++] = (int)np->mp;
363 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
364 multisamp(rv, 2, d);
365 d = 2.0*PI * rv[0];
366 cosp = cos(d);
367 sinp = sin(d);
368 rv[1] = 1.0 - specjitter*rv[1];
369 if (rv[1] <= FTINY)
370 d = 1.0;
371 else
372 d = sqrt( -log(rv[1]) * np->alpha2 );
373 for (i = 0; i < 3; i++)
374 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
375 if (DOT(sr.rdir, r->ron) < -FTINY)
376 normalize(sr.rdir); /* OK, normalize */
377 else
378 VCOPY(sr.rdir, np->prdir); /* else no jitter */
379 rayvalue(&sr);
380 scalecolor(sr.rcol, np->tspec);
381 multcolor(sr.rcol, np->mcolor); /* modified by color */
382 addcolor(r->rcol, sr.rcol);
383 ndims--;
384 }
385 }