ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.2
Committed: Sat Jan 4 19:53:53 1992 UTC (32 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +96 -33 lines
Log Message:
added specular sampling

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 /*
24 * This routine uses portions of the reflection
25 * model described by Cook and Torrance.
26 * The computation of specular components has been simplified by
27 * numerous approximations and ommisions to improve speed.
28 * We orient the surface towards the incoming ray, so a single
29 * surface can be used to represent an infinitely thin object.
30 *
31 * Arguments for MAT_PLASTIC and MAT_METAL are:
32 * red grn blu specular-frac. facet-slope
33 *
34 * Arguments for MAT_TRANS are:
35 * red grn blu rspec rough trans tspec
36 */
37
38 #define BSPEC(m) (6.0) /* specularity parameter b */
39
40 /* specularity flags */
41 #define SP_REFL 01 /* has reflected specular component */
42 #define SP_TRAN 02 /* has transmitted specular */
43 #define SP_PURE 010 /* purely specular (zero roughness) */
44
45 typedef struct {
46 OBJREC *mp; /* material pointer */
47 short specfl; /* specularity flags, defined above */
48 COLOR mcolor; /* color of this material */
49 COLOR scolor; /* color of specular component */
50 FVECT vrefl; /* vector in direction of reflected ray */
51 FVECT prdir; /* vector in transmitted direction */
52 double alpha2; /* roughness squared */
53 double rdiff, rspec; /* reflected specular, diffuse */
54 double trans; /* transmissivity */
55 double tdiff, tspec; /* transmitted specular, diffuse */
56 FVECT pnorm; /* perturbed surface normal */
57 double pdot; /* perturbed dot product */
58 } NORMDAT; /* normal material data */
59
60
61 dirnorm(cval, np, ldir, omega) /* compute source contribution */
62 COLOR cval; /* returned coefficient */
63 register NORMDAT *np; /* material data */
64 FVECT ldir; /* light source direction */
65 double omega; /* light source size */
66 {
67 double ldot;
68 double dtmp;
69 COLOR ctmp;
70
71 setcolor(cval, 0.0, 0.0, 0.0);
72
73 ldot = DOT(np->pnorm, ldir);
74
75 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
76 return; /* wrong side */
77
78 if (ldot > FTINY && np->rdiff > FTINY) {
79 /*
80 * Compute and add diffuse reflected component to returned
81 * color. The diffuse reflected component will always be
82 * modified by the color of the material.
83 */
84 copycolor(ctmp, np->mcolor);
85 dtmp = ldot * omega * np->rdiff / PI;
86 scalecolor(ctmp, dtmp);
87 addcolor(cval, ctmp);
88 }
89 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
90 /*
91 * Compute specular reflection coefficient using
92 * gaussian distribution model.
93 */
94 /* roughness + source */
95 dtmp = 2.0*np->alpha2 + omega/(2.0*PI);
96 /* gaussian */
97 dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
98 /* worth using? */
99 if (dtmp > FTINY) {
100 copycolor(ctmp, np->scolor);
101 dtmp *= omega / np->pdot;
102 scalecolor(ctmp, dtmp);
103 addcolor(cval, ctmp);
104 }
105 }
106 if (ldot < -FTINY && np->tdiff > FTINY) {
107 /*
108 * Compute diffuse transmission.
109 */
110 copycolor(ctmp, np->mcolor);
111 dtmp = -ldot * omega * np->tdiff / PI;
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
116 /*
117 * Compute specular transmission. Specular transmission
118 * is always modified by material color.
119 */
120 /* roughness + source */
121 dtmp = np->alpha2 + omega/(2.0*PI);
122 /* gaussian */
123 dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
124 /* worth using? */
125 if (dtmp > FTINY) {
126 copycolor(ctmp, np->mcolor);
127 dtmp *= np->tspec * omega / np->pdot;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 }
132 }
133
134
135 m_normal(m, r) /* color a ray that hit something normal */
136 register OBJREC *m;
137 register RAY *r;
138 {
139 NORMDAT nd;
140 double transtest, transdist;
141 double dtmp;
142 COLOR ctmp;
143 register int i;
144 /* easy shadow test */
145 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
146 return;
147
148 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
149 objerror(m, USER, "bad number of arguments");
150 nd.mp = m;
151 /* get material color */
152 setcolor(nd.mcolor, m->oargs.farg[0],
153 m->oargs.farg[1],
154 m->oargs.farg[2]);
155 /* get roughness */
156 nd.specfl = 0;
157 nd.alpha2 = m->oargs.farg[4];
158 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
159 nd.specfl |= SP_PURE;
160 /* reorient if necessary */
161 if (r->rod < 0.0)
162 flipsurface(r);
163 /* get modifiers */
164 raytexture(r, m->omod);
165 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
166 if (nd.pdot < .001)
167 nd.pdot = .001; /* non-zero for dirnorm() */
168 multcolor(nd.mcolor, r->pcol); /* modify material color */
169 transtest = 0;
170 /* get specular component */
171 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
172 nd.specfl |= SP_REFL;
173 /* compute specular color */
174 if (m->otype == MAT_METAL)
175 copycolor(nd.scolor, nd.mcolor);
176 else
177 setcolor(nd.scolor, 1.0, 1.0, 1.0);
178 scalecolor(nd.scolor, nd.rspec);
179 /* improved model */
180 dtmp = exp(-BSPEC(m)*nd.pdot);
181 for (i = 0; i < 3; i++)
182 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
183 nd.rspec += (1.0-nd.rspec)*dtmp;
184 /* compute reflected ray */
185 for (i = 0; i < 3; i++)
186 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
187
188 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
189 RAY lr;
190 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
191 VCOPY(lr.rdir, nd.vrefl);
192 rayvalue(&lr);
193 multcolor(lr.rcol, nd.scolor);
194 addcolor(r->rcol, lr.rcol);
195 }
196 }
197 }
198 /* compute transmission */
199 if (m->otype == MAT_TRANS) {
200 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
201 nd.tspec = nd.trans * m->oargs.farg[6];
202 nd.tdiff = nd.trans - nd.tspec;
203 if (nd.tspec > FTINY) {
204 nd.specfl |= SP_TRAN;
205 if (r->crtype & SHADOW ||
206 DOT(r->pert,r->pert) <= FTINY*FTINY) {
207 VCOPY(nd.prdir, r->rdir);
208 transtest = 2;
209 } else {
210 for (i = 0; i < 3; i++) /* perturb */
211 nd.prdir[i] = r->rdir[i] -
212 .75*r->pert[i];
213 normalize(nd.prdir);
214 }
215 }
216 } else
217 nd.tdiff = nd.tspec = nd.trans = 0.0;
218 /* transmitted ray */
219 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
220 RAY lr;
221 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
222 VCOPY(lr.rdir, nd.prdir);
223 rayvalue(&lr);
224 scalecolor(lr.rcol, nd.tspec);
225 multcolor(lr.rcol, nd.mcolor); /* modified by color */
226 addcolor(r->rcol, lr.rcol);
227 transtest *= bright(lr.rcol);
228 transdist = r->rot + lr.rt;
229 }
230 }
231
232 if (r->crtype & SHADOW) /* the rest is shadow */
233 return;
234 /* diffuse reflection */
235 nd.rdiff = 1.0 - nd.trans - nd.rspec;
236
237 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
238 return; /* 100% pure specular */
239
240 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
241 gaussamp(r, &nd);
242
243 if (nd.rdiff > FTINY) { /* ambient from this side */
244 ambient(ctmp, r);
245 scalecolor(ctmp, nd.rdiff);
246 multcolor(ctmp, nd.mcolor); /* modified by material color */
247 addcolor(r->rcol, ctmp); /* add to returned color */
248 }
249 if (nd.tdiff > FTINY) { /* ambient from other side */
250 flipsurface(r);
251 ambient(ctmp, r);
252 scalecolor(ctmp, nd.tdiff);
253 multcolor(ctmp, nd.mcolor); /* modified by color */
254 addcolor(r->rcol, ctmp);
255 flipsurface(r);
256 }
257 /* add direct component */
258 direct(r, dirnorm, &nd);
259 /* check distance */
260 if (transtest > bright(r->rcol))
261 r->rt = transdist;
262 }
263
264
265 static
266 gaussamp(r, np) /* sample gaussian specular */
267 RAY *r;
268 register NORMDAT *np;
269 {
270 RAY sr;
271 FVECT u, v, h;
272 double rv[2];
273 double d, sinp, cosp;
274 int confuse;
275 register int i;
276 /* set up sample coordinates */
277 v[0] = v[1] = v[2] = 0.0;
278 for (i = 0; i < 3; i++)
279 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
280 break;
281 v[i] = 1.0;
282 fcross(u, v, np->pnorm);
283 normalize(u);
284 fcross(v, np->pnorm, u);
285 /* compute reflection */
286 if (np->specfl & SP_REFL &&
287 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
288 confuse = 0;
289 dimlist[ndims++] = (int)np->mp;
290 refagain:
291 dimlist[ndims] = confuse += 3601;
292 d = urand(ilhash(dimlist,ndims+1)+samplendx);
293 multisamp(rv, 2, d);
294 d = 2.0*PI * rv[0];
295 cosp = cos(d);
296 sinp = sin(d);
297 if (rv[1] <= FTINY)
298 d = 1.0;
299 else
300 d = sqrt( np->alpha2 * -log(rv[1]) );
301 for (i = 0; i < 3; i++)
302 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
303 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
304 for (i = 0; i < 3; i++)
305 sr.rdir[i] = r->rdir[i] + d*h[i];
306 if (DOT(sr.rdir, r->ron) <= FTINY) /* oops! */
307 goto refagain;
308 rayvalue(&sr);
309 multcolor(sr.rcol, np->scolor);
310 addcolor(r->rcol, sr.rcol);
311 ndims--;
312 }
313 /* compute transmission */
314 }